Injection Laryngoplasty Using Autologous Fat Enriched with Adipose-Derived Regenerative Stem Cells: A Safe Therapeutic Option for the Functional Reconstruction of the Glottal Gap after Unilateral Vocal Fold Paralysis

José M Lasso, Daniel Poletti, Batolomé Scola, Pedro Gómez-Vilda, Ana I García-Martín, María Eugenia Fernández-Santos, José M Lasso, Daniel Poletti, Batolomé Scola, Pedro Gómez-Vilda, Ana I García-Martín, María Eugenia Fernández-Santos

Abstract

Background: Paralysis of one vocal fold leads to glottal gap and vocal fold insufficiency that has significant impact upon a patient's quality of life. Fillers have been tested to perform intracordal injections, but they do not provide perdurable results. Early data suggest that enriching fat grafts with adipose-derived regenerative cells (ADRCs) promote angiogenesis and modulate the immune response, improving graft survival. The aim of this study is to propose ADRC-enriched adipose tissue grafts as effective filler for the paralyzed vocal fold to use it for functional reconstruction of the glottal gap.

Method: This is the first phase I-IIA clinical trial (phase I/IIA clinical trial, unicentric, randomized, controlled, and two parallel groups), to evaluate the safety of a new therapy with ADRC-enriched fat grafting (ADRC: group I) for laryngoplasty after unilateral vocal fold paralysis. Control group patients received centrifuged autologous fat (CAF: group II) grafts. Overall mean age is 52.49 ± 16.60 years. Group I (ADRC): 7 patients (3 males and 4 females), 52.28 ± 20.95 year. Group II (CAF): 7 patients (3 males and 4 females), 52.71 ± 12.59 year.

Results: VHI-10 test showed that preoperative mean score was 24.21 ± 8.28. Postoperative mean score was 6.71 ± 6.75. Preoperative result in group I was 21.14 ± 3.58 and postoperative result was 3.14 ± 3.53. Preoperative result for group II was 27.29 ± 10.66. Postoperative score in group II was 10.29 ± 7.52. Wilcoxon and the Student t-tests showed that the patient's self-perception of posttreatment improvement is larger when ADRCs are used. Comparing pre- and posttreatment voice quality analysis, group I showed a p = 0.053. Group II showed a p = 0.007. There would be no significant differentiation between pre- and posttreatment results. This is true for group II and limited for group I.

Conclusions: This prospective trial demonstrates the safety and efficacy of the treatment of glottal gap defects utilizing ADRC-enriched fat grafts. This trial is registered with NCT02904824.

Figures

Figure 1
Figure 1
Endoscopic captures of the vocal folds in the patient FS4 (group I) before, during, and after injection (pictures captured from endoscopic video).
Figure 2
Figure 2
(a) Web plot of the longitudinal study. The evolution of the 14 parameters selected is shown chronologically from red (pre) to dark blue (post). Each normalized feature must be read on the intersection of each polygon with the corresponding feature radius. Clearly, features 2, 3, 35, 38, 40, 44, 46, and 60 are beyond the normality limits. (b) Manhattan skyline of the same study. Each feature from the four session recordings is presented chronologically from red to dark blue. The different features are now presented as polyhedral columns, the height of the column giving the normalized value of the feature relative to the population mean.
Figure 3
Figure 3
Evolution of the satisfaction scores for groups I (FS and MS) and II (FF and MF).

