cBIN1 Score (CS) Identifies Ambulatory HFrEF Patients and Predicts Cardiovascular Events

Tara C Hitzeman, Yu Xie, Ronit H Zadikany, Andriana P Nikolova, Rachel Baum, Ana-Maria Caldaruse, Sosse Agvanian, Gil Y Melmed, Dermot P B McGovern, Dael R Geft, David H Chang, Jaime D Moriguchi, Antoine Hage, Babak Azarbal, Lawrence S Czer, Michelle M Kittleson, Jignesh K Patel, Alan H B Wu, Jon A Kobashigawa, Michele Hamilton, TingTing Hong, Robin M Shaw, Tara C Hitzeman, Yu Xie, Ronit H Zadikany, Andriana P Nikolova, Rachel Baum, Ana-Maria Caldaruse, Sosse Agvanian, Gil Y Melmed, Dermot P B McGovern, Dael R Geft, David H Chang, Jaime D Moriguchi, Antoine Hage, Babak Azarbal, Lawrence S Czer, Michelle M Kittleson, Jignesh K Patel, Alan H B Wu, Jon A Kobashigawa, Michele Hamilton, TingTing Hong, Robin M Shaw

Abstract

Background: Cardiac Bridging Integrator 1 (cBIN1) is a membrane deformation protein that generates calcium microdomains at cardiomyocyte t-tubules, whose transcription is reduced in heart failure, and is released into blood. cBIN1 score (CS), an inverse index of plasma cBIN1, measures cellular myocardial remodeling. In patients with heart failure with preserved ejection fraction (HFpEF), CS diagnoses ambulatory heart failure and prognosticates hospitalization. The performance of CS has not been tested in patients with heart failure with reduced ejection fraction (HFrEF).

Methods and results: CS was determined from plasma of patients recruited in a prospective study. Two comparative cohorts consisted of 158 ambulatory HFrEF patients (left ventricular ejection fraction (LVEF) ≤ 40%, 57 ± 10 years, 80% men) and 115 age and sex matched volunteers with no known history of HF. N-terminal pro-B-type natriuretic peptide (NT-proBNP) concentrations were also analyzed for comparison. CS follows a normal distribution with a median of 0 in the controls, which increases to a median of 1.9 (p < 0.0001) in HFrEF patients. CS correlates with clinically assessed New York Heart Association Class (p = 0.007). During 1-year follow-up, a high CS (≥ 1.9) in patients predicts increased cardiovascular events (43% vs. 26%, p = 0.01, hazard ratio 1.9). Compared to a model with demographics, clinical risk factors, and NT-proBNP, adding CS to the model improved the overall continuous net reclassification improvement (NRI 0.64; 95% CI 0.18-1.10; p = 0.006). Although performance for diagnosis and prognosis was similar to CS, NT-proBNP did not prognosticate between patients whose NT-proBNP values were > 400 pg/ml.

Conclusion: CS, which is mechanistically distinct from NT-proBNP, successfully differentiates myocardial health between patients with HFrEF and matched controls. A high CS reflects advanced NYHA stage, pathologic cardiac muscle remodeling, and predicts 1-year risk of cardiovascular events in ambulatory HFrEF patients. CS is a marker of myocardial remodeling in HFrEF patients, independent of volume status.

Keywords: cBIN1 score; calcium handling; cardiac muscle remodeling; heart failure; ion channels.

Copyright © 2020 Hitzeman, Xie, Zadikany, Nikolova, Baum, Caldaruse, Agvanian, Melmed, McGovern, Geft, Chang, Moriguchi, Hage, Azarbal, Czer, Kittleson, Patel, Wu, Kobashigawa, Hamilton, Hong and Shaw.

