Brain lesion scores obtained using a simple semi-quantitative scale from MR imaging are associated with motor function, communication and cognition in dyskinetic cerebral palsy

Olga Laporta-Hoyos, Simona Fiori, Kerstin Pannek, Júlia Ballester-Plané, David Leiva, Lee B Reid, Alex M Pagnozzi, Élida Vázquez, Ignacio Delgado, Alfons Macaya, Roser Pueyo, Roslyn N Boyd, Olga Laporta-Hoyos, Simona Fiori, Kerstin Pannek, Júlia Ballester-Plané, David Leiva, Lee B Reid, Alex M Pagnozzi, Élida Vázquez, Ignacio Delgado, Alfons Macaya, Roser Pueyo, Roslyn N Boyd

Abstract

Purpose: To characterise brain lesions in dyskinetic cerebral palsy (DCP) using the semi-quantitative scale for structural MRI (sqMRI) and to investigate their relationship with motor, communication and cognitive function.

Materials and methods: Thirty-nine participants (19 females, median age 21y) with DCP were assessed in terms of motor function, communication and a variety of cognitive domains. Whole-head magnetic resonance imaging (MRI) was performed including T1-MPRAGE, T2 turbo spin echo (axial plane), and fluid attenuated inversion recovery images (FLAIR). A child neurologist visually assessed images for brain lesions and scored these using the sqMRI. Ordinal, Poisson and binomial negative regression models identified which brain lesions accounted for clinical outcomes.

Results: Brain lesions were most frequently located in the ventral posterior lateral thalamus and the frontal lobe. Gross (B = 0.180, p < .001; B = 0.658, p < .001) and fine (B = 0.136, p = .003; B = 0.540, p < .001) motor function were associated with global sqMRI score and parietal involvement. Communication functioning was associated with putamen involvement (B = 0.747, p < .028). Intellectual functioning was associated with global sqMRI score and posterior thalamus involvement (B = -0.018, p < .001; B = -0.192, p < .001). Selective attention was associated with global sqMRI score (B = -0.035, p < .001), parietal (B = -0.063, p = .023), and corpus callosum involvement (B = -0.448, p < .001). Visuospatial and visuoperceptive abilities were associated with global sqMRI score (B = -0.078, p = .007) and medial dorsal thalamus involvement (B = -0.139, p < .012), respectively.

Conclusions: Key clinical outcomes in DCP are associated with specific observable brain lesions as indexed by a simple lesion scoring system that relies only on standard clinical MRI.

Keywords: Cerebral palsy, (CP); Communication; Dyskinetic cerebral palsy; Dyskinetic cerebral palsy, (DCP); Fluid attenuated inversion recovery images, (FLAIR); Frontal lobe; Gross motor function classification system, (GMFCS); Intellectual functioning; Magnetic resonance images, (MRI); Semi-quantitative scale for brain structural MRI, (sqMRI); Ventral posterior lateral thalamus; Visuoperception.

Figures

Fig. 1
Fig. 1
Flowchart showing requitement process for participants.
Fig. 2
Fig. 2
Percentage of cases presenting different lesion severity according sqMRI scores a) global score (maximum score of 40) to b) ranging from 0 to 6 for each lobar score (including right and left side) c) ranging from no lesion, middle and posterior lesion for corpus callosum and d) ranging from none, unilateral and bilateral lesion for basal ganglia, thalamus, brainstem and cerebellum. PLIC: posterior limb of internal capsule; VPLT: ventral posterior lateral thalamus.
Fig. 3
Fig. 3
Axial FLAIR images of a 14 year old male, showing an example of the most common involvement observed, including ventral posterior lateral thalamus (A, arrowheads) and frontal perirolandic cortex (B, arrowheads). In this subject also putamina are involved (arrows).
Fig. 4
Fig. 4
An illustration of the results of the regression models obtained for the subscores regression models presented in Table 2. F: frontal, O: occipital, P: parietal, T: temporal. The colour bar indicates a) the percentage of odds change in each clinical outcome when the sqMRI score in this region increases by one unit b) the percentage change in clinical outcome when the sqMRI score in this region increases by one unit.
Fig. 5
Fig. 5
Top row: Axial FLAIR images showing an example of the regions which showed an association with clinical measures. (A) Axial FLAIR: parietal white matter involvement (arrowheads); (B) Axial FLAIR: posterior putamina involvement (arrowheads); here with ventral posterior lateral thalamus involvement (arrows); (C) Axial FLAIR: posterior thalamic involvement (arrowheads); (D) Sagittal T1: thinning of middle and posterior corpus callosum (arrowheads); (E) Axial FLAIR: medial dorsal thalamus involvement (arrowheads). Images correspond to a (A) 50 year old male; (B) 21 year old female; (C) 42 year old male (D) 41 year old female and a (E) 17 year old male.

