Comprehensive review of surgical microscopes: technology development and medical applications

Ling Ma, Baowei Fei, Ling Ma, Baowei Fei

Abstract

Significance: Surgical microscopes provide adjustable magnification, bright illumination, and clear visualization of the surgical field and have been increasingly used in operating rooms. State-of-the-art surgical microscopes are integrated with various imaging modalities, such as optical coherence tomography (OCT), fluorescence imaging, and augmented reality (AR) for image-guided surgery.

Aim: This comprehensive review is based on the literature of over 500 papers that cover the technology development and applications of surgical microscopy over the past century. The aim of this review is threefold: (i) providing a comprehensive technical overview of surgical microscopes, (ii) providing critical references for microscope selection and system development, and (iii) providing an overview of various medical applications.

Approach: More than 500 references were collected and reviewed. A timeline of important milestones during the evolution of surgical microscope is provided in this study. An in-depth technical overview of the optical system, mechanical system, illumination, visualization, and integration with advanced imaging modalities is provided. Various medical applications of surgical microscopes in neurosurgery and spine surgery, ophthalmic surgery, ear-nose-throat (ENT) surgery, endodontics, and plastic and reconstructive surgery are described.

Results: Surgical microscopy has been significantly advanced in the technical aspects of high-end optics, bright and shadow-free illumination, stable and flexible mechanical design, and versatile visualization. New imaging modalities, such as hyperspectral imaging, OCT, fluorescence imaging, photoacoustic microscopy, and laser speckle contrast imaging, are being integrated with surgical microscopes. Advanced visualization and AR are being added to surgical microscopes as new features that are changing clinical practices in the operating room.

Conclusions: The combination of new imaging technologies and surgical microscopy will enable surgeons to perform challenging procedures and improve surgical outcomes. With advanced visualization and improved ergonomics, the surgical microscope has become a powerful tool in neurosurgery, spinal, ENT, ophthalmic, plastic and reconstructive surgeries.

Keywords: augmented reality; fluorescence imaging; illumination; image-guided surgery; mechanical; optics; surgical microscope; visualization.

Figures

Fig. 1
Fig. 1
The earliest surgical microscopes in the operating room: (a) Brinell–Leitz monocular microscope used by Carl Olof Nylen and the modified Brinell microscope and (b) Zeiss binocular microscope adapted by Holmgren.
Fig. 2
Fig. 2
Zeiss-Opton microscope by Hans Littman had various magnification options and one working distance.
Fig. 3
Fig. 3
Surgical microscope Zeiss OPMI 1: (a) Zeiss OPMI 1 on its stand with motorized head, (b) Zeiss OPMI 1 with a camera, and (c) Zeiss OPMI 1 optical diagram.,
Fig. 4
Fig. 4
Surgical microscope OPMI 2 and OPMI 3.,
Fig. 5
Fig. 5
Microscope-integrated (MI) imaging for image-guided surgery: (a) 5-ALA fluorescence-guided tumor resection, (b) ICG fluorescence for vessel anastomosis, and (c) microscope-integrated OCT during keratoplasty.
Fig. 6
Fig. 6
Illustration of coaxial illumination and comparison with side illumination: (a) side illumination and (b) coaxial illumination.
Fig. 7
Fig. 7
Comparison of illumination effect with and without SAI.
Fig. 8
Fig. 8
Light management related to working distance and spot size: (a) automatic adaption of light intensity with decreased working distance and (b) automatic adjustment of the illuminating area with increased magnification.
Fig. 9
Fig. 9
Illustration of improved ergonomics with surgical microscope.
Fig. 10
Fig. 10
Screens for visualization during surgery: (a) intraoperative OCT images shown separately on 6.5-in screen, with white-light image simultaneously on 21.5-in screen, and injected in oculars, (b) surgeons using the 3D display in a seated position with goggles, and (c) picture-in-picture 3D visualization of endoscopic assistance.
Fig. 11
Fig. 11
Illustration of the calibration method using checkerboard pattern: (a) system setup and (b) various transforms involved with the calibration method.
Fig. 12
Fig. 12
Tracking methods: (a) surgical microscope with optical tracker (yellow arrow) and (b) surgical microscope with integrated tracking camera.
Fig. 13
Fig. 13
Schematic of the optical pathway in an augmented microscope, augmentation provided in the right ocular.
Fig. 14
Fig. 14
Image injection of the occipital artery allows detailed appreciation of its sinuous course. (a) This image overlay indicates where the incision should be performed and guides the dissection of the artery. (b) The accurate superposition of the real and virtual arteries.
Fig. 15
Fig. 15
Fluorescence spectrum of malignant glioma superimposed with protoporphyrin IX spectrum.
Fig. 16
Fig. 16
Schematic of a surgical microscope integrated with an intraoperative fluorescence imaging device.
Fig. 17
Fig. 17
Two optical filters and their installation in the surgical microscope: (a) One (right) is a 380- to 500-nm wavelength band-pass filter (blue) for the excitation of fluorescein, and the other (left) is a 520-nm wavelength long-pass filter (yellow) for emission. (b) The surgical microscope can be easily modified for fluorescent microscopy simply by inserting the blue filter (arrow) in the pathway of the light from a xenon or halogen lamp and inserting the yellow filter (double arrows) in the pathway of the reflected and excited light.
Fig. 18
Fig. 18
Photograph and diagram of fluorescein surgical microscope system.
Fig. 19
Fig. 19
The detection module (blue) and the illumination model (yellow) are attached to the Zeiss Pentero OPMI head and can be used without affecting the standard operation of the microscope.
Fig. 20
Fig. 20
Microscope integration method of an iOCT system, the MIOCT beam is coupled into the microscope prior to the object lens but after the zoom.
Fig. 21
Fig. 21
Surgical microscopes with HSI systems: (a) spectral-scanning HSI using filter wheel, (b) spectral-scanning HSI using tunable filter, and (c) snapshot hyperspectral camera.
Fig. 22
Fig. 22
The NIR-VISPAOCT system and the FOV in ocular overlaid with PAM and OCT images. (a) schematic of NIR-VISPAOCT. (b) Photograph of the NIR-VISPAOCT probe. (c) Surgical microscope image overlaid with B-scan PAM and OCT images. SLED, superluminescent diode; C, collimator; M, mirror; G, galvanometer; OL, objective lens; OC, optical coupler; BS, beam splitter; AMP, amplifier; UT, ultrasound transducer; BP, beam projector; OCL, ocular lens; PD, photodiode; D, dichromic mirror; OCT, optical coherence tomography; and PAM, photoacoustic microscope.
Fig. 23
Fig. 23
SurgeON system schematic and specifications. (a) As shown in the schematic, the SurgeON System comprises a surgical microscope modified to include the following key components: an NIR laser source irradiates the target ROI images which are then captured by the NIR camera. This camera is connected to a computer via MATLAB environment where these acquired laser speckle data are processed in real-time and a video-feed of the resulting blood flow information is transferred to the LSCI projector to be seen by the operator through the microscope eyepiece. (b) The SurgeON System has imaging specifications that are suitable for neurosurgery.
Fig. 24
Fig. 24
Intraoperative view of fluorescein-guided pediatric brain tumor surgery: (a) under microscope white light illumination and (b) fluorescein enhancement under YELLOW 560 filter.
Fig. 25
Fig. 25
AR aneurysm surgery with image injection of the patient’s head: (a) image injection of the patient’s head in 2D, (b) image injection of the patient’s head in 3D, and (c) image injection of a right middle cerebral artery bifurcation aneurysm in 3D and of the underlying bony sphenoid ridge in 2D.
Fig. 26
Fig. 26
Intraoperative ICG videoangiography during arteriovenous malformation surgery. (a, d) Surgical view and (b, c, e, f) ICG videoangiography at the time ofoperation. Intraoperative ICG videoangiography disclosed the arteriovenous malformation clearly (b, 7 seconds after cerebral circulation was visualized by ICG; c, 30 seconds after that). After detection of the nidus, ICG videoangiography indicated no filling of the nidus and to-and-fro filling of the drainer (e, 7 seconds after cerebral circulation was visualized by ICG; f, 30 seconds after that; arrows indicate the drainer).
Fig. 27
Fig. 27
Direct view of the nasopharyngeal tumor under a surgical microscope.
Fig. 28
Fig. 28
Microscope-mounted intraoperative OCT in ophthalmic surgery: (a) MMOCT setup in posterior lamellar keratoplasty and (b) iOCT improves visualization of all the procedures in descemet membrane endothelial keratoplasty.
Fig. 29
Fig. 29
Applications of the DSM in endodontics: (a) removal of the pulp tissue, (b) vertical root fracture detected at 10× magnification with dye, and (c) root end preparation in apicoectomy 16× magnification.

References

    1. Bozec A., et al. , “Current role of primary surgical treatment in patients with head and neck squamous cell carcinoma,” Curr. Opin. Oncol. 31(3), 138–145 (2019).CUOOE810.1097/CCO.0000000000000531
    1. Egbert P. R., et al. , “Diode laser transscleral cyclophotocoagulation as a primary surgical treatment for primary open-angle glaucoma,” Arch. Ophthalmol. 119(3), 345–350 (2001).AROPAW10.1001/archopht.119.3.345
    1. Gutmann J. L., Harrison J. W., Surgical Endodontics, Blackwell Scientific Publications, Boston: (1991).
    1. Torossian J. M., et al. , “Extracranial cephalic schwannomas: a series of 15 patients,” J. Craniofac. Surg. 10(5), 389–394 (1999).10.1097/00001665-199909000-00003
    1. Kumar K. K., et al. , “Preauricular sinus: operating microscope improves outcome,” Indian J. Otolaryngol. Head Neck Surg. 58(1), 6–8 (2006).
    1. Kabuto M., et al. , “Experimental and clinical study of detection of glioma at surgery using fluorescent imaging by a surgical microscope after fluorescein administration,” Neurol. Res. 19(1), 9–16 (1997).10.1080/01616412.1997.11740766
    1. Tirelli G., et al. , “Transoral surgery (TOS) in oropharyngeal cancer: different tools, a single mini-invasive philosophy,” Surg. Oncol. 27(4), 643–649 (2018).SUOCEC10.1016/j.suronc.2018.08.003
    1. Krampe C., “Zeiss operating microscopes for neurosurgery,” Neurosurg. Rev. 7(2-3), 89–97 (1984).NSREDV10.1007/BF01780690
    1. Fleming I. N., et al. , “Intraoperative visualization of anatomical targets in retinal surgery,” in IEEE Workshop Appl. Comput. Vision, pp. 1–6 (2008).10.1109/WACV.2008.4544034
    1. Yaşargil M. G., Microsurgery: Applied to Neurosurgery, Academic Press, New York: (1969).
    1. Vineet R. V., “Dental operating microscope: the third dimension in dentistry,” Adv. Dent. Oral Health 1(3), 555562 (2016).
    1. Research T. M., “Surgical microscopes market—global industry analysis, size, share, growth, trends, and forecast, 2019—2027,” Transparency Market Research; (2019).
    1. Castellucci A., “Magnification in endodontics: the use of the operating microscope,” Pract. Proced. Aesthet. Dent. 15(5), 377–84 (2003).
    1. Ross D. A., et al. , “Use of the operating microscope and loupes for head and neck free microvascular tissue transfer: a retrospective comparison,” Arch. Otolaryngol. Head Neck Surg. 129(2), 189–193 (2003).10.1001/archotol.129.2.189
    1. Keeler R., “The evolution of the ophthalmic surgical microscope,” Hist. Ophthal. Intern. 1, 35–66 (2015).
    1. Schultheiss D., Denil J., “History of the microscope and development of microsurgery: a revolution for reproductive tract surgery,” Andrologia 34(4), 234–241 (2002).ANDRDQ10.1046/j.1439-0272.2002.00499.x
    1. Mavrogenis A. F., et al. , “The history of microsurgery,” Eur. J. Orthop. Surg. Traumatol. 29, 247–254 (2019).10.1007/s00590-019-02378-7
    1. Kriss T. C., Kriss V. M., “History of the operating microscope: from magnifying glass to microneurosurgery,” Neurosurgery 42(4), 899–907 (1998).NEQUEB10.1097/00006123-199804000-00116
    1. Uluç K., Kujoth G. C., Başkaya M. K., “Operating microscopes: past, present, and future,” Neurosurg. Focus 27(3), E4 (2009).10.3171/2009.6.FOCUS09120
    1. Nylean C. O., “The microscope in aural surgery, its first use and later development,” Acta Oto-Laryngol. 43(Suppl. 116), 226–240 (1954).AOLAAJ10.3109/00016485409130299
    1. Tang C. T., et al. , “Quantitative analysis of surgical exposure and maneuverability associated with the endoscope and the microscope in the retrosigmoid and various posterior petrosectomy approaches to the petroclival region using computer tomograpy-based frameless stereotaxy. A cadaveric study,” Clin. Neurol. Neurosurg. 115(7), 1058–1062 (2013).CNNSBV10.1016/j.clineuro.2012.10.023
    1. Mendez B. M., et al. , “Heads-up 3D microscopy: an ergonomic and educational approach to microsurgery,” Plast. Reconstr. Surg. 4(5), e717 (2016).10.1097/GOX.0000000000000727
    1. Tao Y. K., Srivastava S. K., Ehlers J. P., “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5(6), 1877–1885 (2014).BOEICL10.1364/BOE.5.001877
    1. Shen L., et al. , “Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography,” Biomed. Opt. Express 7(5), 1711–1726 (2016).BOEICL10.1364/BOE.7.001711
    1. Damodaran O., Lee J., Lee G., “Microscope in modern spinal surgery: advantages, ergonomics and limitations,” ANZ J. Surg. 83(4), 211–214 (2013).10.1111/ans.12044
    1. Mudry A., “The history of the microscope for use in ear surgery,” Otol. Neurotol. 21(6), 877–886 (2000).
    1. Hamamcioglu M. K., et al. , “The use of the YELLOW 560 nm surgical microscope filter for sodium fluorescein-guided resection of brain tumors: our preliminary results in a series of 28 patients,” Clin. Neurol. Neurosurg. 143, 39–45 (2016).CNNSBV10.1016/j.clineuro.2016.02.006
    1. Zhang N., et al. , “Sodium fluorescein-guided resection under the YELLOW 560 nm surgical microscope filter in malignant gliomas: our first 38 cases experience,” Biomed. Res. Int. 2017, 7865747 (2017).10.1155/2017/7865747
    1. Göker B., Kırış T., “Sodium fluorescein-guided brain tumor surgery under the YELLOW-560-nm surgical microscope filter in pediatric age group: feasibility and preliminary results,” Child’s Nervous Syst. 35(3), 429–435 (2019).10.1007/s00381-018-04037-4