References

    1. Sulica L., Cultrara A., Blitzer A. Vocal fold paralysis: causes, outcomes, and clinical aspects. In: Sulica L., editor. Vocal Fold Paralysis. Berlin, Heidelberg: Springer; 2006. pp. 33–54.
    1. Sulica L., Blitzer A. Decision points in the management of vocal fold paralysis. In: Sulica L., editor. Vocal Fold Paralysis. Berlin, Heidelberg: Springer; 2006. pp. 77–85.
    1. Simpson B., Sulica L. Principles of medialization laryngoplasty. In: Sulica L., editor. Vocal Fold Paralysis. Berlin, Heidelberg: Springer; 2006. pp. 135–143.
    1. Neuber F. Berichtüber die Verhandlungen der Dt Ges f Chir. Leipzig, Germany: Zentrabl. Chir; 1893. Fettransplantation; pp. 22–66.
    1. Gutowski K. A., ASPS Fat Graft Task Force Current applications and safety of autologous fat grafts: a report of the ASPS fat graft task force. Plastic and Reconstructive Surgery. 2009;124(1):272–280. doi: 10.1097/prs.0b013e3181a09506.
    1. Coleman S. R., Saboeiro A. P. Fat grafting to the breast revisited: safety and efficacy. Plastic and Reconstructive Surgery. 2007;119(3):775–785. doi: 10.1097/01.prs.0000252001.59162.c9.
    1. Zhu M., Zhou Z., Chen Y., et al. Supplementation of fat grafts with adipose-derived regenerative cells improves long-term graft retention. Annals of Plastic Surgery. 2010;64(2):222–228. doi: 10.1097/SAP.0b013e31819ae05c.
    1. Fan C. L., Gao P. J., Che Z. Q., Liu J. J., Wei J., Zhu D. L. Therapeutic neovascularization by autologous transplantation with expanded endothelial progenitor cells from peripheral blood into ischemic hind limbs. Acta Pharmacologica Sinica. 2005;26(9):1069–1075. doi: 10.1111/j.1745-7254.2005.00168.x.
    1. Ott I., Keller U., Knoedler M., et al. Endothelial-like cells expanded from CD34+ blood cells improve left ventricular function after experimental myocardial infarction. The FASEB Journal. 2005;19(8):992–994. doi: 10.1096/fj.04-3219fje.
    1. Fraser J. K., Wulur I., Alfonso Z., Hedrick M. H. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends in Biotechnology. 2006;24(4):150–154. doi: 10.1016/j.tibtech.2006.01.010.
    1. Pérez-Cano R., Vranckx J. J., Lasso J. M., et al. Prospective trial of adipose-derived regenerative cell (ADRC)-enriched fat grafting for partial mastectomy defects: the RESTORE-2 trial. European Journal of Surgical Oncology. 2012;38(5):382–389. doi: 10.1016/j.ejso.2012.02.178.
    1. Xu W., Hu R., Fan R., Han D. Adipose-derived mesenchymal stem cells in collagen–hyaluronic acid gel composite scaffolds for vocal fold regeneration. Annals of Otology, Rhinology & Laryngology. 2011;120(2):123–130. doi: 10.1177/000348941112000209.
    1. Gómez-Vilda P., Rodellar-Biarge V., Nieto-Lluis V., Martínez-Olalla R., Álvarez-Marquina A., Scola-Yurrita B. BioMetroPhon: a system to monitor phonation quality in the clinics. Proceedings of eTELEMED; 2013; Nice, France. pp. 253–258.
    1. Perin E. C., Sanz-Ruiz R., Sánchez P. L., et al. Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: the PRECISE trial. American Heart Journal. 2014;168(1):88–95.e2. doi: 10.1016/j.ahj.2014.03.022.
    1. Rosen C. A., Lee A. S., Osborne J., Zullo T., Murry T. Development and validation of the voice handicap index-10. The Laryngoscope. 2004;114(9):1549–1556. doi: 10.1097/00005537-200409000-00009.
    1. Núñez-Batalla F., Corte-Santos P., Señaris-González B., Llorente-Pendás J. L., Górriz-Gil C., Suárez-Nieto C. Adaptation and validation to the Spanish of the Voice Handicap Index (VHI-30) and its shortened version (VHI-10) Acta Otorrinolaringol (English Edition) 2007;58(9):386–392. doi: 10.1016/s2173-5735(07)70376-9.
    1. Baken R. J., Orlikoff R. F. Clinical Measurement of Speech and Voice. San Diego, CA, USA: Singular Pub. Group; 2000.
    1. Gómez-Vilda P., Fernández-Baillo R., Rodellar-Biarge V., et al. Glottal source biometrical signature for voice pathology detection. Speech Communication. 2009;51(9):759–781. doi: 10.1016/j.specom.2008.09.005.
    1. Deller J. R., Proakis J. G., Hansen J. H. L. Discrete-Time Processing of Speech Signals. New York, NY, USA: Macmillan; 1993.
    1. Marques de Sá J. P. Applied Statistics Using SPSS, STATISTICA and MATLAB. Berlin, Heidelberg: Springer; 2003.
    1. Gómez P., Mazaira L. M., Martínez R., Álvarez A., Hierro J. A., Nieto R. Distance metric in forensic voice evidence evaluation using dysphonia-relevant features. Proceedings of the VI Meeting of Biometric Recognition of Persons 2012; 2012; Las Palmas de Gran Canaria. pp. 169–178.
    1. Vinson K. N., Zraick R. I., Ragland F. J. Injection versus medialization laryngoplasty for the treatment of unilateral vocal fold paralysis: follow-up at six months. The Laryngoscope. 2010;120(9):1802–1807. doi: 10.1002/lary.20982.