Figures

FIGURE 1
FIGURE 1
Distribution of CS among HFrEF and matched controls. The vertical axis is the cBIN1 score (CS), and the width of each violin graph depicts the density plot at each measured value. The HFrEF cohort median CS is elevated relative to the controls, 1.9 (IQR 1.4–2.4) compared to 0 (IQR -0.5–0.7), respectively (p < 0.0001).
FIGURE 2
FIGURE 2
Receiver operating characteristic (ROC) curves. ROC curve containing the various sensitivities and specificities of CS (AUC = 0.973, red), NT-proBNP (AUC = 0.967, blue), and combined NT-proBNP and CS (AUC = 0.995, green) to diagnose disease in our control and HFrEF cohorts.
FIGURE 3
FIGURE 3
Cardiovascular event free survival of HFrEF patients during 12-month follow-up. (A) Kaplain-Meier survival curve is shown here for all HFrEF patients. The red line demonstrates patients with CS < 1.9 and the blue line demonstrate patients with CS ≥ 1.9. Event free survival is defined as patients who did not have a cardiovascular (CV) event (HF-related hospitalization, cardiac hospitalization, LVAD, OHT, or death) during 12-months follow-up. A low CS (<1.9) predicted a higher event-free survival among all HFrEF patients (p = 0.01). (B) Scatterplot of 12-month event-free survival vs. CS for all CS ≥ 1.9 indicates a negative correlation (Pearsons’s correlation coefficient −0.91, p < 0.0001).