    1. Carl Zeiss Meditec AG, “YELLOW 560 fluorescence-based visualization,” (accessed 2020).
    1. Valdes P. A., et al. , “5-aminolevulinic acid induced protoporphyrin IX (ALA-PpIX) fluorescence guidance in meningioma surgery,” J. Neuro-Oncol. 141(3), 555–565 (2019).JNODD210.1007/s11060-018-03079-7
    1. Jhawar S. S., et al. , “FLOW 800-assisted surgery for arteriovenous malformation,” J. Clin. Neurosci. 18(11), 1556–1557 (2011).10.1016/j.jocn.2011.01.041
    1. Kamp M. A., et al. , “Microscope-integrated quantitative analysis of intraoperative indocyanine green fluorescence angiography for blood flow assessment: first experience in 30 patients,” Neurosurgery 70(1 Suppl. Operative), 65–73; discussion 73-74 (2012).NEQUEB10.1227/NEU.0b013e31822f7d7c
    1. Fukuda K., et al. , “Efficacy of FLOW 800 with indocyanine green videoangiography for the quantitative assessment of flow dynamics in cerebral arteriovenous malformation surgery,” World Neurosurg. 83(2), 203–210 (2015).10.1016/j.wneu.2014.07.012
    1. Leica Microsystems, “Intra-operative fluorescence-guided blood flow view 820 nm/NIR Leica FL800,” (accessed 2020).
    1. Ehlers J. P., et al. , “The DISCOVER study 3-year results: feasibility and usefulness of microscope-integrated intraoperative OCT during ophthalmic surgery,” Ophthalmology 125(7), 1014–1027 (2018).OPANEW10.1016/j.ophtha.2017.12.037
    1. Kobayashi A., et al. , “Visualization of precut DSAEK and pre-stripped DMEK donor corneas by intraoperative optical coherence tomography using the RESCAN 700,” BMC Ophthalmol. 16, 135 (2016).10.1186/s12886-016-0308-z
    1. Jayadev C., et al. , “Microscope-integrated optical coherence tomography: a new surgical tool in vitreoretinal surgery,” Indian J. Ophthalmol. 63(5), 399–403 (2015).IJOMBM10.4103/0301-4738.159865
    1. Hahn P., et al. , “Intrasurgical human retinal imaging with manual instrument tracking using a microscope-integrated spectral-domain optical coherence tomography device,” Transl. Vis. Sci. Technol. 4(4), 1 (2015).10.1167/tvst.4.4.1
    1. Ehlers J. P., et al. , “Determination of feasibility and utility of microscope-integrated optical coherence tomography during ophthalmic surgery: the DISCOVER study RESCAN results,” JAMA Ophthalmol. 133(10), 1124–1132 (2015).10.1001/jamaophthalmol.2015.2376
    1. Pahuja N., et al. , “Intraoperative optical coherence tomography using the RESCAN 700: preliminary results in collagen crosslinking,” Biomed. Res. Int. 2015, 1–7 (2015).10.1155/2015/572698
    1. Eguchi H., et al. , “Intraoperative optical coherence tomography (RESCAN((R)) 700) for detecting iris incarceration and iridocorneal adhesion during keratoplasty,” Int. Ophthalmol. 37(3), 761–765 (2017).10.1007/s10792-016-0322-4
    1. Roblyer D., et al. , “In vivo fluorescence hyperspectral imaging of oral neoplasia,” Proc. SPIE 7169, 71690J (2009).PSISDG10.1117/12.807226
    1. Lee C., et al. , “Virtual intraoperative surgical photoacoustic microscopy,” Proc. SPIE 9539, 95390E (2015).PSISDG10.1117/12.2183548
    1. Pichette J., et al. , “Intraoperative video-rate hemodynamic response assessment in human cortex using snapshot hyperspectral optical imaging,” Neurophotonics 3(4), 045003 (2016).10.1117/1.NPh.3.4.045003
    1. Martin R., Thies B., Gerstner A. O. H., “Hyperspectral hybrid method classification for detecting altered mucosa of the human larynx,” Int. J. Health Geographics 11(1), 21 (2012).10.1186/1476-072X-11-21
    1. Wisotzky E. L., et al. , “Intraoperative hyperspectral determination of human tissue properties,” J. Biomed. Opt. 23(9), 091409 (2018).JBOPFO10.1117/1.JBO.23.9.091409
    1. Wisotzky E. L., et al. , “Validation of two techniques for intraoperative hyperspectral human tissue determination,” Proc. SPIE 10951, 109511Z (2019).PSISDG10.1117/12.251281
    1. Watson J. R., “Development of an augmented microscope for image guided surgery in the brain,” The University of Arizona (2018).
    1. Umebayashi D., et al. , “Augmented reality visualization-guided microscopic spine surgery: transvertebral anterior cervical foraminotomy and posterior foraminotomy,” J. Am. Acad. Orthop. Surg. Glob. Res. Rev. 2(4), e008 (2018).10.5435/JAAOSGlobal-D-17-00008
    1. Lee J., et al. , “Clinical utility of intraoperative tympanomastoidectomy assessment using a surgical microscope integrated with an optical coherence tomography,” Sci. Rep. 8(1), 17432–17439 (2018).SRCEC310.1038/s41598-018-35563-5
    1. Sun G. C., et al. , “Impact of virtual and augmented reality based on intraoperative magnetic resonance imaging and functional neuronavigation in glioma surgery involving eloquent areas,” World Neurosurg. 96, 375–382 (2016).10.1016/j.wneu.2016.07.107
    1. Elliott J. T., et al. , “Review of fluorescence guided surgery visualization and overlay techniques,” Biomed. Opt. Express 6(10), 3765–3782 (2015).BOEICL10.1364/BOE.6.003765
    1. Martirosyan N. L., et al. , “Integration of indocyanine green videoangiography with operative microscope: augmented reality for interactive assessment of vascular structures and blood flow,” Neurosurgery 11(Suppl. 2), 252–257; discussion 257–258 (2015).NEQUEB10.1227/NEU.0000000000000681
    1. Kotsougiani D., et al. , “The learning rate in three dimensional high definition video assisted microvascular anastomosis in a rat model,” J. Plast. Reconstr. Aesthet. Surg. 69(11), 1528–1536 (2016).10.1016/j.bjps.2016.08.001
    1. Moisi M. D., et al. , “Advancement of surgical visualization methods: comparison study between traditional microscopic surgery and a novel robotic optoelectronic visualization tool for spinal surgery,” World Neurosurg. 98, 273–277 (2017).10.1016/j.wneu.2016.11.003
    1. Cabrilo I., Bijlenga P., Schaller K., “Augmented reality in the surgery of cerebral aneurysms: a technical report,” Neurosurgery 10, 252–260 (2014).NEQUEB10.1227/NEU.0000000000000328
    1. Siebelmann S., et al. , “Advantages of microscope-integrated intraoperative online optical coherence tomography: usage in Boston keratoprosthesis type I surgery,” J. Biomed. Opt. 21(1), 016005 (2016).JBOPFO10.1117/1.JBO.21.1.016005
    1. Athanasopoulos D., “Visualization of vascular structures of the brain through a novel multispectral fluorescence microscope after intravenous application of ICG,” Neurosurgery 64, 226–226 (2017).NEQUEB10.1093/neuros/nyx417.119
    1. Belykh E. G., et al. , “Laboratory evaluation of a robotic operative microscope—visualization platform for neurosurgery,” Cureus 10(7), e3072 (2018).10.7759/cureus.3072
    1. Osman H., et al. , “In vivo microscopy in neurosurgical oncology,” World Neurosurg. 115, 110–127 (2018).10.1016/j.wneu.2018.03.218
    1. Rice J. C., “The microsurgical revolution in otolaryngology,” Med. J. Aust. 2(18), 1011–1014 (1972).MJAUAJ10.5694/j.1326-5377.1972.tb103685.x
    1. Edwards P. J., et al. , “Augmentation of reality using an operating microscope for otolaryngology and neurosurgical guidance,” Comput. Aided Surg. 1(3), 172–178 (1995).10.3109/10929089509105692
    1. Davidson B. J., Guardiani E., Wang A., “Adopting the operating microscope in thyroid surgery: safety, efficiency, and ergonomics,” Head Neck 32(2), 154–159 (2010).10.1002/hed.21157
    1. Michaelides P., “Use of the operating microscope in dentistry,” J. California Dent. Assoc. 24(6), 45–50 (1996).
    1. Rubinstein R., “Endodontic microsurgery and the surgical operating microscope,” Compend. Contin. Educ. Dent. 18(7), 659–664, 666, 668 passim; quiz 674 (1997).
    1. Friedman M., Mora A., Schmidt R., “Microscope-assisted precision dentistry,” Compend. Contin. Educ. Dent 20(8), 723–728, 730–721, 735–726; quiz 737 (1999).
    1. Clark D., “Microscope-enhanced aesthetic dentistry,” Dent. Today 23(11), 96, 98–101 (2004).
    1. Mounce R., “The surgical operating microscope: pushing the boundaries of the possible in dentistry,” Dent. Today 25(10), 108, 110, 112–105 (2006).
    1. Calderón M. G., et al. , “The application of microscopic surgery in dentistry,” Med. Oral Patol. Oral Cirugía Bucal 12(4), 311–316 (2007).
    1. Moura J. R., Jr., “Operating microscopes in restorative dentistry: the pursuit of excellence,” J. Min. Intervention Dent. 2(4), 241–247 (2009).
    1. Pradeep S., Vinoddhine R., “The role of magnification in endodontics,” Ann. Essences Dent. 6(2), 38–43 (2014).10.5958/0976-156X.2014.00023.9
    1. Hegde R., Hegde V., “Magnification-enhanced contemporary dentistry: getting started,” J. Interdiscip. Dent. 6(2), 91 (2016).10.4103/2229-5194.197695
    1. Carr G. B., Murgel C. A. F., “The use of the operating microscope in endodontics,” Dent. Clin. 54(2), 191–214 (2010).DCNAAC10.1016/j.cden.2010.01.002
    1. Kumar R., Khambete N., “Surgical operating microscopes in endodontics: enlarged vision and possibility,” Int. J. Stomatological Res. 2(1), 11–15 (2013).10.5923/j.ijsr.20130201.03
    1. Das U., Das S., “Dental operating microscope in endodontics: a review,” J. Dent. Med. Sci. 5(6), 1–8 (2013).10.9790/0853-0560108
    1. Lins C. C. D. S. A., et al. , “Operating microscope in endodontics: a systematic,” Open J. Stomatol. 3, 1–5 (2013).10.4236/ojst.2013.39A001
    1. Carrasco-Zevallos O., et al. , “4D microscope-integrated OCT improves accuracy of ophthalmic surgical maneuvers,” Proc. SPIE 9693, 969306 (2016).PSISDG10.1117/12.2212857
    1. Todorich B., et al. , “Impact of microscope-integrated OCT on ophthalmology resident performance of anterior segment surgical maneuvers in model eyes,” Invest. Ophthalmol. Visual Sci. 57(9), OCT146–OCT153 (2016).IOVSDA10.1167/iovs.15-18818
    1. Lu C. D., et al. , “Microscope-integrated intraoperative ultrahigh-speed swept-source optical coherence tomography for widefield retinal and anterior segment imaging,” Ophthalm. Surg. Lasers Imaging Retina 49(2), 94–102 (2018).10.3928/23258160-20180129-03
    1. Diamond E., “Microsurgical reconstruction of the uterine tube in sterilized patients,” Fertil. Steril. 28(11), 1203–1210 (1977).FESTAS10.1016/S0015-0282(16)42917-1
    1. Araico-Laguillo J., “Microsurgery in plastic and reconstructive surgery,” Gaceta Med. Mexico 115(1), 17 (1979).GMMEAK
    1. Serletti J. M., et al. , “Comparison of the operating microscope and loupes for free microvascular tissue transfer,” Plast. Reconstr. Surg. 95(2), 270–276 (1995).10.1097/00006534-199502000-00006
    1. Sclafani A. P., McCormick S. A., Cocker R., “Biophysical and microscopic analysis of homologous dermal and fascial materials for facial aesthetic and reconstructive uses,” JAMA Facial Plast. Surg. 4(3), 164–171 (2002).10.1001/archfaci.4.3.164
    1. Yabe T., Takahashi M., “A minimally invasive surgical approach for ingrown toenails: partial germinal matrix excision using operative microscope,” J. Plast. Reconstr. Aesthet. Surg. 63(1), 170–173 (2010).10.1016/j.bjps.2008.08.061
    1. Yamamoto T., et al. , “Near-infrared illumination system-integrated microscope for supermicrosurgical lymphaticovenular anastomosis,” Microsurgery 34(1), 23–27 (2014).10.1002/micr.22115
    1. Dashti R., et al. , “Microscope-integrated near-infrared indocyanine green videoangiography during surgery of intracranial aneurysms: the Helsinki experience,” Surg. Neurol. 71(5), 543–550; discussion 550 (2009).SGNRAI10.1016/j.surneu.2009.01.027
    1. Karatzanis A. D., et al. , “Microscopic endonasal surgery of nasal and paranasal cavities,” Auris Nasus Larynx 35(4), 509–514 (2008).10.1016/j.anl.2007.10.007
    1. Jang J. H., et al. , “Nasopharyngectomy with operating microscope: a case series,” Am. J. Otolaryngol. 38(1), 82–86 (2017).AJOTDP10.1016/j.amjoto.2016.07.008
    1. Ray R., et al. , “Intraoperative microscope-mounted spectral domain optical coherence tomography for evaluation of retinal anatomy during macular surgery,” Ophthalmology 118(11), 2212–2217 (2011).OPANEW10.1016/j.ophtha.2011.04.012
    1. Wu D., et al. , “The clinical treatment of complicated root canal therapy with the aid of a dental operating microscope,” Int. Dent. J. 61(5), 261–266 (2011).IDJOAS10.1111/j.1875-595X.2011.00070.x
    1. Bittencourt S., et al. , “Surgical microscope may enhance root coverage with subepithelial connective tissue graft: a randomized-controlled clinical trial,” J. Periodontol. 83(6), 721–730 (2012).10.1902/jop.2011.110202
    1. Teichgraeber J. F., et al. , “Microscopic minimally invasive approach to nonsyndromic craniosynostosis,” J. Craniofacial Surg. 20(5), 1492–1500 (2009).10.1097/SCS.0b013e3181b09c4a
    1. Guarrera J. V., et al. , “Microvascular hepatic artery anastomosis in pediatric segmental liver transplantation: microscope vs loupe,” Transpl. Int. 17(10), 585–588 (2004).10.1111/j.1432-2277.2004.tb00390.x
    1. Grand View Research, “Surgical microscopes market size, share and trends analysis report by type (on caster, wall-mounted), by application (oncology, ophthalmology, neurosurgery and spine), by end-use, and segment forecasts, 2018—2025,” (accessed 2020).
