Long term evaluation of disease progression through the quantitative magnetic resonance imaging of symptomatic knee osteoarthritis patients: correlation with clinical symptoms and radiographic changes

Jean-Pierre Raynauld, Johanne Martel-Pelletier, Marie-Josée Berthiaume, Gilles Beaudoin, Denis Choquette, Boulos Haraoui, Hyman Tannenbaum, Joan M Meyer, John F Beary, Gary A Cline, Jean-Pierre Pelletier, Jean-Pierre Raynauld, Johanne Martel-Pelletier, Marie-Josée Berthiaume, Gilles Beaudoin, Denis Choquette, Boulos Haraoui, Hyman Tannenbaum, Joan M Meyer, John F Beary, Gary A Cline, Jean-Pierre Pelletier

Abstract

The objective of this study was to further explore the cartilage volume changes in knee osteoarthritis (OA) over time using quantitative magnetic resonance imaging (qMRI). These were correlated with demographic, clinical, and radiological data to better identify the disease risk features. We selected 107 patients from a large trial (n = 1,232) evaluating the effect of a bisphosphonate on OA knees. The MRI acquisitions of the knee were done at baseline, 12, and 24 months. Cartilage volume from the global, medial, and lateral compartments was quantified. The changes were contrasted with clinical data and other MRI anatomical features. Knee OA cartilage volume losses were statistically significant compared to baseline values: -3.7 +/- 3.0% for global cartilage and -5.5 +/- 4.3% for the medial compartment at 12 months, and -5.7 +/- 4.4% and -8.3 +/- 6.5%, respectively, at 24 months. Three different populations were identified according to cartilage volume loss: fast (n = 11; -13.2%), intermediate (n = 48; -7.2%), and slow (n = 48; -2.3%) progressors. The predictors of fast progressors were the presence of severe meniscal extrusion (p = 0.001), severe medial tear (p = 0.005), medial and/or lateral bone edema (p = 0.03), high body mass index (p < 0.05, fast versus slow), weight (p < 0.05, fast versus slow) and age (p < 0.05 fast versus slow). The loss of cartilage volume was also slightly associated with less knee pain. No association was found with other Western Ontario McMaster Osteoarthritis Index (WOMAC) scores, joint space width, or urine biomarker levels. Meniscal damage and bone edema are closely associated with more cartilage volume loss. These data confirm the significant advantage of qMRI for reliably measuring knee structural changes at as early as 12 months, and for identifying risk factors associated with OA progression.

Figures

Figure 1
Figure 1
Changes in osteoarthritis cartilage volume percentage of loss from baseline after 24 months for each patient for the global knee and medial compartments of the three subgroups identified in the cluster analysis: slow (n = 48), intermediate (n = 48), and fast (n = 11) progressors. The global (and medial) volume loss at all the different time points were -2.3 ± 0.4% (-3.2 ± 0.6%) for the slow progressors, -7.2 ± 0.6% (-9.9 ± 0.1%) for the intermediate progressors, and -13.2 ± 0.4% (-21.5 ± 0.1%) for the fast progressors; the intermediate and fast progressor subgroups were found to be statistically significant when compared to baseline (t test). *p < 0. 001; **p < 0.0001.
Figure 2
Figure 2
Scatter plot contrasting the changes in the medial compartment cartilage volume versus minimum joint space width measured by standardized radiograph at 24 months for 107 OA patients. Subgroups of slow (black), intermediate (dark gray), and fast (light gray) progressors are identified. No correlation between the cartilage volume and the minimum joint space width was found.