    1. Lakhani R., Fishman J. M., Bleach N., Costello D., Birchall M., Cochrane ENT Group Alternative injectable materials for vocal fold medialisation in unilateral vocal fold paralysis. Cochrane Database of Systematic Reviews. 2012;10 doi: 10.1002/14651858.CD009239.pub2.
    1. Mikus J. L., Koufman J. A., Kilpatrick S. E. Fate of liposuctioned and purified autologous fat injections in the canine vocal fold. Laryngoscope. 1995;105(1):17–22. doi: 10.1288/00005537-199501000-00007.
    1. Billings E., Jr., May J. W., Jr. Historical review and present status of free fat graft autotransplantation in plastic and reconstructive surgery. Plastic and Reconstructive Surgery. 1989;83(2):368–381. doi: 10.1097/00006534-198902000-00033.
    1. Laccourreye O., Papon J. F., Kania R., Crevier-Buchman L., Brasnu D., Hans S. Intracordal injection of autologous fat in patients with unilateral laryngeal nerve paralysis: long-term results from the patient’s perspective. The Laryngoscope. 2003;113(3):541–545. doi: 10.1097/00005537-200303000-00027.
    1. Sanderson J. D., Simpson C. B. Laryngeal complications after lipoinjection for vocal fold augmentation. The Laryngoscope. 2009;119(8):1652–1657. doi: 10.1002/lary.20529.
    1. Cantarella G., Mazzola R. F., Domenichini E., Arnone F., Maraschi B. Vocal fold augmentation by autologous fat injection with lipostructure procedure. Otolaryngology–Head and Neck Surgery. 2005;132(2):239–243. doi: 10.1016/j.otohns.2004.09.022.
    1. Kanemaru S., Nakamura T., Omori K., et al. Regeneration of the vocal fold using autologous mesenchymal stem cells. The Annals of Otology, Rhinology, and Laryngology. 2003;112(11):915–920. doi: 10.1177/000348940311201101.
    1. Rehman J., Traktuev D., Li J., et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109(10):1292–1298. doi: 10.1161/01.CIR.0000121425.42966.F1.
    1. Kinnaird T., Stabile E., Burnett M. S., et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation. 2004;109(12):1543–1549. doi: 10.1161/01.CIR.0000124062.31102.57.
    1. Hanson S. E., Kim J., Johnson B. H., et al. Characterization of mesenchymal stem cells from human vocal fold fibroblasts. Laryngoscope. 2010;120(3):546–551. doi: 10.1002/lary.20797.
    1. Hong S. J., Lee S. H., Jin S. M., et al. Vocal fold wound healing after injection of human adipose-derived stem cells in a rabbit model. Acta Oto-Laryngologica. 2011;131(11):1198–1204. doi: 10.3109/00016489.2011.599816.
    1. Hiwatashi N., Hirano S., Mizuta M., et al. Adipose-derived stem cells versus bone marrow-derived stem cells for vocal fold regeneration. The Laryngoscope. 2014;124(12):E461–E469. doi: 10.1002/lary.24816.
    1. Kim Y. M., Oh S. H., Choi J. S., et al. Adipose-derived stem cell-containing hyaluronic acid/alginate hydrogel improves vocal fold wound healing. The Laryngoscope. 2014;124(3):E64–E72. doi: 10.1002/lary.24405.
    1. Choi Y. S., Vincent L. G., Lee A. R., Dobke M. K., Engler A. J. Mechanical derivation of functional myotubes from adipose-derived stem cells. Biomaterials. 2012;33(8):2482–2491. doi: 10.1016/j.biomaterials.2011.12.004.
    1. Hwang J. H., Kim I. G., Piao S., et al. Combination therapy of human adipose-derived stem cells and basic fibroblast growth factor hydrogel in muscle regeneration. Biomaterials. 2013;34(25):6037–6045. doi: 10.1016/j.biomaterials.2013.04.049.
    1. Yu C., Bianc J., Brown C., et al. Porous decellularized adipose tissue foams for soft tissue regeneration. Biomaterials. 2013;34(13):3290–3302. doi: 10.1016/j.biomaterials.2013.01.056.
    1. Pati F., Ha D. H., Jang J., Han H. H., Rhie J. W., Cho D. W. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials. 2015;62:164–175. doi: 10.1016/j.biomaterials.2015.05.043.
    1. Lin K., Matsubara Y., Masuda Y., et al. Characterization of adipose tissue-derived cells isolated with the Celution™ system. Cytotherapy. 2008;10(4):417–426. doi: 10.1080/14653240801982979.
    1. Case J., Horvath T. L., Howell J. C., Yoder M. C., March K. L., Srour E. F. Clonal multilineage differentiation of murine common pluripotent stem cells isolated from skeletal muscle and adipose stromal cells. Annals of the New York Academy of Sciences. 2005;1044(1):183–200. doi: 10.1196/annals.1349.024.
    1. Ishimura D., Yamamoto N., Tajima K., et al. Differentiation of adipose-derived stromal vascular fraction culture cells into chondrocytes using the method of cell sorting with a mesenchymal stem cell marker. The Tohoku Journal of Experimental Medicine. 2008;216(2):149–156. doi: 10.1620/tjem.216.149.

Source: PubMed

3
購読する