    1. Dohlman G. F., “Carl Olof Nylen and the birth of the otomicroscope and microsurgery,” Arch Otolaryngol. 90(6), 813–817 (1969).10.1001/archotol.1969.00770030815025
    1. Gelberman R., “Microsurgery and the development of the operating microscope,” Contemp. Surg. 13(6), 43–46 (1978).CSGYAE
    1. Perritt R. A., “Micro-ophthalmic surgery,” XVIII, International Council of Ophthalmology, Belgica: (1958).
    1. Zöllner F., “The principles of plastic surgery of the sound-conducting apparatus,” J. Laryngol. Otol. 69(10), 637–652 (1955).JLOTAX10.1017/S0022215100051240
    1. Apotheker H., Jako G. J., “A microscope for use in dentistry,” Microsurgery 3(1), 7–10 (1981).10.1002/micr.1920030104
    1. Selden H. S., “The dental-operating microscope and its slow acceptance,” J. Endodontics 28(3), 206–207 (2002).10.1097/00004770-200203000-00015
    1. Barraquer J. I., “The history of the microscope in ocular surgery,” Microsurgery 1(4), 288–299 (1980).10.1002/micr.1920010407
    1. Roper-Hall M., “Microsurgery in ophthalmology,” Br. J. Ophthal. 51(6), 408 (1967).BJOPAL10.1136/bjo.51.6.408
    1. Hegde R., Sumanth S., Padhye A., “Microscope-enhanced periodontal therapy: a review and report of four cases,” J. Contemp. Dent. Pract. 10(5), E088–E087 (2009).
    1. Ebner F. H., et al. , “Optical requirements on magnification systems for intracranial video microsurgery,” Microsurgery 31(7), 559–563 (2011).10.1002/micr.20915
    1. Roberts D. W., et al. , “A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope,” J. Neurosurg. 65(4), 545–549 (1986).JONSAC10.3171/jns.1986.65.4.0545
    1. Zamorano L., et al. , “Advanced neurosurgical navigation using a robotic microscope integrated with an infrared-based system,” in Computer-Assisted Neurosurgery, Tamaki N., Ehara K., Eds., pp. 43–55, Springer, Tokyo: (1997).
    1. Wei J., Hellmuth T., “Optical coherence tomography assisted ophthalmologic surgical microscope,” Carl Zeiss, Inc. (1996).
    1. Schebesch K. M., et al. , “Sodium fluorescein-guided resection under the YELLOW 560 nm surgical microscope filter in malignant brain tumor surgery—a feasibility study,” Acta Neurochir. 155(4), 693–699 (2013).10.1007/s00701-013-1643-y
    1. Shah K. J., Cohen-Gadol A. A., “The application of FLOW 800 ICG videoangiography color maps for neurovascular surgery and intraoperative decision making,” World Neurosurg. 122, e186–e197 (2019).10.1016/j.wneu.2018.09.195
    1. Carl Zeiss Meditec AG, “See more,” (accessed 2020).
    1. Carl Zeiss Meditec AG, “INFRARED 800 from ZEISS,” (accessed 2020).
    1. Greenfield M. J., et al. , “Demonstration of the effectiveness of augmented reality telesurgery in complex hand reconstruction in Gaza,” Plast. Reconstr. Surg. Glob. Open 6(3), e1708–e1708 (2018).10.1097/GOX.0000000000001708
    1. Khayat B. G., “The use of magnification in endodontic therapy: the operating microscope,” Pract. Periodont. Aesthet. Dent. 10(1), 137–144 (1998).
    1. Crain C. L., “Basic principles of the surgical microscope,” (2006).
    1. Schwab K., et al. , “Evolution of stereoscopic imaging in surgery and recent advances,” World J. Gastrointest. Endosc. 9(8), 368–377 (2017).10.4253/wjge.v9.i8.368
    1. Kato M., et al. , “Cleft lip and palate repair using a surgical microscope,” Arch. Plast. Surg. 44(6), 490 (2017).10.5999/aps.2017.01060
    1. Deutsch H., “Microscopes and endoscopes,” in Minimally Invasive Spine Surgery, Phillips F., et al., Eds., pp. 61–67, Springer, Cham: (2019).
    1. Sander U., “Light-emitting diode illumination system for an optical observation device, in particular a stereoscope or stereo surgical microscope,” US20050047172A1, Leica Microsystems; (2007).
    1. Obrebski A., et al. , “Surgical microscope system,” Carl Zeiss Surgical GmbH; (2007).
    1. Troutman R. C., “The operating microscope in ophthalmic surgery,” Trans. Am. Ophthalmol. Soc. 63, 335 (1965).TAOSAT
    1. Burkhardt R., Hürzeler M., “Utilization of the surgical microscope for advanced plastic periodontal surgery,” Pract. Periodontics Aesthet. Dent. 12(2), 171–180; quiz 182 (2000).
    1. Matsumura N., et al. , “An operating microscope with higher magnification and higher resolution for cerebral aneurysm surgery: preliminary experience—technical note,” Neurol. Med. 54(6), 497–501 (2014).NMCHBN10.2176/nmc.tn2012-0302
    1. Leica Microsystems, “Stay focus,” (accessed 2020).
    1. Carr G., “Magnification and illumination in endodontics,” Clark’s Clin. Dent. 4, 1–14 (1998).
    1. van As G. A., “Extreme magnification and laser dentistry: seeing the light,” (accessed 2020).
    1. Burke M. W., Image Acquisition: Handbook of Machine Vision Engineering, Springer Science & Business Media, London: (1996).
    1. Abramowitz M., Davidson M. W. “Optical aberrations,” (accessed 2020).
    1. Lentz T. L., “Lentz microscopy and histology collection: peabody museum of natural history at Yale University,” Yale University School of Medicine; (2013).
    1. Shetty S., Tejaswi S., Nagaraj T., “Magnification—an endodontic review,” J. Adv. Clin. Res. Insights 5(6), 178–182 (2018).10.15713/ins.jcri.239
    1. Nohda M., “Automatic focusing device in a stereoscopic microscope,” US4639587A, Nippon Kogaku K.K. (1984).
    1. Jorgens R., Faltermeier B., “Process and apparatus for the automatic focusing of microscopes,” US4958920A, Carl-Zeiss Stiftung; (1990).
    1. Vry U., et al. , “Autofocusing arrangement for a stereomicroscope which permits automatic focusing on objects on which reflections occur,” US Patent 5288987, Carl-Zeiss-Stiftung; (1994).
    1. Heller R., “Mechanical control unit for a surgical microscope connected to a stand,” Carl-Zeiss-Stiftung; (1994).
    1. Rey-Dios R., Cohen-Gadol A. A., “Technical principles and neurosurgical applications of fluorescein fluorescence using a microscope-integrated fluorescence module,” Acta Neurochir. 155(4), 701–706 (2013).10.1007/s00701-013-1635-y
    1. Schutt C. A., et al. , “The illumination characteristics of operative microscopes,” Am. J. Otolaryngol. 36(3), 356–360 (2015).AJOTDP10.1016/j.amjoto.2014.12.009
    1. ANSI, “American National Standard for Ophthalmics—light hazard from operation microscopes used in ocular surgery (ANSI Z80.38),” ANSI Z80.38-2017, The Vision Council; (2017).
    1. ISO, “International Standard ISO 10936-2 optics and photonics—operation microscopes—part 2: light hazard from operation microscopes used in ocular surgery,” ISO 10936-2:2010, International Organization of Standardization; (2010).
    1. Weiss A., et al. , “Illumination device for a microscope including two light sources,” Google Patents (2002).
    1. International Commission on Non-Ionizing Radiation Protection, “Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation),” Health Phys. 87(2), 171–186 (2004).HLTPAO10.1097/00004032-200408000-00006
    1. International Commission on Non-Ionizing Radiation Protection, “ICNIRP guidelines on limits of exposure to incoherent visible and infrared radiation,” Health Phys. 105(1), 74–96 (2013).HLTPAO
    1. Lang W. H., Lemcke U., Sander U., “Surgical microscope for two surgeons,” Carl-Zeiss-Stiftung; (1986).
    1. KEYENCE, “Coaxial illumination,” (accessed 2020).
    1. Biber K., “Illumination system for a surgical microscope,” US5126877A (1992).
    1. Koetke J., “Illuminating device for a surgical microscope,” Moller-Wedel GmbH; (2003).
    1. Kuster M., Suhner H., “Illuminating device for an operating microscope,” LEICA MICROSYSTEMS (SCHWEIZ) AG; (2011).
    1. Kazutoshi M., Hiroshi A., “A surgical microscope apparatus,” EP2063305A2 (2009).
    1. Latuska R. F., et al. , “Auricular burns associated with operating microscope use during otologic surgery,” Otol. Neurotol. 35(2), 227–233 (2014).10.1097/MAO.0b013e3182a5d340
    1. Langley N. M., “Glare elimination device for surgical microscopes,” US20050063058A1 (2007).
    1. Pitskhelauri D. I., et al. , “A novel device for hands-free positioning and adjustment of the surgical microscope,” J. Neurosurg. 121(1), 161–164 (2014).JONSAC10.3171/2014.3.JNS12578
    1. Sander U., et al. , “Voice control system for surgical microscopes,” US7286992B2 (2004).
    1. Roduit R., et al. , “Eye-guided surgical microscope,” in Biomed. Opt., CTuB4 (1999).
    1. Yadav V., et al. , “Periodontal microsurgery: reaching new heights of precision,” J. Indian Soc. Periodontol. 22, 5–11 (2018).10.4103/jisp.jisp_364_17
    1. Enge S., “Balancing apparatusfor a surgical microscope,” Leica Instruments (Singapore) Pte. Ltd. (2013).
    1. Tigliev G. S., “Balanced suspension system for surgical microscope,” US5288043A (1994).
    1. Nakamura K., “Automatic balancing mechanism for medical stand apparatus,” Mitaka Kohki Co., Ltd. (2000).
    1. Nakamura K., Doi M., “Automatic balancing apparatus for balancing stand,” Mitaka Kohki Co., Ltd. (2001).
    1. Doi M., Nakata Y., “Automatic balancing structure of medical balancing stand,” Mitaka Kohki Co., Ltd. (2015).
    1. Metelski A., “Balancing apparatus for a surgical microscope,” US20090218455A1 (2009).
    1. Enge S., “Balancing apparatus for a surgical microscope,” US20090219613A1 (2009).
    1. Bohl M. A., Oppenlander M. E., Spetzler R., “A prospective cohort evaluation of a robotic, auto-navigating operating microscope,” Cureus 8(6), e662 (2016).10.7759/cureus.662
    1. Oppenlander M. E., et al. , “Robotic autopositioning of the operating microscope,” Neurosurgery 10(Suppl. 2), 214–219 (2014).NEQUEB10.1227/NEU.0000000000000276
    1. Kantelhardt S. R., et al. , “Evaluation of a completely robotized neurosurgical operating microscope,” Neurosurgery 72(Suppl. 1), A19–A26 (2013).NEQUEB10.1227/NEU.0b013e31827235f8
    1. Walchle D. L., Smith R. G., Geraci J. L., “Drape for operating microscope,” Xomox Corporation; (1972).
    1. Heinrich L., “Surgical drape for an operating microscope,” Carl Zeiss, Inc. (1997).
    1. Vought K. L., “Surgical microscope operating drape and methods of operation and manufacture thereof,” Deka Medical, Inc. (1998).
    1. Luloh K. P., Annen M., “Drape assembly for surgical microscope assembly,” US20070064309A1 (2007).
    1. Bala A. J., “Surgical microscope drape assembly,” US6902278B2 (2005).
    1. Kleinberg L. K., John N. E., “Drape for a surgical microscope with anti-halation window,” Global Surgical Corporation; (2001).
    1. Weaver R. A., Wright J. M., Sokolowski N. M., “Microscope drape lens protective cover assemply,” Contour Fabricators, Inc. (2005).
    1. Hocke M., “Medical technical apparatus including a footswitch device,” LEICA MICROSYSTEMS (SCHWEIZ) AG; (2016).
    1. Steven P., et al. , “Optimising deep anterior lamellar keratoplasty (DALK) using intraoperative online optical coherence tomography (iOCT),” Br. J. Ophthalmol. 98(7), 900–904 (2014).BJOPAL10.1136/bjophthalmol-2013-304585
    1. Rudolph F., et al. , “Operating menu for a surgical microscope,” US20050041282A1 (2009).
    1. Ehlers J. P., Tao Y. K., Srivastava S. K., “The value of intraoperative optical coherence tomography imaging in vitreoretinal surgery,” Curr. Opin. Ophthalmol. 25(3), 221–227 (2014).COOTEF10.1097/ICU.0000000000000044
    1. Nakamura K., “Mouth switch mechanism for operation microscope,” Mitaka Kohki Co., Ltd. (2005).
    1. Spetzler R. F., Miesner H.-J., Rudolph F., “Mouth switch arrangement and microscopy system having a mouth switch,” Carl Zeiss Surgical GmbH; (2011).
    1. Muller R., Schlosser J., “Mouth switch arrangement and microscope with mouth switch arrangement,” Carl Zeiss Stiftung; (2003).
    1. Charlier J., et al. , “Eye-controlled microscope for surgical applications,” Dev. Ophthalmol. 22, 154–158 (1991).DEOPDB
    1. Leica Microsystems, “See more, simply,” (accessed 2020).
    1. Leica Microsystems, “Advanced surgical microscope Leica M720 OH5,” (accessed 2020).
    1. Van As G. A., “Magnification alternatives: seeing is believing, part I,” Dent. Today 32(6), 82 (2013).
    1. van As G. A., “Digital documentation and the dental operating microscope: what you see is what you get,” Int. J. Microdent. 1, 30–41 (2009).
    1. van Brakel R., et al. , “The effect of zirconia and titanium implant abutments on light reflection of the supporting soft tissues,” Clin. Oral Implants Res. 22(10), 1172–1178 (2011).10.1111/j.1600-0501.2010.02082.x
    1. Arriaga M. A., Scrantz K., “Four-handed, two-surgeon microsurgery in neurotology,” Laryngoscope 121(7), 1483–1485 (2011).10.1002/lary.21789
    1. Moisi M., et al. , “Training medical novices in spinal microsurgery: does the modality matter? A pilot study comparing traditional microscopic surgery and a novel robotic optoelectronic visualization tool,” Cureus 8(1), e469 (2016).10.7759/cureus.469
    1. Gallagher K., Jain S., Okhravi N., “Making and viewing stereoscopic surgical videos with smartphones and virtual reality headset,” Eye 30(4), 503–504 (2016).12ZYAS10.1038/eye.2015.282
    1. Held R. T., Hui T. T., “A guide to stereoscopic 3D displays in medicine,” Acad. Radiol. 18(8), 1035–1048 (2011).10.1016/j.acra.2011.04.005
    1. Buckland E. L., et al. , “Surgical microscopes using optical coherence tomography and related methods,” Bioptigen, Inc. (2014).
