Age-related mitochondrial dysfunction as a key factor in COVID-19 disease

Daniel J Moreno Fernández-Ayala, Plácido Navas, Guillermo López-Lluch, Daniel J Moreno Fernández-Ayala, Plácido Navas, Guillermo López-Lluch

Abstract

SARS-CoV-2 causes a severe pneumonia (COVID-19) that affects essentially elderly people. In COVID-19, macrophage infiltration into the lung causes a rapid and intense cytokine storm leading finally to a multi-organ failure and death. Comorbidities such as metabolic syndrome, obesity, type 2 diabetes, lung and cardiovascular diseases, all of them age-associated diseases, increase the severity and lethality of COVID-19. Mitochondrial dysfunction is one of the hallmarks of aging and COVID-19 risk factors. Dysfunctional mitochondria is associated with defective immunological response to viral infections and chronic inflammation. This review discuss how mitochondrial dysfunction is associated with defective immune response in aging and different age-related diseases, and with many of the comorbidities associated with poor prognosis in the progression of COVID-19. We suggest here that chronic inflammation caused by mitochondrial dysfunction is responsible of the explosive release of inflammatory cytokines causing severe pneumonia, multi-organ failure and finally death in COVID-19 patients. Preventive treatments based on therapies improving mitochondrial turnover, dynamics and activity would be essential to protect against COVID-19 severity.

Keywords: COVID-19; Cytokine storm; Inflammaging; Inflammation; Mitochondria; Mitochondrial health; Mitochondrial nutrients; Mitochondrial turnover; SARS-CoV-2.

Copyright © 2020 Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
Mitochondrial dysfunction associated with aged mitochondria reduces the efficiency of immune system. The accumulation of mitochondrial damage together with the reduction of the efficiency in the production of energy affects immune system capacity by reducing the capacity to respond to viral infections through a lower release of IFN-I. Aged mitochondria is also involved in the unbalance of immune system by increase of innate response and decrease of the adaptive response found in immunosenescence. Mitochondrial dysfunction releases many damage signals to cytosol that end in the activation of inflammasome and the release of inflammatory cytokines that cause the chronic inflammation associated with aging and age-related diseases.
Fig. 2
Fig. 2
Age-related mitochondrial dysfunction increases the inflammatory response to SARS-CoV-2. The activation of the inflammasome caused by mitochondrial dysfunction during aging and age-related diseases contributes to the chronic inflammation and the release of inflammatory cytokines in the elderly. This system produces a vicious cycle that feed the activity of the inflammasome. When SARS-CoV-2 invades the organism, macrophages showing a high activity of inflammasome can enhance the release of inflammatory cytokines generating the characteristic cytokine storm associated with COVID-19.
Fig. 3
Fig. 3
Essential role of mitochondrial health maintenance in the immune response. Aging and age-related diseases, including many metabolic diseases, aggravate mitochondrial dysfunction and the accumulation of damaged mitochondria in cells including immune cells. The use of prolongevity procedures such as CR, bioactive compounds or physical exercise can reverse this accumulation by inducing mitochondrial turnover and biogenesis. Among these compounds, mito/autophagy inducers, CoQ10 and NAD+ supplementation can help to maintain high levels or healthy mitochondria during aging and avoid immunological unbalance associated with COVID-19 severity.