References

    1. Chow J., Senderovich H. (2018). it’s time to talk: challenges in providing integrated palliative care in advanced congestive Heart failure. a narrative review. Curr. Cardiol. Rev. 14 128–137. 10.2174/1573403X14666180123165203
    1. Corra U., Mezzani A., Bosimini E., Scapellato F., Imparato A., Giannuzzi P. (2002). Ventilatory response to exercise improves risk stratification in patients with chronic heart failure and intermediate functional capacity. Am. Heart J. 143 418–426. 10.1067/mhj.2002.120772
    1. Dickstein K., Cohen-Solal A., Filippatos G., McMurray J. J., Ponikowski P., Poole-Wilson P. A., et al. (2008). ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the task force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart failure association of the ESC (HFA) and endorsed by the European Society of intensive care medicine (ESICM). Eur. J. Heart Fail. 10 933–989.
    1. Felker G. M., Anstrom K. J., Adams K. F., Ezekowitz J. A., Fiuzat M., Houston-Miller N., et al. (2017). Effect of natriuretic peptide-guided therapy on hospitalization or cardiovascular mortality in high-risk patients with heart failure and reduced ejection fraction: a randomized clinical trial. JAMA 318 713–720. 10.1001/jama.2017.10565
    1. Fu Y., Shaw S. A., Naami R., Vuong C. L., Basheer W. A., Guo X., et al. (2016). Isoproterenol promotes rapid ryanodine receptor movement to bridging integrator 1 (BIN1)-organized dyads. Circulation 133 388–397. 10.1161/CIRCULATIONAHA.115.018535
    1. Ganz W., Donoso R., Marcus H. S., Forrester J. S., Swan H. J. (1971). A new technique for measurement of cardiac output by thermodilution in man. Am. J. Cardiol. 27 392–396.
    1. Go A. S., Mozaffarian D., Roger V. L., Benjamin E. J., Berry J. D., Blaha M. J., et al. (2014). Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 129 e28–e292.
    1. Hong T., Yang H., Zhang S. S., Cho H. C., Kalashnikova M., Sun B., et al. (2014). Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia. Nat. Med. 20 624–632. 10.1038/nm.3543
    1. Hong T. T., Smyth J. W., Chu K. Y., Vogan J. M., Fong T. S., Jensen B. C., et al. (2012). BIN1 is reduced and Cav1.2 trafficking is impaired in human failing cardiomyocytes. Heart Rhythm. 9 812–820. 10.1016/j.hrthm.2011.11.055
    1. Iwanaga Y., Nishi I., Furuichi S., Noguchi T., Sase K., Kihara Y., et al. (2006). B-type natriuretic peptide strongly reflects diastolic wall stress in patients with chronic heart failure: comparison between systolic and diastolic heart failure. J. Am. Coll. Cardiol. 47 742–748. 10.1016/j.jacc.2005.11.030
    1. Januzzi J. L., Jr., Camargo C. A., Anwaruddin S., Baggish A. L., Chen A. A., Krauser D. G., et al. (2005). The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am J Cardiol 95 948–954. 10.1016/j.amjcard.2004.12.032
    1. Lee N. S., Daniels L. B. (2016). Current understanding of the compensatory actions of cardiac natriuretic peptides in cardiac failure: a clinical perspective. Card. Fail. Rev. 2 14–19. 10.15420/cfr.2016:4:2
    1. >Liu Y. Z. K., Li J., Agvanian S., Caldaruse A. M., Shaw S., Hitzeman T. C., et al. (in press). In mice subjected to chronic stress, exogenous cBIN1 preserves calcium handling machinery and cardiac function. JACC Basic Transl. Res.
    1. Loeppky J. A., Hoekenga D. E., Greene E. R., Luft U. C. (1984). Comparison of noninvasive pulsed Doppler and Fick measurements of stroke volume in cardiac patients. Am. Heart J. 107 339–346. 10.1016/0002-8703(84)90384-3
    1. Lyon A. R., Nikolaev V. O., Miragoli M., Sikkel M. B., Paur H., Benard L., et al. (2012). Plasticity of surface structures and beta2-adrenergic receptor localization in failing ventricular cardiomyocytes during recovery from heart failure. Circ Heart Fail. 5 357–365. 10.1161/circheartfailure.111.964692
    1. Murray S. A., Kendall M., Boyd K., Sheikh A. (2005). Illness trajectories and palliative care. BMJ 330 1007–1011. 10.1136/bmj.330.7498.1007
    1. Myhre P. L., Vaduganathan M., Claggett B. L., I, Anand S., Sweitzer N. K., Fang J. C., et al. (2018). Association of natriuretic peptides with cardiovascular prognosis in heart failure with preserved ejection fraction: secondary analysis of the TOPCAT randomized clinical trial. JAMA Cardiol. 3 1000–1005. 10.1001/jamacardio.2018.2568
    1. Nikolova A. P., Hitzeman T. C., Baum R., Caldaruse A. M., Agvanian S., Xie Y., et al. (2018). Association of a novel diagnostic biomarker, the plasma cardiac bridging integrator 1 score, with heart failure with preserved ejection fraction and cardiovascular hospitalization. JAMA Cardiol. 3 1206–1210. 10.1001/jamacardio.2018.3539
    1. Ponikowski P., Voors A. A., Anker S. D., Bueno H., Cleland J. G. F., Coats A. J. S., et al. (2016). 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 37 2129–2200.
    1. Sun R. R., Lu L., Liu M., Cao Y., Li X. C., Liu H., et al. (2014). Biomarkers and heart disease. Eur. Rev. Med. Pharmacol. Sci. 18 2927–2935.
    1. Virani S. S., Alonso A., Benjamin E. J., Bittencourt M. S., Callaway C. W., Carson A. P., et al. (2020). Heart disease and stroke statistics-2020 update: a report from the American heart association. Circulation 141 e139–e596. 10.1161/CIR.0000000000000757
    1. Weber K. T., Janicki J. S. (1985). Cardiopulmonary exercise testing for evaluation of chronic cardiac failure. Am. J. Cardiol. 55 22a–31a.
    1. Wei S., Guo A., Chen B., Kutschke W., Xie Y. P., Zimmerman K., et al. (2010). T-tubule remodeling during transition from hypertrophy to heart failure. Circ. Res. 107 520–531. 10.1161/circresaha.109.212324
    1. Xu B., Fu Y., Liu Y., Agvanian S., Wirka R. C., Baum R., et al. (2017). The ESCRT-III pathway facilitates cardiomyocyte release of cBIN1-containing microparticles. PLoS Biol. 15:e2002354. 10.1371/journal.pbio.2002354
    1. Yancy C. W., Jessup M., Bozkurt B., Butler J., Casey D. E., Jr., Drazner M. H., et al. (2013). 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart association task force on practice guidelines. J. Am. Coll. Cardiol. 62 e147–e239.
    1. Zadikany R. H., Hong T., Shaw R. M. (2019). Heart failure: distinguishing failing myocardium from volume overload. Biomark. Med. 13 697–700. 10.2217/bmm-2019-0168

Source: PubMed

3
購読する