    1. Goeggel D., Schué A., Kiper D., “FusionOptics—combines high resolution and depth of field for ideal 3D optical images,” .
    1. Riew K. D., et al. , “Microsurgery for degenerative conditions of the cervical spine,” Instruct. Course Lect. 52, 497–508 (2003).
    1. Sommerlad B. C., “The use of the operating microscope for cleft palate repair and pharyngoplasty,” Plast. Reconstr. Surg. 112(6), 1540–1541 (2003).10.1097/01.PRS.0000085598.26409.E3
    1. Leica Microsystems, “The new perspective,” (accessed 2020).
    1. Leica Microsystems, “HD visualization and recording truevision integrated 3D,” (accessed 2020).
    1. Trias J. A., “Real-time high-resolution 3-D large-screen display using laser-activated liquid crystal light valves,” US4623219A (1986).
    1. Mitha A. P., et al. , “Simulation and augmented reality in endovascular neurosurgery: lessons from aviation,” Neurosurgery 72(Suppl. 1), A107–A114 (2013).NEQUEB10.1227/NEU.0b013e31827981fd
    1. Tagaytayan R., Kelemen A., Sik-Lanyi C., “Augmented reality in neurosurgery,” Arch. Med. Sci. 14(3), 572–578 (2018).10.5114/aoms.2016.58690
    1. Lee C., Wong G. K. C., “Virtual reality and augmented reality in the management of intracranial tumors: a review,” J. Clin. Neurosci. 62, 14–20 (2019).10.1016/j.jocn.2018.12.036
    1. Pandya A., Siadat M. R., Auner G., “Design, implementation and accuracy of a prototype for medical augmented reality,” Comput. Aided Surg. 10(1), 23–35 (2005).10.3109/10929080500221626
    1. Garcia Giraldez J., et al. , “Multimodal augmented reality system for surgical microscopy,” Proc. SPIE 6141, 61411S (2006).PSISDG10.1117/12.651267
    1. Shuhaiber J. H., “Augmented reality in surgery,” Arch. Surg. 139(2), 170–174 (2004).10.1001/archsurg.139.2.170
    1. Mahmood F., et al. , “Augmented reality and ultrasound education: initial experience,” J. Cardiothorac. Vasc. Anesth. 32(3), 1363–1367 (2018).JCVAEK10.1053/j.jvca.2017.12.006
    1. Friets E. M., et al. , “A frameless stereotaxic operating microscope for neurosurgery,” IEEE Trans. Biomed. Eng. 36(6), 608–617 (1989).IEBEAX10.1109/10.29455
    1. Masutani Y., et al. , “Augmented reality visualization system for intravascular neurosurgery,” Comput. Aided Surg. 3(5), 239–247 (1998).10.3109/10929089809149845
    1. Souzaki R., et al. , “An augmented reality navigation system for pediatric oncologic surgery based on preoperative CT and MRI images,” J. Pediatr. Surg. 48(12), 2479–2483 (2013).JPDSA310.1016/j.jpedsurg.2013.08.025
    1. Aschke M., et al. , “Augmented reality in operating microscopes for neurosurgical interventions,” in First Int. IEEE EMBS Conf. Neural Eng., Proc., pp. 652–655 (2003).10.1109/CNE.2003.1196913
    1. Paul P., Fleig O., Jannin P., “Augmented virtuality based on stereoscopic reconstruction in multimodal image-guided neurosurgery: methods and performance evaluation,” IEEE Trans. Med. Imaging 24(11), 1500–1511 (2005).ITMID410.1109/TMI.2005.857029
    1. Mahvash M., Tabrizi L. B., “A novel augmented reality system of image projection for image-guided neurosurgery,” Acta Neurochir. 155(5), 943–947 (2013).10.1007/s00701-013-1668-2
    1. Watson J. R., et al. , “Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images,” J. Biomed. Opt. 20(10), 106002 (2015).JBOPFO10.1117/1.JBO.20.10.106002
    1. Watson J. R., et al. , “Augmented microscopy with near-infrared fluorescence detection,” Proc. SPIE 9311, 93110I (2015).PSISDG10.1117/12.2077008
    1. Meola A., et al. , “Augmented reality in neurosurgery: a systematic review,” Neurosurg. Rev. 40(4), 537–548 (2017).NSREDV10.1007/s10143-016-0732-9
    1. Alaraj A., et al. , “Virtual reality training in neurosurgery: review of current status and future applications,” Surg. Neurol. Int. 2, 52 (2011).10.4103/2152-7806.80117
    1. Guha D., et al. , “Augmented reality in neurosurgery: a review of current concepts and emerging applications,” Can. J. Neurol. Sci. 44(3), 235–245 (2017).10.1017/cjn.2016.443
    1. Deng W., et al. , “Easy-to-use augmented reality neuronavigation using a wireless tablet PC,” Stereotactic Funct. Neurosurg. 92(1), 17–24 (2014).10.1159/000354816
    1. Grimson W. E. L., et al. , “An automatic registration method for frameless stereotaxy, image guided surgery, and enhanced reality visualization,” IEEE Trans. Med. Imaging 15(2), 129–140 (1996).ITMID410.1109/42.491415
    1. Sato Y., et al. , “Image guidance of breast cancer surgery using 3-D ultrasound images and augmented reality visualization,” IEEE Trans. Med. Imaging 17(5), 681–693 (1998).ITMID410.1109/42.736019
    1. Nicolau S., et al. , “An accuracy certified augmented reality system for therapy guidance,” Lect. Notes Comput. Sci. 3023, 79–91 (2004).LNCSD910.1007/978-3-540-24672-5_7
    1. Özbek Y., “Stereo augmented reality in a navigated surgical microscope,” Innsbruck Medical University (2000).
    1. Gard N., et al. , “Image-based measurement by instrument tip tracking for tympanoplasty using digital surgical microscopy,” Proc. SPIE 10951, 1095119 (2019).PSISDG10.1117/12.2512415
    1. Birkfellner W., et al. , “A head-mounted operating binocular for augmented reality visualization in medicine-design and initial evaluation,” IEEE Trans. Med. Imaging 21(8), 991–997 (2002).ITMID410.1109/TMI.2002.803099
    1. Tako Y., et al. , “Augmented reality surgical navigation,” WO2017066373A1 (2017).
    1. Mun S. K., Rueckert D., Maurer J. C. R., “Automated camera calibration for image-guided surgery using intensity-based registration,” Proc. SPIE 4681, 463–471 (2002).PSISDG10.1117/12.466951
    1. Mun S. K., et al. , “Augmented-reality visualization in iMRI operating room: system description and preclinical testing,” Proc. SPIE 4681, 446–454 (2002).PSISDG10.1117/12.466949
    1. Liao H., et al. , “Intra-Operative real-time 3-D information display system based on integral videography,” Lect. Notes Comput. Sci. 2208, 392–400 (2001).LNCSD910.1007/3-540-45468-3_47
    1. Hongen L., et al. , “Surgical navigation by autostereoscopic image overlay of integral videography,” IEEE Trans. Inf. Technol. Biomed. 8(2), 114–121 (2004).10.1109/TITB.2004.826734
    1. Blackwell M., et al. , “An image overlay system for medical data visualization,” Med. Image Anal. 4(1), 67–72 (2000).10.1016/S1361-8415(00)00007-4
    1. Glossop N., et al. , “Laser projection augmented reality system for computer assisted surgery,” Lect. Notes Comput. Sci. 2879, 239–246 (2003).LNCSD910.1007/978-3-540-39903-2_30
    1. Sasama T., et al. , “A novel laser guidance system for alignment of linear surgical tools: its principles and performance evaluation as a man-machine system,” Lect. Notes Comput. Sci. 2489, 125–132 (2002).LNCSD910.1007/3-540-45787-9_16
    1. Colchester A. C., et al. , “Craniotomy simulation and guidance using a stereo video based tracking system (VISLAN),” Proc. SPIE 2359, 541–551 (1994).PSISDG10.1117/12.185218
    1. Gildenberg P. L., Labuz J., “Use of a volumetric target for image-guided surgery,” Neurosurgery 59(3), 651–659 (2006).NEQUEB10.1227/01.NEU.0000227474.21048.F1
    1. Cabrilo I., Schaller K., Bijlenga P., “Augmented reality-assisted bypass surgery: embracing minimal invasiveness,” World Neurosurg. 83(4), 596–602 (2015).10.1016/j.wneu.2014.12.020
    1. Cabrilo I., Bijlenga P., Schaller K., “Augmented reality in the surgery of cerebral arteriovenous malformations: technique assessment and considerations,” Acta Neurochir. 156(9), 1769–1774 (2014).10.1007/s00701-014-2183-9
    1. Edwards P. J., et al. , “Design and evaluation of a system for microscope-assisted guided interventions (MAGI),” IEEE Trans. Med. Imaging 19(11), 1082–1093 (2000).ITMID410.1109/42.896784
    1. Jannin P., et al. , “Visual matching between real and virtual images in image-guided neurosurgery,” Proc. SPIE 3031, 518–526 (1997).PSISDG10.1117/12.273931
    1. Sielhorst T., Feuerstein M., Navab N., “Advanced medical displays: a literature review of augmented reality,” J. Disp. Technol. 4(4), 451–467 (2008).IJDTAL10.1109/JDT.2008.2001575
    1. Yoshino M., et al. , “A microscopic optically tracking navigation system that uses high-resolution 3D computer graphics,” Neurol. Med. Chir. 55(8), 674–679 (2015).10.2176/nmc.tn.2014-0278
    1. Drouin S., et al. , “IBIS: an OR ready open-source platform for image-guided neurosurgery,” Int. J. Comput. Assist. Radiol. Surg. 12(3), 363–378 (2017).10.1007/s11548-016-1478-0
    1. Doyle W. K., “Low end interactive image-directed neurosurgery. Update on rudimentary augmented reality used in epilepsy surgery,” Stud. Health Technol. Inf. 29, 1–11 (1996).SHTIEW
    1. Wong K., et al. , “Applications of augmented reality in otolaryngology: a systematic review,” Otolaryngol. Head Neck Surg. 159(6), 956–967 (2018).10.1177/0194599818796476
    1. Edwards P. J., et al. , “Clinical experience and perception in stereo augmented reality surgical navigation,” Lect. Notes Comput. Sci. 3150, 369–376 (2004).LNCSD910.1007/978-3-540-28626-4_45
    1. King A. P., et al. , “A system for microscope-assisted guided interventions,” Stereotactic Funct. Neurosurg. 72(2-4), 107–111 (1999).10.1159/000029708
    1. Caversaccio M., et al. , “Image-guided surgical microscope with mounted minitracker,” J. Laryngol. Otol. 121(2), 160–162 (2007).JLOTAX10.1017/S0022215106003938