References

    1. Aravamuthan B.R., Waugh J.L. Pediatric neurology localization of basal ganglia and thalamic damage in dyskinetic cerebral palsy. Pediatr. Neurol. 2016;54:11–21.
    1. Arrigoni X.F., Peruzzo X.D., Gagliardi X.C., Maghini X.C., Colombo X.P., Iammarrone X.F.S., Pierpaoli X.C., Triulzi X.F. Whole-Brain DTI Assessment of white matter damage in children with bilateral cerebral palsy: evidence of involvement beyond the primary target of the anoxic insult. Am. Soc. Neuroradiol. 2016;37:1347–1353.
    1. Ballester-Plané J., Schmidt R., Laporta-Hoyos O., Delgado I., Zubiaurre-Elorza L., Macaya A., Pilar P., de Reus M.A., van den Heuvel M.P., Pueyo R. Whole-brain structural connectivity in dyskinetic cerebral palsy and its association with motor and cognitive function. Hum. Brain Mapp. 2017;38:4594–4612.
    1. Barkovich J., Raybaud C. Lippincott Williams & Wilkins; New York: 2005. Pediatric Neuroimaging.
    1. Benini R., Dagenais L., Shevell M.I. Normal imaging in patients with cerebral palsy: what does it tell us? J. Pediatr. 2013;162:369–374.
    1. Benton A.L. vol. 2. Oxford University Press; New York: 1994. Contributions to Neuropsychological Assessment: A Clinical Manual.
    1. Bridge H., Leopold D.A., Bourne J.A. Adaptive Pulvinar circuitry supports visual cognition. Trends Cogn. Sci. 2016;20:146–157.
    1. Cambridge Cognition . Cambridge Cognition; Cambridge: 1999. Limited Cambridge Neuropsychological Test Automated Battery.
    1. Chien J.H., Korzeniewska A., Colloca L., Campbell C., Dougherty P., Lenz F. Human thalamic somatosensory nucleus (Ventral Caudal, Vc) as a locus for stimulation by INPUTS from tactile, noxious and thermal sensors on an active prosthesis. Sensors (Basel) 2017;24:17.
    1. Colver A., Rapp M., Eisemann N., Ehlinger V., Thyen U., Dickinson H.O., Parkes J., Parkinson K., Nystrand M., Fauconnier J., Marcelli M., Michelsen S.I., Arnaud C. Self-reported quality of life of adolescents with cerebral palsy: a cross-sectional and longitudinal analysis. Lancet. 2015;385:705–716.
    1. Culham J.C., Cavina-Pratesi C., Singhal A. The role of parietal cortex in visuomotor control: what have we learned from neuroimaging? Neuropsychologia. 2006;44:2668–2684.
    1. De Lafuente V., Romo R. Neuronal correlates of subjective sensory experience. Nat. Neurosci. 2005;8:1698–1703.
    1. Deng F., Zhao L., Liu C., Lu M., Zhang S., Huang H., Chen L., Wu X. Plasticity in deep and superficial white matter: a DTI study in world class gymnasts. Brain Struct. Funct. 2017;223:1849–1862.
    1. Duffau H. The role of dominant striatum in language: a study using intraoperative electrical stimulations. J. Neurol. Neurosurg. Psychiatry. 2005;76:940–946.
    1. Dunn L.M. Circle Pines, American Guidance Services; MN: 1997. Peabody Picture Vocabulary Test-Third Edition (PPVT-III)
    1. Fiori S., Cioni G., Klingels K., Ortibus E., Van Gestel L., Rose S., Boyd R.N., Feys H., Guzzetta A. Reliability of a novel, semi-quantitative scale for classification of structural brain magnetic resonance imaging in children with cerebral palsy. Dev. Med. Child Neurol. 2014;56:839–845.
    1. Fiori S., Guzzetta A., Pannek K., Ware R.S., Rossi G., Klingels K., Feys H., Coulthard A., Cioni G., Rose S., Boyd R.N. Validity of semi-quantitative scale for brain MRI in unilateral cerebral palsy due to periventricular white matter lesions: relationship with hand sensorimotor function and structural connectivity. NeuroImage Clin. 2015;8:104–109.