References

    1. Hart DJ, Doyle DV, Spector TD. Incidence and risk factors for radiographic knee osteoarthritis in middle-aged women: the Chingford Study. Arthritis Rheum. 1999;42:17–24. doi: 10.1002/1529-0131(199901)42:1<17::AID-ANR2>;2-E.
    1. Lachance L, Sowers MF, Jamadar D, Hochberg M. The natural history of emergent osteoarthritis of the knee in women. Osteoarthritis Cartilage. 2002;10:849–854. doi: 10.1053/joca.2002.0840.
    1. Buckland-Wright JC. Quantitative radiography of osteoarthritis. Ann Rheum Dis. 1994;53:268–275.
    1. Bingham C, Cline G, Cohen G, Wenderoth D, Conaghan P, Buckland-Wright C, Beary J, Dougados M, Strand V, Meyer J. Predictors of structural progression in knee osteoarthritis over 24 Months [abstract] Arthritis Rheum. 2004;50(supp 9):254.
    1. Raynauld JP, Kauffmann C, Beaudoin G, Berthiaume MJ, de Guise JA, Bloch DA, Camacho F, Godbout B, Altman RD, Hochberg M, et al. Reliability of a quantification imaging system using magnetic resonance images to measure cartilage thickness and volume in human normal and osteoarthritic knees. Osteoarthritis Cartilage. 2003;11:351–360. doi: 10.1016/S1063-4584(03)00029-3.
    1. Kauffmann C, Gravel P, Godbout B, Gravel A, Beaudoin G, Raynauld J-P, Martel-Pelletier J, Pelletier J-P, DeGuise JA. Computer-aided method for quantification of cartilage thickness and volume changes using MRI: Validation study using a synthetic model. IEEE Trans Biomed Eng. 2003;50:978–988. doi: 10.1109/TBME.2003.814539.
    1. Eckstein F, Adam C, Sittek H, Becker C, Milz S, Schulte E, Reiser M, Putz R. Non-invasive determination of cartilage thickness throughout joint surfaces using magnetic resonance imaging. J Biomech. 1997;30:285–289. doi: 10.1016/S0021-9290(97)81146-3.
    1. Hohe J, Faber S, Stammberger T, Reiser M, Englmeier KH, Eckstein F. A technique for 3D in vivo quantification of proton density and magnetization transfer coefficients of knee joint cartilage. Osteoarthritis Cartilage. 2000;8:426–433. doi: 10.1053/joca.1999.0318.
    1. Hyhlik-Durr A, Faber S, Burgkart R, Stammberger T, Maag KP, Englmeier KH, Reiser M, Eckstein F. Precision of tibial cartilage morphometry with a coronal water-excitation MR sequence. Eur Radiol. 2000;10:297–303. doi: 10.1007/s003300050047.
    1. Peterfy CG, van Dijke CF, Janzen DL, Gluer CC, Namba R, Majumdar S, Lang P, Genant HK. Quantification of articular cartilage in the knee with pulsed saturation transfer subtraction and fat-suppressed MR imaging: optimization and validation. Radiology. 1994;192:485–491.
    1. Cicuttini F, Forbes A, Asbeutah A, Morris K, Stuckey S. Comparison and reproducibility of fast and conventional spoiled gradient-echo magnetic resonance sequences in the determination of knee cartilage volume. J Orthop Res. 2000;18:580–584. doi: 10.1002/jor.1100180410.
    1. Frank LR, Wong EC, Luh WM, Ahn JM, Resnick D. Articular cartilage in the knee: mapping of the physiologic parameters at MR imaging with a local gradient coil – preliminary results. Radiology. 1999;210:241–246.
    1. Raynauld JP, Martel-Pelletier J, Berthiaume MJ, Labonté F, Beaudoin G, de Guise JA, Bloch DA, Choquette D, Haraoui B, Altman RD, et al. Quantitative magnetic resonance imaging evaluation of knee osteoarthritis progression over two years and correlation with clinical symptoms and radiologic changes. Arthritis Rheum. 2004;50:476–487. doi: 10.1002/art.20000.
    1. Berthiaume MJ, Raynauld JP, Martel-Pelletier J, Labonté F, Beaudoin G, Bloch DA, Choquette D, Haraoui B, Altman RD, Hochberg M, et al. Meniscal tear and extrusion are strongly associated with the progresion of knee osteoarthritis as assessed by quantitative magnetic resonance imaging. Ann Rheum Dis. 2005;64:556–563. doi: 10.1136/ard.2004.023796.
    1. Altman RD, Asch E, Bloch DA, Bole G, Borenstein D, Brandt KD, Christy W, Cooke TD, Greenwald R, Hochberg M, et al. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Arthritis Rheum. 1986;29:1039–1049.
    1. Huskisson EC, Berry H, Gishen P, Jubb RW, Whitehead J. Effects of antiinflammatory drugs on the progression of osteoarthritis of the knee. LINK Study Group. Longitudinal investigation of nonsteroidal antiinflammatory drugs in knee osteoarthritis. J Rheumatol. 1995;22:1941–1946.
    1. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW. Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol. 1988;15:1833–1840.
    1. Raynauld JP, Bellamy N, Choquette D. A French-version of the WOMAC questionnaire. Arthritis Rheum. 1994;37:158.
    1. Ware JE, Jr, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30:473–483.
    1. Buckland-Wright JC, Macfarlane DG, Williams SA, Ward RJ. Accuracy and precision of joint space width measurements in standard and macroradiographs of osteoarthritic knees. Ann Rheum Dis. 1995;54:872–880.
    1. Buckland-Wright JC, Macfarlane DG, Jasani MK, Lynch JA. Quantitative microfocal radiographic assessment of osteoarthritis of the knee from weight bearing tunnel and semiflexed standing views. J Rheumatol. 1994;21:1734–1741.