    1. Romanowski M., Watson J. R., Gainer C. F., “Augmented stereoscopic microscopy,” WO2016130424A1 (2018).
    1. Reichelt S., et al. , “Depth cues in human visual perception and their realization in 3D displays,” Proc. SPIE 7690, 76900B (2010).PSISDG10.1117/12.850094
    1. Kruijff E., Swan J. E., Feiner S., “Perceptual issues in augmented reality revisited,” in IEEE Int. Symp. Mixed and Augmented Reality, pp. 3–12 (2010).10.1109/ISMAR.2010.5643530
    1. Albert F. K., et al. , “Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis,” Neurosurgery 34(1), 45–61 (1994).NEQUEB10.1097/00006123-199401000-00008
    1. Kowalczuk A., et al. , “Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas,” Neurosurgery 41(5), 1028–1038 (1997).NEQUEB10.1097/00006123-199711000-00004
    1. Stummer W., et al. , “Technical principles for protoporphyrin-IX-fluorescence guided microsurgical resection of malignant glioma tissue,” Acta Neurochirurgica 140(10), 995–1000 (1998).ACNUA510.1007/s007010050206
    1. Stummer W., Suero Molina E., “Fluorescence imaging/agents in tumor resection,” Neurosurg. Clin. N. Am. 28(4), 569–583 (2017).10.1016/j.nec.2017.05.009
    1. Croce A. C., Bottiroli G., “Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis,” Eur. J. Histochem. 58(4), 2461 (2014).10.4081/ejh.2014.2461
    1. Kepshire D. S., et al. , “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).JBOPFO10.1117/1.3127202
    1. Ennis S., et al. , “Transport of 5-aminolevulinic acid between blood and brain,” Brain Res. 959(2), 226–234 (2003).BRREAP10.1016/S0006-8993(02)03749-6
    1. Novotny A., Stummer W., “5-Aminolevulinic acid and the blood-brain barrier—a review,” Med. Laser Appl. 18(1), 36–40 (2003).10.1078/1615-1615-00085
    1. Grant W., et al. , “Photodynamic therapy of oral cancer: photosensitisation with systemic aminolaevulinic acid,” The Lancet 342(8864), 147–148 (1993).LANCAO10.1016/0140-6736(93)91347-O
    1. Loh C., et al. , “Endogenous porphyrin distribution induced by 5-aminolaevulinic acid in the tissue layers of the gastrointestinal tract,” J. Photochem. Photobiol. B 20(1), 47–54 (1993).JPPBEG10.1016/1011-1344(93)80130-2
    1. Pottier R., et al. , “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44(5), 679–687 (1986).PHCBAP10.1111/j.1751-1097.1986.tb04726.x
    1. Mĺkvy P., et al. , “Sensitization and photodynamic therapy (PDT) of gastrointestinal tumors with 5-aminolaevulinic acid (ALA) induced protoporphyrin IX (PPIX). A pilot study,” Neoplasma 42(3), 109–113 (1995).NEOLA4
    1. Regula J., et al. , “Photosensitisation and photodynamic therapy of oesophageal, duodenal, and colorectal tumours using 5 aminolaevulinic acid induced protoporphyrin IX: a pilot study,” Gut 36(1), 67–75 (1995).GUTTAK10.1136/gut.36.1.67
    1. Fan K. F., et al. , “Photodynamic therapy using 5-aminolevulinic acid for premalignant and malignant lesions of the oral cavity,” Cancer 78(7), 1374–1383 (1996).CANCAR10.1002/(SICI)1097-0142(19961001)78:7<1374::AID-CNCR2>;2-L
    1. Chung I. W., Eljamel S., “Risk factors for developing oral 5-aminolevulinic acid-induced side effects in patients undergoing fluorescence guided resection,” Photodiagn. Photodyn. Ther. 10(4), 362–367 (2013).10.1016/j.pdpdt.2013.03.007
    1. Chan D. T. M., Sonia H. Y.-P., Poon W. S., “5-Aminolevulinic acid fluorescence guided resection of malignant glioma: Hong Kong experience,” Asian J. Surg. 41(5), 467–472 (2018).AJSUEF10.1016/j.asjsur.2017.06.004
    1. Göker B., Kırış T., “Sodium fluorescein-guided brain tumor surgery under the YELLOW-560-nm surgical microscope filter in pediatric age group: feasibility and preliminary results,” Childs Nerv. Syst. 35, 429–435 (2019).10.1007/s00381-018-04037-4
    1. Yuan B., Chen N., Zhu Q., “Emission and absorption properties of indocyanine green in Intralipid solution,” J. Biomed. Opt. 9(3), 497–503 (2004).10.1117/1.1695411
    1. Jonak C., et al. , “Intradermal indocyanine green for in vivo fluorescence laser scanning microscopy of human skin: a pilot study,” PLoS One 6, 8 e23972 (2011).10.1371/journal.pone.0023972
    1. Raabe A., et al. , “Prospective evaluation of surgical microscope-integrated intraoperative near-infrared indocyanine green videoangiography during aneurysm surgery,” J. Neurosurg. 103(6), 982 (2005).JONSAC10.3171/jns.2005.103.6.0982
    1. Killory B. D., et al. , “Prospective evaluation of surgical microscope-integrated intraoperative near-infrared indocyanine green angiography during cerebral arteriovenous malformation surgery,” Neurosurgery 65(3), 456–462; discussion 462 (2009).NEQUEB10.1227/01.NEU.0000346649.48114.3A
    1. Murai Y., et al. , “Intraoperative Matas test using microscope-integrated intraoperative indocyanine green videoangiography with temporary unilateral occlusion of the A1 segment of the anterior cerebral artery,” World Neurosurg. 76(5), 477.e7–477.e10 (2011).10.1016/j.wneu.2011.03.044
    1. Holzbach T., et al. , “Microscope-integrated intraoperative indocyanine green angiography in plastic surgery,” Handchir. Mikr. 44(2), 84–88 (2012).HMPCD910.1055/s-0032-1309023
    1. Ng Y. P., et al. , “Uses and limitations of indocyanine green videoangiography for flow analysis in arteriovenous malformation surgery,” J. Clin. Neurosci. 20(2), 224–232 (2013).10.1016/j.jocn.2011.12.038
    1. Sharma M., et al. , “The utility and limitations of intraoperative near-infrared indocyanine green videoangiography in aneurysm surgery,” World Neurosurg. 82(5), e607–e613 (2014).10.1016/j.wneu.2014.05.033
    1. Ntziachristos V., Yoo J. S., van Dam G. M., “Current concepts and future perspectives on surgical optical imaging in cancer,” J. Biomed. Opt. 15(6), 066024 (2010).JBOPFO10.1117/1.3523364
    1. Kuroiwa T., Kajimoto Y., Ohta T., “Development of a fluorescein operative microscope for use during malignant glioma surgery—a technical note and preliminary report,” Surg. Neurol. 50(1), 41–49 (1998).SGNRAI10.1016/S0090-3019(98)00055-X
    1. Kuroiwa T., Kajimoto Y., Ohta T., “Comparison between operative findings on malignant glioma by a fluorescein surgical microscopy and histological findings,” Neurol. Res. 21(1), 130–134 (2016).10.1080/01616412.1999.11740909
    1. Elliott J. T., et al. , “Microdose fluorescence imaging of ABY-029 on an operating microscope adapted by custom illumination and imaging modules,” Biomed. Opt. Express 7(9), 3280–3288 (2016).BOEICL10.1364/BOE.7.003280
    1. Richter J. C. O., et al. , “Combination of hand-held probe and microscopy for fluorescence guided surgery in the brain tumor marginal zone,” Photodiagn. Photodyn. Ther. 18, 185–192 (2017).10.1016/j.pdpdt.2017.01.188
    1. Carrasco-Zevallos O. M., et al. , “Review of intraoperative optical coherence tomography: technology and applications,” Biomed. Opt. Express 8(3), 1607–1637 (2017).BOEICL10.1364/BOE.8.001607
    1. Huang D., et al. , “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).SCIEAS10.1126/science.1957169
    1. Boppart S. A., et al. , “Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer,” Breast Cancer Res. Treat. 84, 85–97 (2004).BCTRD610.1023/B:BREA.0000018401.13609.54
    1. Wilkins J. R., et al. , “Characterization of epiretinal membranes using optical coherence tomography,” Ophthalmology 103(12), 2142–2151 (1996).OPANEW10.1016/S0161-6420(96)30377-1
    1. Brezinski M. E., et al. , “Optical biopsy with optical coherence tomography: feasibility for surgical diagnostics,” J. Surg. Res. 71, 32–40 (1997).JSGRA210.1006/jsre.1996.4993
    1. Toth C. A., et al. , “Argon laser retinal lesions evaluated in vivo by optical coherence tomography,” Am. J. Ophthalmol. 123(2), 188–198 (1997).AJOPAA10.1016/S0002-9394(14)71035-9
    1. Ripandelli G., et al. , “Morphological evaluation of full-thickness idiopathic macular holes by optical coherence tomography,” Eur. J. Ophthalmol. 9(3), 212–216 (1999).EJOOEL10.1177/112067219900900309
    1. Mikajiri K., et al. , “Analysis of vitrectomy for idiopathic macular hole by optical coherence tomography,” Am. J. Ophthalmol. 128(5), 655–657 (1999).AJOPAA10.1016/S0002-9394(99)00203-2
    1. Massin P., et al. , “Optical coherence tomography of idiopathic macular epiretinal membranes before and after surgery,” Am. J. Ophthalmol. 130(6), 732–739 (2000).AJOPAA10.1016/S0002-9394(00)00574-2
    1. Falkner-Radler C. I., et al. , “Spectral-domain optical coherence tomography for monitoring epiretinal membrane surgery,” Ophthalmology 117(4), 798–805 (2010).OPANEW10.1016/j.ophtha.2009.08.034
    1. McNabb R. P., et al. , “Optical coherence tomography accurately measures corneal power change from laser refractive surgery,” Ophthalmology 122(4), 677–686 (2015).OPANEW10.1016/j.ophtha.2014.10.003
    1. Knecht P. B., et al. , “Use of intraoperative Fourier-domain anterior segment optical coherence tomography during descemet stripping endothelial keratoplasty,” Am. J. Ophthalmol. 150(3), 360–365.e2 (2010).AJOPAA10.1016/j.ajo.2010.04.017
    1. De Benito-Llopis L., et al. , “Intraoperative anterior segment optical coherence tomography: a novel assessment tool during deep anterior lamellar keratoplasty,” Am. J. Ophthalmol. 157(2), 334–341.e3 (2014).AJOPAA10.1016/j.ajo.2013.10.001
    1. Cost B., et al. , “Intraoperative optical coherence tomography-assisted descemet membrane endothelial keratoplasty in the DISCOVER study,” Am. J. Ophthalmol. 160(3), 430–437 (2015).AJOPAA10.1016/j.ajo.2015.05.020
    1. Pasricha N. D., et al. , “Real-time microscope-integrated OCT to improve visualization in DSAEK for advanced bullous keratopathy,” Cornea 34(12), 1606–1610 (2015).CORNDB10.1097/ICO.0000000000000661
    1. Ehlers J. P., Kaiser P. K., Srivastava S. K., “Intraoperative optical coherence tomography utilizing the RESCAN 700: preliminary results from the DISCOVER study,” Br. J. Ophthalmol. 98(10), 1329–1332 (2014).BJOPAL10.1136/bjophthalmol-2014-305294
    1. Ehlers J. P., et al. , “Intrasurgical dynamics of macular hole surgery: an assessment of surgery-induced ultrastructural alterations with intraoperative optical coherence tomography,” Retina 34(2), 213–221 (2014).RETIDX10.1097/IAE.0b013e318297daf3
    1. Ehlers J. P., et al. , “Novel microarchitectural dynamics in rhegmatogenous retinal detachments identified with intraoperative optical coherence tomography,” Retina 33(7), 1428–1434 (2013).RETIDX10.1097/IAE.0b013e31828396b7
    1. Ehlers J. P., et al. , “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).RETIDX10.1097/IAE.0000000000000123
    1. Assayag O., et al. , “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).10.1016/j.nicl.2013.04.005
    1. Cho N. H., et al. , “In vivo imaging of middle-ear and inner-ear microstructures of a mouse guided by SD-OCT combined with a surgical microscope,” Opt. Express 22(8), 8985–8995 (2014).OPEXFF10.1364/OE.22.008985
    1. Lankenau E., et al. , “Combining optical coherence tomography (OCT) with an operating microscope,” in Advances in Medical Engineering, Buzug T. M., et al., Eds., pp. 343–348, Springer, Berlin, Heidelberg: (2007).
    1. Vokes D. E., et al. , “Optical coherence tomography—enhanced microlaryngoscopy: preliminary report of a noncontact optical coherence tomography system integrated with a surgical microscope,” Ann. Otol. Rhinol. Laryngol. 117(7), 538–547 (2008).AORHA210.1177/000348940811700713
    1. Just T., et al. , “Intra-operative application of optical coherence tomography with an operating microscope,” J. Laryngol. Otol. 123(9), 1027–1030 (2009).JLOTAX10.1017/S0022215109004770
    1. Zysk A. M., et al. , “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).JBOPFO10.1117/1.2793736
    1. Siebelmann S., Steven P., Cursiefen C., “Intraoperative optical coherence tomography: ocular surgery on a higher level or just nice pictures?” JAMA Ophthalmol. 133(10), 1133–1134 (2015).10.1001/jamaophthalmol.2015.2396
    1. Moon S., Kim D. Y., “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14(24), 11575–11584 (2006).OPEXFF10.1364/OE.14.011575
    1. Joos K. M., Shen J. H., “Miniature real-time intraoperative forward-imaging optical coherence tomography probe,” Biomed. Opt. Express 4(8), 1342–1350 (2013).BOEICL10.1364/BOE.4.001342
    1. Ehlers J. P., “Intraoperative optical coherence tomography: past, present, and future,” Eye 30(2), 193–201 (2016).12ZYAS10.1038/eye.2015.255
    1. Hoerauf H., et al. , “Transscleral optical coherence tomography: a new imaging method for the anterior segment of the eye,” Arch. Ophthalmol. 120(6), 816–819 (2002).AROPAW10.1001/archopht.120.6.816
    1. Geerling G., et al. , “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123(2), 253–257 (2005).AROPAW10.1001/archopht.123.2.253
    1. Ehlers J. P., et al. , “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Visual Sci. 52(6), 3153–3159 (2011).IOVSDA10.1167/iovs.10-6720
    1. Tao Y. K., et al. , “Visualization of vitreoretinal surgical manipulations using intraoperative spectral domain optical coherence tomography,” Proc. SPIE 7889, 78890F (2011).PSISDG10.1117/12.875236
    1. Ehlers J. P., et al. , “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).RETIDX10.1097/IAE.0b013e31826e86f5
    1. Tao Y. K., et al. , “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett. 35(20), 3315–3317 (2010).OPLEDP10.1364/OL.35.003315
    1. Ehlers J. P., et al. , “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).POLNCL10.1371/journal.pone.0105224
    1. Hahn P., et al. , “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol. 251(1), 213–220 (2013).10.1007/s00417-012-2052-2
    1. Jian Y., Wong K., Sarunic M. V., “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18(2), 026002 (2013).JBOPFO10.1117/1.JBO.18.2.026002
    1. Keller B., et al. , “Real-time acquisition, processing, and 3D visualization of anterior segment swept source optical coherence tomography (SSOCT) at 10 volumes (275 MVoxels) per second,” Invest. Ophthalmol. Visual Sci. 55, 1631 (2014).IOVSDA
    1. Wieser W., et al. , “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).BOEICL10.1364/BOE.5.002963
    1. Carrasco-Zevallos O. M., et al. , “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography,” Sci. Rep. 6, 31689 (2016).SRCEC310.1038/srep31689
    1. Carrasco-Zevallos O., et al. , “Real-time 4D stereoscopic visualization of human opthalmic surgery with swept-source microscope integrated optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 56, 4085 (2015).IOVSDA
    1. Boppart S. A., et al. , “Intraoperative assessment of microsurgery with three-dimensional optical coherence tomography,” Radiology 208(1), 81–86 (1998).RADLAX10.1148/radiology.208.1.9646796
    1. Reimer P., et al. , “Surgical microscope having an OCT-system,” US20080304144A1, Carl Zeiss Surgical GmbH; (2010).
    1. Heeren T., et al. , “Surgical microscope with integrated OCT and display system,” WO2017029561 (2017).
    1. Wei J., Hellmuth T., “Optical coherence tomography assisted surgical apparatus,” Carl Zeiss, Inc. (1999).
    1. Helmuth T., et al. , “OCT-assisted surgical microscope with multi-coordinate manipulator,” Carl Zeiss, Inc. (1998).
    1. Reimer P., et al. , “Surgical microscope having an OCT-system and a surgical microscope illuminating module having an OCT-system,” U.S. Patent No. US7889423B2, Carl Zeiss Surgical GmbH; (2008).
    1. Zatt J. A., Tao Y. K., Toth C. A., “Systems and methods for surgical microscope and optical coherence tomography (OCT) imaging,” Duke University; (2013).
    1. Reimer P., et al. , “Ophthalmic surgical microscope having an OCT-system,” Carl Zeiss Surgical GmbH; (2011).
    1. Hauger C., Högele A., “Optical system, comprising a microscopy system and an OCT system,” CARL ZEISS MEDITEC AG; (2017).