    1. Ford A.A., Triplett W., Sudhyadhom A., Gullett J., Mcgregor K., Fitzgerald D.B., Mareci T., White K., Crosson B., Weiss K.L. Broca's area and its striatal and thalamic connections: a diffusion-MRI tractography study. Front. Neuroanat. 2013;7:8.
    1. Graham H.K., Rosenbaum P., Paneth N., Dan B., Lin J.-P., Damiano D.L., Becher J.G., Gaebler-Spira D., Colver A., Reddihough D.S., Crompton K.E., Lieber R.L. Cerebral palsy. Nat. Rev. Dis. Prim. 2016;15082
    1. Himmelmann K., Uvebrant P. Function and neuroimaging in cerebral palsy: a population-based study. Dev. Med. Child Neurol. 2011;53:516–521.
    1. Himmelmann K., McManus V., Hagberg G., Uvebrant P., Krägeloh-Mann I., Cans C., Krageloh-Mann I. Dyskinetic cerebral palsy in Europe: trends in prevalence and severity. Arch. Dis. Child. 2009;94:921–926.
    1. Hines R.J., Paul L.K., Brown W.S. Spatial attention in agenesis of the corpus callosum: shifting attention between visual fields. Neuropsychologia. 2002;40:1804–1814.
    1. Kafkas A., Montaldi D. Two separate, but interacting, neural systems for familiarity and novelty detection: a dual-route mechanism. Hippocampus. 2014;24:516–527.
    1. Kongs S.K., Thompson L.L., Iverson G.L., Heaton R.K. Psychological Assessment Resources; Odessa: 2000. Wisconsin Card Sorting Test – 64 Card Version.
    1. Krägeloh-Mann I. Imaging of early brain injury and cortical plasticity. Exp. Neurol. 2004;190(Suppl):84–90.
    1. Krägeloh-Mann I., Cans C. Cerebral palsy update. Brain and Development. 2009;31:537–544.
    1. Krageloh-Mann I., Horber V. The role of magnetic resonance imaging in elucidating the pathogenesis of cerebral palsy: a systematic review. Dev. Med. Child Neurol. 2007;49:144–151.
    1. Krägeloh-Mann I., Helber A., Mader I., Staudt M., Wolff M., Groenendaal F., Devries L., Krageloh-Mann I. Bilateral lesions of thalamus and basal ganglia: origin and outcome. Dev. Med. Child Neurol. 2002;44:477–484.
    1. Laporta-Hoyos O., Ballester-Plané J., Póo P., Macaya A., Meléndez-Plumed M., Vázquez E., Delgado I., Zubiaurre-Elorza L., Botellero V.L., Narberhaus A., Toro-Tamargo E., Segarra D., Pueyo R. Proxy-reported quality of life in adolescents and adults with dyskinetic cerebral palsy is associated with executive functions and cortical thickness. Qual. Life Res. 2017;26:1209–1222.
    1. Laporta-Hoyos O., Pannek K., Ballester-Plané J., Reid L.B., Vázquez E., Delgado I., Zubiaurre-Elorza L., Macaya A., Póo P., Meléndez-Plumed M., Junqué C., Boyd R., Pueyo R. White matter integrity in dyskinetic cerebral palsy: relationship with intelligence quotient and executive function. NeuroImage Clin. 2017;15:789–800.
    1. Monbaliu E., de Cock P., Ortibus E., Heyrman L., Klingels K., Feys H. Clinical patterns of dystonia and choreoathetosis in participants with dyskinetic cerebral palsy. Dev. Med. Child Neurol. 2015;58:138–144.
    1. Monbaliu E., Himmelmann K., Lin J., Ortibus E., Bonouvrié L., Feys H., Vermeulen R.J., Dan B. Clinical Presentation and Management of Dyskinetic Cerebral Palsy. Lancet. Neurol. 2017;16:741–749.
    1. Novak I., Hines M., Goldsmith S., Barclay R. Clinical prognostic messages from a systematic review on cerebral palsy. Pediatrics. 2012;130:e1285–e1312.