    1. Lynch JA, Buckland-Wright JC, Macfarlane DG. Precision of joint space width measurement in knee osteoarthritis from digital image analysis of high definition macroradiographs. Osteoarthritis Cart. 1993;1:209–218. doi: 10.1016/S1063-4584(05)80327-9.
    1. Buckland-Wright JC, Bird CF, Ritter-Hrncirik CA, Cline GA, Tonkin C, Hangartner TN, Ward RJ, Meyer JM, Meredith MP. X-ray technologists' reproducibility from automated measurements of the medial tibiofemoral joint space width in knee osteoarthritis for a multicenter, multinational clinical trial. J Rheumatol. 2003;30:329–338.
    1. Cicuttini FM, Wluka AE, Stuckey SL. Tibial and femoral cartilage changes in knee osteoarthritis. Ann Rheum Dis. 2001;60:977–980. doi: 10.1136/ard.60.10.977.
    1. Beltran J. MRI of the Musculoskeletal System. Philadelphia, PA: JB Lippincott Company; 1990. The Knee; pp. 7.29–7.5.
    1. Resnick D, Kang HS. Chapter 16, The knee. In: Catherine Fix, editor. Internal Derangements of Joints: Emphasis on MR imaging. Philadelphia, PA: WB Saunders; 1997. pp. 562–630.
    1. Garnero P, Ayral X, Rousseau JC, Christgau S, Sandell LJ, Dougados M, Delmas PD. Uncoupling of type II collagen synthesis and degradation predicts progression of joint damage in patients with knee osteoarthritis. Arthritis Rheum. 2002;46:2613–2624. doi: 10.1002/art.10576.
    1. Christensen R, Astrup A, Bliddal H. Weight loss: the treatment of choice for knee osteoarthritis? A randomized trial. Osteoarthritis Cartilage. 2005;13:20–27. doi: 10.1016/j.joca.2004.10.008.
    1. Pavelka K, Gatterova J, Altman RD. Radiographic progression of knee osteoarthritis in a Czech cohort. Clin Exp Rheumatol. 2000;18:473–477.
    1. Cicuttini FM, Forbes A, Yuanyuan W, Rush G, Stuckey SL. Rate of knee cartilage loss after partial meniscectomy. J Rheumatol. 2002;29:1954–1956.
    1. Felson DT, Lawrence RC, Dieppe PA, Hirsch R, Helmick CG, Jordan JM, Kington RS, Lane NE, Nevitt MC, Zhang Y, et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med. 2000;133:635–646.
    1. Duryea J, Zaim S, Genant HK. New radiographic-based surrogate outcome measures for osteoarthritis of the knee. Osteoarthritis Cartilage. 2003;11:102–110. doi: 10.1053/joca.2002.0866.
    1. Vignon E, Piperno M, Le Graverand MP, Mazzuca SA, Brandt KD, Mathieu P, Favret H, Vignon M, Merle-Vincent F, Conrozier T. Measurement of radiographic joint space width in the tibiofemoral compartment of the osteoarthritic knee: comparison of standing anteroposterior and Lyon schuss views. Arthritis Rheum. 2003;48:378–384. doi: 10.1002/art.10773.
    1. Bruyere O, Honore A, Ethgen O, Rovati LC, Giacovelli G, Henrotin YE, Seidel L, Reginster JY. Correlation between radiographic severity of knee osteoarthritis and future disease progression. Results from a 3-year prospective, placebo-controlled study evaluating the effect of glucosamine sulfate. Osteoarthritis Cartilage. 2003;11:1–5. doi: 10.1053/joca.2002.0848.
    1. Hunter DJ, March L, Sambrook PN. The association of cartilage volume with knee pain. Osteoarthritis Cartilage. 2003;11:725–729. doi: 10.1016/S1063-4584(03)00160-2.
    1. Wluka AE, Wolfe R, Stuckey S, Cicuttini FM. How does tibial cartilage volume relate to symptoms in subjects with knee osteoarthritis? Ann Rheum Dis. 2004;63:264–268. doi: 10.1136/ard/2003.007666.
    1. Boegard T, Rudling O, Petersson IF, Jonsson K. Correlation between radiographically diagnosed osteophytes and magnetic resonance detected cartilage defects in the tibiofemoral joint. Ann Rheum Dis. 1998;57:401–407.
    1. Bhattacharyya T, Gale D, Dewire P, Totterman S, Gale ME, McLaughlin S, Einhorn TA, Felson DT. The clinical importance of meniscal tears demonstrated by magnetic resonance imaging in osteoarthritis of the knee. J Bone Joint Surg Am. 2003;85-A:4–9.
    1. Link TM, Steinbach LS, Ghosh S, Ries M, Lu Y, Lane N, Majumdar S. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology. 2003;226:373–381.
    1. Biswal S, Hastie T, Andriacchi TP, Bergman GA, Dillingham MF, Lang P. Risk factors for progressive cartilage loss in the knee: a longitudinal magnetic resonance imaging study in forty-three patients. Arthritis Rheum. 2002;46:2884–2892. doi: 10.1002/art.10573.
    1. Felson DT, Chaisson CE, Hill CL, Totterman SM, Gale ME, Skinner KM, Kazis L, Gale DR. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med. 2001;134:541–549.
    1. Garnero P, Piperno M, Gineyts E, Christgau S, Delmas PD, Vignon E. Cross sectional evaluation of biochemical markers of bone, cartilage, and synovial tissue metabolism in patients with knee osteoarthritis: relations with disease activity and joint damage. Ann Rheum Dis. 2001;60:619–626. doi: 10.1136/ard.60.6.619.
    1. Ding C, Garnero P, Cicuttini F, Scott F, Cooley H, Jones G. Knee cartilage defects: association with early radiographic osteoarthritis, decreased cartilage volume, increased joint surface area and type II collagen breakdown. Osteoarthritis Cartilage. 2005;13:198–205. doi: 10.1016/j.joca.2004.11.007.

Source: PubMed

3
購読する