    1. Probst J., et al. , “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15(2), 026014 (2010).JBOPFO10.1117/1.3314898
    1. Hahn P., et al. , “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).RETIDX10.1097/IAE.0b013e3182831293
    1. Halicek M., et al. , “In-vivo and ex-vivo tissue analysis through hyperspectral imaging techniques: revealing the invisible features of cancer,” Cancers 11(6), 756 (2019).10.3390/cancers11060756
    1. Ortega S., et al. , “Use of hyperspectral/multispectral imaging in gastroenterology. shedding some–different–light into the dark,” J. Clin. Med. 8(1), 36 (2019).10.3390/jcm8010036
    1. Lu G., Fei B., “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).JBOPFO10.1117/1.JBO.19.1.010901
    1. Lu G., et al. , “Hyperspectral imaging for cancer surgical margin delineation: registration of hyperspectral and histological images,” Proc. SPIE 9036, 90360S (2014).PSISDG10.1117/12.2043805
    1. Fabelo H., et al. , “Surgical aid visualization system for glioblastoma tumor identification based on deep learning and in-vivo hyperspectral images of human patients,” Proc. SPIE 10951, 1095110 (2019).PSISDG10.1117/12.2512569
    1. Zhou L., El-Deiry W. S., “Multispectral fluorescence imaging,” J. Nucl. Med. 50(10), 1563–1566 (2009).JNMEAQ10.2967/jnumed.109.063925
    1. Bravo J. J., et al. , “Hyperspectral data processing improves PpIX contrast during fluorescence guided surgery of human brain tumors,” Sci. Rep. 7(1), 9455 (2017).SRCEC310.1038/s41598-017-09727-8
    1. Valdés P. A., et al. , “Quantitative, spectrally-resolved intraoperative fluorescence imaging,” Sci. Rep. 2(1), 798 (2012).SRCEC310.1038/srep00798
    1. Lu G., et al. , “Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery,” J. Biomed. Opt. 20(12), 126012 (2015).JBOPFO10.1117/1.JBO.20.12.126012
    1. Lu G., et al. , “Quantitative wavelength analysis and image classification for intraoperative cancer diagnosis with hyperspectral imaging,” Proc. SPIE 9415, 94151B (2015).PSISDG10.1117/12.2082284
    1. Lu G., et al. , “Detection of head and neck cancer in surgical specimens using quantitative hyperspectral imaging,” Clin. Cancer Res. 23(18), 5426–5436 (2017).10.1158/1078-0432.CCR-17-0906
    1. Fei B., et al. , “Label-free reflectance hyperspectral imaging for tumor margin assessment: a pilot study on surgical specimens of cancer patients,” J. Biomed. Opt. 22(8), 086009 (2017).JBOPFO10.1117/1.JBO.22.8.086009
    1. Fei B., et al. , “Tumor margin assessment of surgical tissue specimen of cancer patients using label-free hyperspectral imaging,” Proc. SPIE 10054, 100540E (2017).PSISDG10.1117/12.2249803
    1. Fei B., et al. , “Label-free hyperspectral imaging and quantification methods for surgical margin assessment of tissue specimens of cancer patients,” in 39th Annu. Int. Conf. IEEE Eng. Med. and Biol. Soc., pp. 4041–4045 (2017).10.1109/EMBC.2017.8037743
    1. Ma L., et al. , “Deep learning based classification for head and neck cancer detection with hyperspectral imaging in an animal model,” Proc. SPIE 10137, 101372G (2017).PSISDG10.1117/12.2255562
    1. Halicek M., et al. , “Optical biopsy of head and neck cancer using hyperspectral imaging and convolutional neural networks,” Proc. SPIE 10469, 104690X (2018).PSISDG10.1117/12.2289023
    1. Halicek M., et al. , “Tumor margin classification of head and neck cancer using hyperspectral imaging and convolutional neural networks,” Proc. SPIE 10576, 1057605 (2018).PSISDG10.1117/12.2293167
    1. Ma L., et al. , “Adaptive deep learning for head and neck cancer detection using hyperspectral imaging,” Visual Comput. Ind. Biomed. Art 2(1), 18 (2019).10.1186/s42492-019-0023-8
    1. Halicek M., et al. , “Optical biopsy of head and neck cancer using hyperspectral imaging and convolutional neural networks,” J. Biomed. Opt. 24(3), 036007 (2019).JBOPFO10.1117/1.JBO.24.3.036007
    1. Halicek M., et al. , “Hyperspectral imaging for head and neck cancer detection: specular glare and variance of the tumor margin in surgical specimens,” J. Med. Imaging 6(3), 035004 (2019).JMEIET10.1117/1.JMI.6.3.035004
    1. Halicek M., et al. , “Cancer detection using hyperspectral imaging and evaluation of the superficial tumor margin variance with depth,” Proc. SPIE 10951, 109511A (2019).PSISDG10.1117/12.2512985
    1. Halicek M., et al. , “Hyperspectral imaging of head and neck squamous cell carcinoma for cancer margin detection in surgical specimens from 102 patients using deep learning,” Cancers 11(9), 1367 (2019).10.3390/cancers11091367
    1. Fabelo H., et al. , “Deep learning-based framework for in vivo identification of glioblastoma tumor using hyperspectral images of human brain,” Sensors 19(4), 920 (2019).SNSRES10.3390/s19040920
    1. Halicek M., et al. , “Tumor detection of the thyroid and salivary glands using hyperspectral imaging and deep learning,” Biomed. Opt. Express 11(3), 1383–1400 (2020).BOEICL10.1364/BOE.381257
    1. Huang J., et al. , “Augmented reality visualization of hyperspectral imaging classifications for image-guided brain tumor resection,” Proc. SPIE 11315, 113150U (2020).PSISDG10.1117/12.2549041
    1. Gao L., Smith R. T., “Optical hyperspectral imaging in microscopy and spectroscopy–a review of data acquisition,” J. Biophotonics 8(6), 441–456 (2015).10.1002/jbio.201400051
    1. Clancy N. T., et al. , “Surgical spectral imaging,” Med. Image Anal. 63, 101699 (2020).10.1016/j.media.2020.101699
    1. Noordmans H. J., et al. , “Imaging the seizure during surgery with a hyperspectral camera,” Epilepsia 54(11), E150–E154 (2013).EPILAK10.1111/epi.12386
    1. Valdes P. A., et al. , “System and methods for wide-field quantitative fluorescence imaging during neurosurgery,” Opt. Lett. 38(15), 2786–2788 (2013).OPLEDP10.1364/OL.38.002786
    1. Roblyer D., et al. , “Multispectral and hyperspectral in vivo imaging of the oral cavity for neoplastic tissue detection,” in Biomed. Opt. (2007).
    1. Roblyer D., et al. , “Multispectral optical imaging device for in vivo detection of oral neoplasia,” J. Biomed. Opt. 13(2), 024019 (2008).JBOPFO10.1117/1.2904658
    1. Ntziachristos V., “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).10.1038/nmeth.1483
    1. National Institute of Biomedical Imaging and Bioengineering, “Optical imaging,” (accessed 2020).
    1. Aguirre J., et al. , “The potential of photoacoustic microscopy as a tool to characterize the in vivo degradation of surgical sutures,” Biomed. Opt. Express 5(8), 2856–2869 (2014).BOEICL10.1364/BOE.5.002856
    1. Hu S., Wang L. V., “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt. 15(1), 011101 (2010).JBOPFO10.1117/1.3281673
    1. Silverman R. H., et al. , “High-resolution photoacoustic imaging of ocular tissues,” Ultrasound Med. Biol. 36(5), 733–742 (2010).USMBA310.1016/j.ultrasmedbio.2010.02.006
    1. Han S., et al. , “In vivo virtual intraoperative surgical photoacoustic microscopy,” Appl. Phys. Lett. 103(20), 203702 (2013).APPLAB10.1063/1.4830045
    1. Lee C., et al. , “Intraoperative surgical photoacoustic microscopy (IS-PAM) using augmented reality,” Proc. SPIE 8943, 89431Z (2014).PSISDG10.1117/12.2039877
    1. Lee D., et al. , “In vivo near infrared virtual intraoperative surgical photoacoustic optical coherence tomography,” Sci. Rep. 6, 35176 (2016).SRCEC310.1038/srep35176
    1. Forrester K. R., et al. , “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002).MBECDY10.1007/BF02345307
    1. Hecht N., et al. , “Laser speckle imaging allows real-time intraoperative blood flow assessment during neurosurgical procedures,” J. Cereb. Blood Flow Metab. 33(7), 1000–1007 (2013).10.1038/jcbfm.2013.42
    1. Hecht N., et al. , “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. Focus 27(4), E11 (2009).10.3171/2009.8.FOCUS09148
    1. Heeman W., et al. , “Clinical applications of laser speckle contrast imaging: a review,” J. Biomed. Opt. 24(8), 080901 (2019).JBOPFO10.1117/1.JBO.24.8.080901
    1. Briers D., et al. , “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).JBOPFO10.1117/1.JBO.18.6.066018
    1. Senarathna J., et al. , “Laser speckle contrast imaging: theory, instrumentation and applications,” IEEE Rev. Biomed. Eng. 6, 99–110 (2013).10.1109/RBME.2013.2243140
    1. Tkaczyk E., “Innovations and developments in dermatologic non-invasive optical imaging and potential clinical applications,” Acta Derm. Venereol. Suppl. 218, 5–13 (2017).10.2340/00015555-2717
    1. Kazmi S. M. S., et al. , “Expanding applications, accuracy, and interpretation of laser speckle contrast imaging of cerebral blood flow,” J. Cereb. Blood Flow Metab. 35(7), 1076–1084 (2015).10.1038/jcbfm.2015.84
    1. Roustit M., et al. , “Excellent reproducibility of laser speckle contrast imaging to assess skin microvascular reactivity,” Microvasc. Res. 80(3), 505–511 (2010).MIVRA610.1016/j.mvr.2010.05.012
    1. Ponticorvo A., et al. , “Laser speckle contrast imaging of blood flow in rat retinas using an endoscope,” J. Biomed. Opt. 18(9), 090501 (2013).JBOPFO10.1117/1.JBO.18.9.090501
    1. Wang C., et al. , “Visualization of cortical cerebral blood flow dynamics during craniotomy in acute subdural hematoma using laser speckle imaging in a rat model,” Brain Res. 1742, 146901 (2020).BRREAP10.1016/j.brainres.2020.146901
    1. Eriksson S., et al. , “Laser speckle contrast imaging for intraoperative assessment of liver microcirculation: a clinical pilot study,” Med. Dev. 7, 257–261 (2014).10.2147/MDER.S63393
    1. Kaneko T., et al. , “Noninvasive assessment of bowel blood perfusion using intraoperative laser speckle flowgraphy,” Langenbeck’s Arch. Surg. 405(6), 817–826 (2020).10.1007/s00423-020-01933-9
    1. Kojima S., et al. , “Laser speckle contrast imaging for intraoperative quantitative assessment of intestinal blood perfusion during colorectal surgery: a prospective pilot study,” Surg. Innovation 26(3), 293–301 (2019).10.1177/1553350618823426
    1. Regan C., et al. , “Design and evaluation of a miniature laser speckle imaging device to assess gingival health,” J. Biomed. Opt. 21(10), 104002 (2016).JBOPFO10.1117/1.JBO.21.10.104002
    1. Molnár E., et al. , “Evaluation of laser speckle contrast imaging for the assessment of oral mucosal blood flow following periodontal plastic surgery: an exploratory study,” Biomed Res. Int. 2017, 1–11 (2017).10.1155/2017/4042902
    1. Richards L., et al. , “Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow,” Neurophotonics 1(1), 015006 (2014).10.1117/1.NPh.1.1.015006
    1. Mangraviti A., et al. , “Intraoperative laser speckle contrast imaging for real-time visualization of cerebral blood flow in cerebrovascular surgery: results from pre-clinical studies,” Sci. Rep. 10(1), 7614 (2020).SRCEC310.1038/s41598-020-64492-5
    1. Tibbetts L. S., Shanelec D., “Principles and practice of periodontal microsurgery,” Int. J. Microdent. 1(1), 2–12 (2009).
    1. Keles M., Aykan A., “Effect of axonal length on direct neuromuscular neurotization: an experimental study,” Turkish Neurosurg. 29(1), 110–114 (2019).10.5137/1019-5149.jtn.22981-18.2
    1. Carta F., et al. , “Parotid tumours: clinical and oncologic outcomes after microscope-assisted parotidectomy with intraoperative nerve monitoring,” Acta Otorhinolaryngol. Ital. 37(5), 375–386 (2017).AOITDU10.14639/0392-100X-1089
    1. Sun J.-J., et al. , “Wrapping a man-made dura around reconstructed nerve sleeve avoid residue or recurrence of sacral Tolav cysts,” Interdiscip. Neurosurg. 15, 113–120 (2019).10.1016/j.inat.2018.10.020
    1. Acerbi F., et al. , “Fluorescein-guided resection of intramedullary spinal cord tumors: results from a preliminary, multicentric, retrospective study,” World Neurosurg. 108, 603–609 (2017).10.1016/j.wneu.2017.09.061
    1. Kim E. H., et al. , “Application of intraoperative indocyanine green videoangiography to brain tumor surgery,” Acta Neurochirurgica 153(7), 1487–1495 (2011).ACNUA510.1007/s00701-011-1046-x
    1. Wang S., et al. , “Evaluation of surgical microscope-integrated intraoperative near-infrared indocyanine green videoangiography during aneurysm surgery,” Neurosurg. Rev. 34(2), 209–215 (2010).NSREDV10.1007/s10143-010-0305-2
    1. de Oliveira J. G., et al. , “Assessment of flow in perforating arteries during intracranial aneurysm surgery using intraoperative near-infrared indocyanine green videoangiography,” Oper. Neurosurg. 61(Suppl. 3), ONS-63–ONS-73 (2007).10.1227/01.neu.0000289715.18297.08
    1. Okuda T., et al. , “Fluorescence-guided surgery of metastatic brain tumors using fluorescein sodium,” J. Clin. Neurosci. 17(1), 118–121 (2010).10.1016/j.jocn.2009.06.033
    1. Singh H., et al. , “Resection of pituitary tumors: endoscopic versus microscopic,” J. Neurooncol. 130(2), 309–317 (2016).10.1007/s11060-016-2124-y
    1. Yoo H., et al. , “Reduced local recurrence of a single brain metastasis through microscopic total resection,” J. Neurosurg. 110(4), 730 (2009).JONSAC10.3171/2008.8.JNS08448
    1. Acerbi F., et al. , “Fluorescein-guided surgery for grade IV gliomas with a dedicated filter on the surgical microscope: preliminary results in 12 cases,” Acta Neurochir. 155(7), 1277–1286 (2013).10.1007/s00701-013-1734-9
    1. White T., et al. , “Frameless stereotactic insertion of viewsite brain access system with microscope-mounted tracking device for resection of deep brain lesions: technical report,” Cureus 9(2), e1012 (2017).10.7759/cureus.1012