    1. Pannek K., Boyd R.N., Fiori S., Guzzetta A., Rose S.E. Assessment of the structural brain network reveals altered connectivity in children with unilateral cerebral palsy due to periventricular white matter lesions. NeuroImage Clin. 2014;5:84–92.
    1. Parkes J., White-Koning M., Dickinson H.O., Thyen U., Arnaud C., Beckung E., Fauconnier J., Marcelli M., McManus V., Michelsen S.I., Parkinson K., Colver A. Psychological problems in children with cerebral palsy: a cross-sectional European study. J. Child Psychol. Psychiatry Allied Discip. 2008;49:405–413.
    1. Peña-Casanova J., Quiñones-Ubeda S., Gramunt-Fombuena N., Quintana-Aparicio M., Aguilar M., Badenes D., Cerulla N., Molinuevo J.L., Ruiz E., Robles A., Barquero M.S., Antúnez C., Martínez-Parra C., Frank-García A., Fernández M., Alfonso V., Sol J.M., Blesa R., NEURONORMA Study Team Spanish multicenter normative studies (NEURONORMA project): norms for verbal fluency tests. Arch. Clin. Neuropsychol. 2009;4:395–411.
    1. Raven J.C., Court J.H., Seisdedos Cubero N. TEA Ediciones; Madrid: 2001. Raven Matrices Progresivas Escalas: CPM Color, SPM General, APM Superior.
    1. Rosenbaum P., Paneth N., Leviton A., Goldstein M., Bax M., Damiano D., Dan B., Jacobsson B. A report: the definition and classification of cerebral palsy April 2006. Dev. Med. Child Neurol. 2007;109(Suppl):8–14.
    1. Straub K., Obrzut J.E. Effects of cerebral palsy on neuropsychological function. J. Dev. Phys. Disabil. 2009;21:153–157.
    1. Toronto A.S. Northwestern University Press; Evenston, IL: 1973. Screening Test of Spanish Grammar.
    1. Towsley K., Shevell M.I., Dagenais L., Consortium R. Population-based study of neuroimaging findings in children with cerebral palsy. Eur. J. Paediatr. Neurol. 2011;15:29–35.
    1. Tsao H., Pannek K., Fiori S., Boyd R.N., Rose S. Reduced integrity of sensorimotor projections traversing the posterior limb of the internal capsule in children with congenital hemiparesis. Res. Dev. Disabil. 2014;35:250–260.
    1. Tsao H., Pannek K., Boyd R.N., Rose S.E. Changes in the integrity of thalamocortical connections are associated with sensorimotor deficits in children with congenital hemiplegia. Brain Struct. Funct. 2015;220:307–318.
    1. Vazquez Y., Zainos A., Alvarez M., Salinas E., Romo R. Neural coding and perceptual detection in the primate somatosensory thalamus. Proc. Natl. Acad. Sci. 2012;109:15006–15011.
    1. Viñas-Guasch N., Wu Y.J. The role of the putamen in language: a meta-analytic connectivity modeling study. Brain Struct. Funct. 2017;222:3991–4004.
    1. Wechsler D. TEA Ediciones; Madrid: 1999. WAIS III: Escala de inteligencia de Wechsler para adultos-III manual técnico.
    1. Wechsler D. The Psychological Corporation; San Antonio, TX: 2003. Wechsler Intelligence Scale for Children- Fourth Edition (WISC-IV)
    1. Wechsler D., Naglieri J.A. NCS Pearson, Inc; 2006. Wechsler Nonverbal Scale of Ability (WNV)
    1. Yan X., Young A.W., Andrews T.J. The automaticity of face perception is influenced by familiarity. Atten Percept Psychophys. 2017;79:2202–2211.
    1. Yoshida S., Hayakawa K., Oishi K., Mori S., Kanda T., Yamori Y., Yoshida N., Hirota H., Iwami M., Okano S., Matsushita H., Imaging B.D. Athetotic and spastic cerebral palsy: anatomic characterization based on diffusion-tensor imaging. Radiology. 2011;260:511–520.

Source: PubMed

3
購読する