    1. American Cancer Society, “Pituitary tumors,” (accessed 2020).
    1. Fatemi N., et al. , “The endonasal microscopic approach for pituitary adenomas and other parasellar tumors: a 10-year experience,” Oper. Neurosurg. 63(suppl_4), ONS244–ONS256 (2008).10.1227/
    1. Fatemi N., et al. , “Endonasal microscopic removal of clival chordomas,” Surg. Neurol. 69(4), 331–338 (2008).SGNRAI10.1016/j.surneu.2007.08.035
    1. Spetzler R., Roski R., Selman W., “The microscope in anterior cervical spine surgery,” Clin. Orthop. Relat. Res. 168, 17–23 (1982).CORTBR
    1. Nishio S., et al. , “Spinal cord gliomas: management and outcome with reference to adjuvant therapy,” J. Clin. Neurosci. 7(1), 20–23 (2000).10.1054/jocn.1999.0128
    1. Xu J., et al. , “Microscopic keyhole technique for surgical removal of thoracic spinal meningiomas,” World Neurosurg. 124, e373–e379 (2019).10.1016/j.wneu.2018.12.099
    1. Yu Y., et al. , “Minimally invasive microsurgical treatment of cervical intraspinal extramedullary tumors,” J. Clin. Neurosci. 18(9), 1168–1173 (2011).10.1016/j.jocn.2010.12.043
    1. Takagi Y., et al. , “Evaluation of serial intraoperative surgical microscope-integrated intraoperative near-infrared indocyanine green videoangiography in patients with cerebral arteriovenous malformations,” Neurosurgery 70(1 Suppl Operative), 34–42; discussion 42–43 (2012).NEQUEB10.1227/NEU.0b013e31822d9749
    1. Tamai S., et al. , “Microvascular surgery in orthopaedics and traumatology,” J. Bone Joint Surg. 54(4), 637–647 (1972).10.1302/0301-620X.54B4.637
    1. Hachem L. D., et al. , “Feasibility of real-time intraoperative fluorescence imaging of dural sinus thrombosis,” J. Clin. Neurosci. 52, 153–155 (2018).10.1016/j.jocn.2018.03.011
    1. Höhne J., Brawanski A., Schebesch K.-M., “Fluorescence-guided surgery of brain abscesses,” Clin. Neurol. Neurosurg. 155, 36–39 (2017).CNNSBV10.1016/j.clineuro.2017.02.014
    1. Lane B., Bohnstedt B. N., Cohen-Gadol A. A., “A prospective comparative study of microscope-integrated intraoperative fluorescein and indocyanine videoangiography for clip ligation of complex cerebral aneurysms,” J. Neurosurg. 122(3), 618–626 (2015).JONSAC10.3171/2014.10.JNS132766
    1. Matsumura N., et al. , “Extracranial-intracranial bypass surgery at high magnification using a new high-resolution operating microscope: technical note,” Surg. Neurol. 72(6), 690–694 (2009).SGNRAI10.1016/j.surneu.2009.01.030
    1. Killory B. D., et al. , “Evaluation of angiographically occult spinal dural arteriovenous fistulae with surgical microscope-integrated intraoperative near-infrared indocyanine green angiography: report of 3 cases,” Neurosurgery 68(3), 781–787; discussion 787 (2011).NEQUEB10.1227/NEU.0b013e318207ac3b
    1. Hanggi D., Etminan N., Steiger H. J., “The impact of microscope-integrated intraoperative near-infrared indocyanine green videoangiography on surgery of arteriovenous malformations and dural arteriovenous fistulae,” Neurosurgery 67(4), 1094–1103; discussion 1103–1094 (2010).NEQUEB10.1227/NEU.0b013e3181eb5049
    1. Ungersböck K., et al. , “Cavernous malformations: from frame-based to frameless stereotactic localization,” Min. Invasive Neurosurg. 40(4), 134–138 (1997).10.1055/s-2008-1053434
    1. Endo T., et al. , “Use of microscope-integrated near-infrared indocyanine green videoangiography in the surgical treatment of intramedullary cavernous malformations: report of 8 cases,” J. Neurosurg. Spine 18(5), 443 (2013).10.3171/2013.1.SPINE12482
    1. Yabumoto M., et al. , “Moyamoya disease associated with intracranial aneurysms,” Surg. Neurol. 20(1), 20–24 (1983).SGNRAI10.1016/0090-3019(83)90100-3
    1. Fein J. M., “Microvascular surgery for stroke,” Sci. Am. 238(4), 58–67 (1978).SCAMAC10.1038/scientificamerican0478-58
    1. Kojima H., et al. , “Comparison between endoscopic and microscopic stapes surgery,” The Laryngoscope 124(1), 266–271 (2013).LARYA810.1002/lary.24144
    1. Karhuketo T. S., et al. , “Endoscopy and otomicroscopy in the estimation of middle ear structures,” Acta Oto-Laryngol. 117(4), 585–589 (1997).AOLAAJ10.3109/00016489709113442
    1. Valvassori G. E., Buckingham R. A., “Middle ear masses mimicking glomus tumors: radiographic and otoscopic recognition,” Ann. Otol. Rhinol. Laryngol. 83(5), 606–612 (1974).AORHA210.1177/000348947408300505
    1. Mori K., et al. , “Modification of three-dimensional prototype temporal bone model for training in skull-base surgery,” Neurosurg. Rev. 32(2), 233–239 (2009).NSREDV10.1007/s10143-008-0177-x
    1. Luntz M., Sadé J., “Daily fluctuations of middle ear pressure in atelectatic ears,” Ann. Otol. Rhinol. Laryngol. 99(3), 201–204 (1990).AORHA210.1177/000348949009900308
    1. Mcgee T. M., “The argon laser in surgery for chronic ear disease and otosclerosis,” The Laryngoscope 93(9), 1177–1182 (1983).LARYA810.1288/00005537-198309000-00014
    1. Storrs L. A., “Acoustic neurinomas presenting as middle ear tumors,” The Laryngoscope 84(7), 1175–1180 (1974).LARYA810.1288/00005537-197407000-00012
    1. Pau H. W., et al. , “Imaging of cochlear structures by optical coherence tomography (OCT). Temporal bone experiments for an OCT-guided cochleostomy technique,” Laryngorhinootologie 87(9), 641–646 (2008).10.1055/s-2007-995725
    1. Stammberger H., “History of rhinology: anatomy of the paranasal sinuses,” Rhinology 27(3), 197–210 (1989).RNGYA8
    1. Bagatella F., Mazzoni A., “Microsurgery in nasal polyposis transnasal ethmoidectomy,” Acta Oto-Laryngol. 103(sup431), 1–19 (1987).AOLAAJ10.3109/00016488709124797
    1. Amedee R. G., Mann W. J., Gilsbach J. M., “Microscopic endonasal surgery of the paranasal sinuses and the parasellar region,” Arch. Otolaryngol. Head Neck Surg. 115(9), 1103–1106 (1989).10.1001/archotol.1989.01860330093025
    1. Amedee R. G., Mann W. J., Gilsbach J. M., “Microscopic endonasal surgery: clinical update for treatment of chronic sinusitis with polyps,” Am. J. Rhinol. 4(6), 203–205 (1990).AJRHE510.2500/105065890782009334
    1. Teatine G. P., Stomeo F., Bozzo C., “Transnasal sinusectomy with combined microscopic and endoscopic technique,” J. Laryngol. Otol. 105(8), 635–637 (1991).JLOTAX10.1017/S0022215100116883
    1. Testa B., et al. , “Carbon dioxide laser turbinate surgery for chronic obstructive rhinitis,” Lasers Surg. Med. 27(1), 49–54 (2000).LSMEDI10.1002/1096-9101(2000)27:1<49::AID-LSM7>;2-Y
    1. Dietrich C., et al. , “Long-term follow-up of patients with microscopic endonasal dacryocystorhinostomy,” Am. J. Rhinol. 17(1), 57–61 (2003).AJRHE510.1177/194589240301700110
    1. Hazarika P., et al. , “KTP laser assisted microendoscopic cricopharyngeal myotomy and web excision for dysphagia management,” Indian J. Otolaryngol. Head Neck Surg. 57(4), 290 (2005).10.1007/BF02907689
    1. Welham N. V., et al. , “Prospective multi-arm evaluation of surgical treatments for vocal fold scar and pathologic sulcus vocalis,” The Laryngoscope 121(6), 1252–1260 (2011).LARYA810.1002/lary.21780
    1. Grant D. G., et al. , “Oropharyngeal cancer: a case for single modality treatment with transoral laser microsurgery,” Arch. Otolaryngol. Head Neck Surg. 135(12), 1225–1230 (2009).10.1001/archoto.2009.185
    1. Jackson R. S., Leon M. E., McCaffrey T. V., “Chondrosarcoma of the subglottic larynx,” The Laryngoscope 123(5), 1216–1219 (2013).LARYA810.1002/lary.23957
    1. Rich J. T., et al. , “Transoral laser microsurgery (TLM) ± adjuvant therapy for advanced stage oropharyngeal cancer,” The Laryngoscope 119(9), 1709–1719 (2009).LARYA810.1002/lary.20552
    1. Haughey B. H., et al. , “Transoral laser microsurgery as primary treatment for advanced-stage oropharyngeal cancer: a united states multicenter study,” Head Neck 33(12), 1683–1694 (2011).10.1002/hed.21669
    1. Rigante M., et al. , “Intracapsular microenucleation technique in a case of intraparotid facial nerve schwannoma. Technical notes for a conservative approach,” Acta Otorhinolaryngol. Italica 35(1), 49–52 (2015).AOITDU
    1. D’Orazi V., et al. , “Use of loupes magnification and microsurgical technique in thyroid surgery: ten years experience in a single center,” G Chir 37(3), 101–107 (2016).10.11138/gchir/2016.37.3.101
    1. Seven H., et al. , “Microscopic thyroidectomy: a prospective controlled trial,” Eur. Arch. Oto-Rhino-Laryngol. Head Neck 262(1), 41–44 (2005).10.1007/s00405-004-0740-1
    1. Doikov I. Y., Yovchev I. P., Konsulov S. S., “Microsurgical technique as a method for prevention of recurrent laryngeal nerve injury in thyroid surgery. Review of seven consecutive cases,” Folia Med. 43(4), 5–9 (2001).
    1. Cavallaro G., et al. , “Usefulness of microsurgery to isolation of recurrent laryngeal nerve and parathyroid during thyroidectomy operations,” Microsurgery 18(8), 460–461 (1998).10.1002/(SICI)1098-2752(1998)18:8<460::AID-MICR6>;2-H
    1. Williams S. P., Wilkie M. D., Tahery J., “Microscope-assisted thyroidectomy: our experience in one hundred and twenty-one consecutive cases,” Clin. Otolaryngol. 39(5), 307–311 (2014).COTSD210.1111/coa.12284
    1. Nielsen T. R., et al. , “Microsurgical technique in thyroid surgery: a 10-year experience,” J. Laryngol. Otol. 112(6), 556–560 (1998).JLOTAX10.1017/S0022215100141076
    1. Kim B.-H., “Lightless cataract surgery using a near-infrared operating microscope,” J. Cataract Refract. Surg. 32(10), 1683–1690 (2006).10.1016/j.jcrs.2006.05.024
    1. Cherfan D. G., Melki S. A., “Corneal perforation by an astigmatic keratotomy performed with an optical coherence tomography-guided femtosecond laser,” J. Cataract Refract. Surg. 40(7), 1224–1227 (2014).10.1016/j.jcrs.2014.04.021
    1. Cleary C., et al. , “Beveled femtosecond laser astigmatic keratotomy for the treatment of high astigmatism post-penetrating keratoplasty,” Cornea 32(1), 54–62 (2013).CORNDB10.1097/ICO.0b013e31825ea2e6
    1. Rückl T., et al. , “Femtosecond laser-assisted intrastromal arcuate keratotomy to reduce corneal astigmatism,” J. Cataract Refract. Surg. 39(4), 528–538 (2013).10.1016/j.jcrs.2012.10.043
    1. Steven P., et al. , “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmol. 131(9), 1135–1142 (2013).10.1001/jamaophthalmol.2013.4672
    1. Watanabe K., et al. , “Simple and accurate alignment of toric intraocular lenses and evaluation of their rotation errors using anterior segment optical coherence tomography,” Jpn. J. Ophthalmol. 56(1), 31–37 (2012).10.1007/s10384-011-0097-0
    1. Sharma N., et al. , “Continuous intraoperative OCT guided management of post-deep anterior lamellar keratoplasty descemet’s membrane detachment,” Saudi J. Ophthalmol. 30(2), 133–136 (2016).10.1016/j.sjopt.2016.01.001
    1. Zhang Z., et al. , “The scleral buckling of primary rhegmatogenous retinal detachment under the surgical microscope,” Ophthalm. Surg. Lasers Imaging Retina 42(2), 96–101 (2011).10.3928/15428877-20110125-05
    1. Grewal D. S., et al. , “Intra-operative microscope-integrated swept-source optical coherence tomography guided placement of Argus II retinal prosthesis,” Acta Ophthalmol. 95(5), e431–e432 (2017).10.1111/aos.13123
    1. Chen X., et al. , “Microscope-integrated optical coherence tomography angiography in the operating room in young children with retinal vascular disease,” JAMA Ophthalmol. 135(5), 483–486 (2017).10.1001/jamaophthalmol.2017.0422
    1. Kumar V., et al. , “Intraoperative optical coherence tomography (OCT): a new Frontier in vitreo-retinal surgery,” Delhi J. Ophthalmol. 26(3), 192–194 (2015).10.7869/djo.169
    1. Ehlers J. P., et al. , “The prospective intraoperative and perioperative ophthalmic imaging with optical coherence tomography (PIONEER) study: 2-year results,” Am. J. Ophthalmol. 158(5), 999–1007.e1 (2014).AJOPAA10.1016/j.ajo.2014.07.034
    1. Ehlers J. P., Griffith J. F., Srivastava S. K., “Intraoperative optical coherence tomography during citreoretinal surgery for dense vitreous hemorrhage in the PIONEER study,” Retina 35(12), 2537–2542 (2015).RETIDX10.1097/IAE.0000000000000660
    1. Monea M., et al. , “The impact of operating microscope on the outcome of endodontic treatment performed by postgraduate students,” Eur. Sci. J. 11(27), 305–311 (2015).
    1. Setzer F. C., “The dental operating microscope in endodontics,” 2016, Endodontics:Colleague for Excellence, American Association of Endodontists, Winter, 1–8 (accessed 2020).
    1. Clauder T., “The dental microscope: an indispensable tool in endodontic practice,” Carl Zeiss Surgical GmbH, Oberkochen, Germany, pp. 16–19 (2007).
    1. Clark D. J., Sheets C. G., Paquette J. M., “Definitive diagnosis of early enamel and dentin cracks based on microscopic evaluation,” J. Esthetic Restor. Dent. 15(7), 391–401 (2003).10.1111/j.1708-8240.2003.tb00963.x
    1. Baldassari-Cruz L. A., Lilly J. P., Rivera E. M., “The influence of dental operating microscope in locating the mesiolingual canal orifice,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 93(2), 190–194 (2002).10.1067/moe.2002.118285
    1. Kato H., “Non-surgical endodontic treatment for dens invaginatus type III using cone beam computed tomography and dental operating microscope: a case report,” Bull. Tokyo Dent. Coll. 54(2), 103–108 (2013).10.2209/tdcpublication.54.103
    1. Tzanetakis G. N., Lagoudakos T. A., Kontakiotis E. G., “Endodontic treatment of a mandibular second premolar with four canals using operating microscope,” J. Endodontics 33(3), 318–321 (2007).10.1016/j.joen.2006.08.006
    1. Mines P., et al. , “Use of the microscope in endodontics: a report based on a questionnaire,” J. Endodontics 25(11), 755–758 (1999).10.1016/S0099-2399(99)80125-3
    1. Tsesis I., et al. , “Outcomes of surgical endodontic treatment performed by a modern technique: an updated meta-analysis of the literature,” J. Endodontics 39(3), 332–339 (2013).10.1016/j.joen.2012.11.044
    1. Setzer F. C., et al. , “Outcome of endodontic surgery: a meta-analysis of the literature—part 2: comparison of endodontic microsurgical techniques with and without the use of higher magnification,” J. Endodontics 38(1), 1–10 (2012).10.1016/j.joen.2011.09.021
    1. Kontakiotis E. G., Tzanetakis G. N., “Four canals in the mesial root of a mandibular first molar. A case report under the operating microscope,” Aust. Endodontic J. 33(2), 84–88 (2007).10.1111/j.1747-4477.2007.00068.x
    1. Karapinar-Kazandag M., Basrani B. R., Friedman S., “The operating microscope enhances detection and negotiation of accessory mesial canals in mandibular molars,” J. Endodontics 36(8), 1289–1294 (2010).10.1016/j.joen.2010.04.005
    1. Mitsuhashi A., “Precision treatment with the dental operating microscope: analysis of microleakage and marginal adaptation using MTA cement,” Micro 1, 56–60 (2009).
    1. Pecora G., Andreana S., “Use of dental operating microscope in endodontic surgery,” Oral Surg. Oral Med. Oral Pathol. 75(6), 751–758 (1993).OSOMAE10.1016/0030-4220(93)90435-7
    1. Rubinstein R. A., Kim S., “Long-term follow-up of cases considered healed one year after apical microsurgery,” J. Endodontics 28(5), 378–383 (2002).10.1097/00004770-200205000-00008
    1. Prado M., Araújo M., Gusman H., “Removal of a silver cone by using clinical microscope and ultrasound: case report,” Dent. Press Endod. 2(4), 46–50 (2012).
    1. Jaiswal P. G., Puri S. S., Bhongade M. L., “Evaluation of effectiveness of subepithelial connective tissue graft in combination with coronally positioned flap in the treatment of isolated gingival recession in esthetic areas by using surgical microscope,” J. Datta Meghe Inst. Med. Sci. Univ. 12(1), 79 (2017).10.4103/jdmimsu.jdmimsu_27_17
    1. Suryavanshi P. P., Bhongade M., “Periodontal microsurgery: a new approach to periodontal surgery,” Int. J. Sci. Res. 6(3), 785–789 (2017).
    1. Kapadia J. A., Bhedasgoankar S. Y., Bhandari S. D., “Periodontal microsurgery: a case report,” J. Indian Soc. Periodontol. 17(6), 790–792 (2013).10.4103/0972-124X.124511
    1. Jain R., et al. , “Periodontal microsurgery-magnifying facts, maximizing results,” J. Adv. Med. Dent. Sci. Res. 2(3), 24–34 (2014).
    1. Kahn S., Rodrigues W. J. D. P. R., Barceleiro M. D. O., “Periodontal plastic microsurgery in the treatment of deep gingival recession after orthodontic movement,” Case Rep. Dent. 2013, 851413 (2013).10.1155/2013/851413
    1. Duello G., “The use of surgical microscopes in contemporary implant therapy,” Pract. Proced. Aesthetic Dent. 17(10), 717 (2005).
    1. Cortellini P., “Minimally invasive surgical techniques in periodontal regeneration,” J. Evid. Based Dent. Pract. 12(Suppl. 3), 89–100 (2012).10.1016/S1532-3382(12)70021-0
    1. Deepa D., Mehta D., Munjal V., “Periodontal microsurgery: a must for perio-aesthetics,” Indian J. Oral Sci. 5, 103–108 (2014).10.4103/0976-6944.144505
    1. Cortellini P., Tonetti M. S., “Microsurgical approach to periodontal regeneration. initial evaluation in a case cohort,” J. Periodontol. 72(4), 559–569 (2001).10.1902/jop.2001.72.4.559
    1. Gupta P., et al. , “Periodontal microsurgery: a review,” IOSR J. Dent. Med. Sci. 13, 12–17 (2014).10.9790/0853-13471217
    1. Miller P. D., Jr., Allen E. P. “The development of periodontal plastic surgery,” Periodontology 11(1), 7–17 (1996).10.1111/j.1600-0757.1996.tb00178.x
    1. Akiyama K., “Papilla reconstruction using the dental operating microscope,” Micro 1, 25–29 (2009).
    1. Nordland W., “The role of periodontal plastic microsurgery in oral facial esthetics,” J. California Dent. Assoc. 30(11), 831–837 (2002).
    1. Pandey S., Mehta D. S., “Treatment of localized gingival recession using the free rotated papilla autograft combined with coronally advanced flap by conventional (macrosurgery) and surgery under magnification (microsurgical) technique: a comparative clinical study,” J. Indian Soc. Periodontol. 17(6), 765–770 (2013).10.4103/0972-124X.124500
    1. Thankkappan P., Roy S., Mandlik V. B., “Comparative evaluation of management of gingival recession using subepithelial connective tissue graft and collagen membrane by periodontal microsurgical technique: a clinical study of 40 cases,” J. Indian Soc. Periodontol. 20(2), 189–194 (2016).10.4103/0972-124X.176394
    1. Burkhardt R., Lang N. P., “Coverage of localized gingival recessions: comparison of micro- and macrosurgical techniques,” J. Clin. Periodontol. 32(3), 287–293 (2005).JCPEDZ10.1111/j.1600-051X.2005.00660.x
    1. Marsh D., Barton N., “Does the use of the operating microscope improve the results of peripheral nerve suture?” J. Bone Joint Surg. 69-B(4), 625–630 (1987).10.1302/0301-620X.69B4.3301860
    1. Ehanire T., et al. , “Safety of microsurgery under loupes versus microscope: a head-to-head comparison of 2 surgeons with similar experiences,” Ann. Plast. Surg. 80(6S), S340–S342 (2018).APCSD410.1097/SAP.0000000000001324
    1. Bernstein D. T., et al. , “Comparison of magnification in primary digital nerve repair: literature review, survey of practice trends, and assessment of 90 cadaveric repairs: not a clinical study,” J. Hand Surg. 38(10), e40–e41 (2013).10.1016/j.jhsa.2013.08.067
    1. Gomel V., “Reconstructive tubal microsurgery and assisted reproductive technology,” Fertil. Steril. 105(4), 887–890 (2016).FESTAS10.1016/j.fertnstert.2015.12.040
    1. Sommerlad B., “Surgery of the cleft palate: repair using the operating microscope with radical muscle retropositioning-the GostA approach,” B ENT 2(Suppl. 4), 32–34 (2006).
    1. American Society of Craniofacial Surgeons, “What is craniofacial surgery?” (accessed 2020).
    1. Baumgartner J. E., et al. , “Microscopic approach to craniosynostosis,” J. Craniofac. Surg. 16(6), 997–1005 (2005).10.1097/01.scs.0000180008.37739.74
    1. Teichgraeber J. F., et al. , “Microscopic versus open approach to craniosynostosis: a long-term outcomes comparison,” J. Craniofac. Surg. 25(4), 1245 (2014).10.1097/SCS.0000000000000925
    1. Park A. H., Diaz J. A., “A different approach to orbital blow out fractures: microscope-assisted reconstruction of the orbital floor,” Int. J. Pediatr. Otorhinolaryngol. 72(5), 707–710 (2008).IPOTDJ10.1016/j.ijporl.2008.01.016
    1. Hopper R. A., et al. , “Cleft palate repair and velopharyngeal dysfunction,” Plast. Reconstr. Surg. 133(6), 852e–864e (2014).10.1097/PRS.0000000000000184
    1. Sommerlad B. C., et al. , “Palate re-repair revisited,” Cleft Palate-Craniofac. J. 39(3), 295–307 (2002).CPJOEG10.1597/1545-1569_2002_039_0295_prrr_2.0.co_2
    1. Mehendale F. V., et al. , “Surgical management of velopharyngeal incompetence in velocardiofacial syndrome,” Cleft Palate-Craniofac. J. 41(2), 124–135 (2004).CPJOEG10.1597/01-110
    1. Meyer V., “The place of the microscope in hand surgery,” J. Hand Surg. Br. 12(2), 155–157 (1987).10.1016/0266-7681(87)90002-7
    1. Yan L., et al. , “Introduction of microsurgical technique to biliary reconstruction in living donor liver transplantation,” Transpl. Proc. 39(5), 1513–1516 (2007).TRPPA810.1016/j.transproceed.2007.01.091
    1. Lee C.-F., et al. , “Microscope-Assisted hepatic artery reconstruction in adult living donor liver transplantation—a review of 325 consecutive cases in a single center,” Clin. Transpl. 31(2), e12879 (2017).10.1111/ctr.12879
    1. Kavouksorian C. A., Noone R. B., “Flexor tendon repair in the neonate,” Ann. Plast. Surg. 9(5), 415–418 (1982).APCSD410.1097/00000637-198211000-00011
    1. Efstathopoulos D., et al. , “Clinical assessment of primary digital nerve repair,” Acta Orthopaed. Scand. 66(sup264), 45–47 (1995).10.3109/17453679509157166
    1. Slooff A. C. J., “Obstetric brachial plexus lesions and their neurosurgical treatment,” Clin. Neurol. Neurosurg. 95, 73–77 (1993).CNNSBV10.1016/0303-8467(93)90039-J
    1. American Academy of Orthopaedic Surgeons, “Erb’s palsy (brachial plexus birth palsy),” (accessed 2020).
    1. Geissler W. B., Fernandez D. L., Graca R., “Anterior interosseous nerve palsy complicating a forearm fracture in a child,” J. Hand Surg. 15(1), 44–47 (1990).10.1016/S0363-5023(09)91104-2
    1. Tamai S., et al. , “Little finger replantation in a 20-month-old child: a case report,” Br. J. Plast. Surg. 27(1), 1–4 (1974).BJPSAZ10.1016/0007-1226(74)90053-8
    1. Ohmori K., Harii K., “Transplantation of a toe to an amputated finger,” Hand 7(2), 134–138 (1975).10.1016/0072-968X(75)90008-X
    1. Bade S. A., et al. , “Microsurgical hepatic artery reconstruction in paediatric liver transplantation,” Hepatogastroenterology 56(94–95), 1414–1416 (2009).
    1. Seda-Neto J., et al. , “Twenty years of experience in pediatric living donor liver transplantation: focus on hepatic artery reconstruction, complications, and outcomes,” Transplantation 100(5), 1066–1072 (2016).TRPLAU10.1097/TP.0000000000001135
    1. Zuo K. J., et al. , “Microvascular hepatic artery anastomosis in pediatric living donor liver transplantation: 73 consecutive cases performed by a single surgeon,” Plast. Reconstr. Surg. 142(6), 1609–1619 (2018).10.1097/PRS.0000000000005044
    1. Ohdan H., et al. , “Microsurgical hepatic artery reconstruction during living-donor liver transplantation by using head-mounted surgical binocular system,” Transpl. Int. 20(11), 970–973 (2007).10.1111/j.1432-2277.2007.00525.x
    1. Parodi M., et al. , “Using a new otologic operating microscope: unexpected complications,” Int. J. Pediatr. Otorhinolaryngol. 79(5), 755–757 (2015).IPOTDJ10.1016/j.ijporl.2015.02.028
    1. Choudhry I. K., Kyriakedes J., Foad M. B., “Iatrogenic burn caused by an operating microscope: case report,” J. Hand Surg. 38(3), 545–547 (2013).10.1016/j.jhsa.2012.11.027
    1. Lopez J., et al. , “Iatrogenic surgical microscope skin burns: a systematic review of the literature and case report,” Burns 42(4), e74–e80 (2016).BURND810.1016/j.burns.2015.08.014
    1. Hwang H. B., Kim H. S., “Phototoxic effects of an operating microscope on the ocular surface and tear film,” Cornea 33(1), 82–90 (2014).CORNDB10.1097/ICO.0000000000000001
    1. McDonald H. R., Harris M. J., “Operating microscope-induced retinal phototoxicity during pars plana vitrectomy,” Arch. Ophthalmol. 106(4), 521–523 (1988).AROPAW10.1001/archopht.1988.01060130567038
    1. Hibst R., et al. , “Thermal effects of white light illumination during microsurgery: clinical pilot study on the application safety of surgical microscopes,” J. Biomed. Opt. 15(4), 048003 (2010).JBOPFO10.1117/1.3475953
    1. Bible J. E., et al. , “Implant contamination during spine surgery,” Spine J. 13(6), 637–640 (2013).10.1016/j.spinee.2012.11.053
    1. Basques B. A., et al. , “Use of an operating microscope during spine surgery is associated with minor increases in operating room times and no increased risk of infection,” Spine 39(22), 1910 (2014).SPINDD10.1097/BRS.0000000000000558
    1. Chin K. W. T. K., et al. , “Evaluation of collimated polarized light imaging for real-time intraoperative selective nerve identification in the human hand,” Biomed. Opt. Express 8(9), 4122–4134 (2017).BOEICL10.1364/BOE.8.004122
    1. Salomatina E., et al. , “Multimodal optical imaging and spectroscopy for the intraoperative mapping of nonmelanoma skin cancer,” J. Appl. Phys. 105(10), 102010 (2009).JAPIAU10.1063/1.3115646
    1. Patel R., et al. , “Polarization-sensitive multimodal imaging for detecting breast cancer,” Cancer Res. 74(17), 4685 (2014).CNREA810.1158/0008-5472.CAN-13-2411
    1. Patel R., et al. , “Multimodal optical imaging for detecting breast cancer,” J. Biomed. Opt. 17(6), 066008 (2012).JBOPFO10.1117/1.JBO.17.6.066008
    1. Yashin K. S., et al. , “Cross-polarization optical coherence tomography for brain tumor imaging,” Front. Oncol. 9, 201 (2019).FRTOA710.3389/fonc.2019.00201
    1. Rodriguez L. A., “Development of phase-shifting profilometry for 3D brain cavity reconstruction and in vivo detection of intrinsic fluorescnence through a neurosurgical microscope,” Institut de génie biomédical, École Polytechnique de Montréal; (2018).
    1. Martin R., Thies B., Gerstner A. O., “Hyperspectral hybrid method classification for detecting altered mucosa of the human larynx,” Int. J. Health Geogr. 11, 21 (2012).10.1186/1476-072X-11-21

Source: PubMed

3
購読する