References

    1. Agostinho P., Cunha R.A., Oliveira C. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer's disease. Curr. Pharm. Des. 2010;16:2766–2778. doi: 10.2174/138161210793176572.
    1. Ahmadpoor P., Rostaing L. Why the immune system fails to mount an adaptive immune response to a COVID-19 infection. Transplant Int. Off. J. Eur. Soc. Organ Transplant. 2020 doi: 10.1111/tri.13611.
    1. Akbar A.N., Gilroy D.W. Aging immunity may exacerbate COVID-19. Science. 2020;369:256–257. doi: 10.1126/science.abb0762.
    1. Akiyama T. Mitochondria-nucleus shuttling FK506-binding protein 51 interacts with TRAF proteins and facilitates the RIG-I-like receptor-mediated expression of type I IFN. PLoS One. 2014;9 doi: 10.1371/journal.pone.0095992.
    1. Anand S.K., Tikoo S.K. Viruses as modulators of mitochondrial functions. Adv. Virol. 2013;2013 doi: 10.1155/2013/738794.
    1. Andersen C.J., Murphy K.E., Fernandez M.L. Impact of obesity and metabolic syndrome on immunity. Adv. Nutr. 2016;7:66–75. doi: 10.3945/an.115.010207.
    1. Annweiler C. National French survey of COVID-19 symptoms in people aged 70 and over. Clin. Infect. Dis. 2020 doi: 10.1093/cid/ciaa792.
    1. Arad M. Therapeutic approaches to diabetic cardiomyopathy: targeting the antioxidant pathway. Prostaglandins Other Lipid Mediators. 2020 doi: 10.1016/j.prostaglandins.2020.106454.
    1. Arunachalam P.S. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science. 2020 doi: 10.1126/science.abc6261.
    1. Audrito V., Messana V.G., Deaglio S. NAMPT and NAPRT: two metabolic enzymes with key roles in inflammation. Front. Oncol. 2020;10:358. doi: 10.3389/fonc.2020.00358.
    1. Babbar M. Mitophagy and DNA damage signaling in human aging. Mech. Ageing Dev. 2020;186 doi: 10.1016/j.mad.2020.111207.
    1. Baeza I. Soybean and green tea polyphenols improve immune function and redox status in very old ovariectomized mice. Rejuvenation Res. 2010;13:665–674. doi: 10.1089/rej.2010.1049.
    1. Bansal R., Gubbi S., Muniyappa R. Metabolic syndrome and COVID 19: endocrine-immune-vascular interactions shapes clinical course. Endocrinology. 2020 doi: 10.1210/endocr/bqaa112.
    1. Barnes P.J. Pulmonary diseases and ageing. Subcell. Biochem. 2019;91:45–74. doi: 10.1007/978-981-13-3681-2_3.
    1. Bastard P. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370 doi: 10.1126/science.abd4585.
    1. Baur J.A. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444:337–342. doi: 10.1038/nature05354.
    1. Beijers R., Gosker H.R., Schols A. Resveratrol for patients with chronic obstructive pulmonary disease: hype or hope? Curr. Opin. Clin. Nutr. Metab. Care. 2018;21:138–144. doi: 10.1097/mco.0000000000000444.
    1. Bektas A. Age-associated changes in human CD4(+) T cells point to mitochondrial dysfunction consequent to impaired autophagy. Aging (Albany NY) 2019;11:9234–9263. doi: 10.18632/aging.102438.
    1. Bektas A. A public health perspective of aging: do hyper-inflammatory syndromes such as COVID-19, SARS, ARDS, cytokine storm syndrome, and post-ICU syndrome accelerate short- and long-term inflammaging? Immun. Ageing. 2020;17:23. doi: 10.1186/s12979-020-00196-8.
    1. Bharath L.P. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab. 2020;32:44–55. doi: 10.1016/j.cmet.2020.04.015. e46.
    1. Blanco-Melo D. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020 doi: 10.1016/j.cell.2020.04.026.
    1. Bliznakov E.G. Coenzyme Q deficiency in aged mice. J. Med. 1978;9:337–346.
    1. Braidy N., Liu Y. NAD+ therapy in age-related degenerative disorders: a benefit/risk analysis. Exp. Gerontol. 2020;132 doi: 10.1016/j.exger.2020.110831.
    1. Brauner H. Markers of innate immune activity in patients with type 1 and type 2 diabetes mellitus and the effect of the anti-oxidant coenzyme Q10 on inflammatory activity. Clin. Exp. Immunol. 2014;177:478–482. doi: 10.1111/cei.12316.
    1. Brunelle J.K. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab. 2005;1:409–414. doi: 10.1016/j.cmet.2005.05.002.
    1. Bugger H., Abel E.D. Molecular mechanisms for myocardial mitochondrial dysfunction in the metabolic syndrome. Clin. Sci. (Lond.) 2008;114:195–210. doi: 10.1042/CS20070166.
    1. Caruso C. Mechanisms of immunosenescence. Immun. Ageing. 2009;6:10. doi: 10.1186/1742-4933-6-10.
    1. Cervantes-Barragan L. Control of coronavirus infection through plasmacytoid dendritic-cell-derived type I interferon. Blood. 2007;109:1131–1137. doi: 10.1182/blood-2006-05-023770.
    1. Chakravarthy M.V., Neuschwander-Tetri B.A. The metabolic basis of nonalcoholic steatohepatitis. Endocrinol. Diabetes Metab. 2020;3 doi: 10.1002/edm2.112.
    1. Chang C.H. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell. 2013;153:1239–1251. doi: 10.1016/j.cell.2013.05.016.
    1. Channappanavar R. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe. 2016;19:181–193. doi: 10.1016/j.chom.2016.01.007.
    1. Chen Y., Liu S., Leng S.X. Chronic low-grade inflammatory phenotype (CLIP) and senescent immune dysregulation. Clin. Ther. 2019;41:400–409. doi: 10.1016/j.clinthera.2019.02.001.
    1. Chen J., Kelley W.J., Goldstein D.R. Role of aging and the immune response to respiratory viral infections: potential implications for COVID-19. J. Immunol. 2020;205:313–320. doi: 10.4049/jimmunol.2000380.
    1. Chinopoulos C. Acute sources of mitochondrial NAD(+) during respiratory chain dysfunction. Exp. Neurol. 2020;327 doi: 10.1016/j.expneurol.2020.113218.
    1. Choi I.Y., Lee C., Longo V.D. Nutrition and fasting mimicking diets in the prevention and treatment of autoimmune diseases and immunosenescence. Mol. Cell. Endocrinol. 2017;455:4–12. doi: 10.1016/j.mce.2017.01.042.
    1. Ciolac E.G., Rodrigues da Silva J.M., Vieira R.P. Physical exercise as an Immunomodulator of chronic diseases in aging. J. Phys. Act. Health. 2020:1–11. doi: 10.1123/jpah.2019-0237.
    1. Cloonan S.M., Choi A.M. Mitochondria in lung disease. J. Clin. Invest. 2016;126:809–820. doi: 10.1172/jci81113.
    1. Condotta S.A. Cyclophilin D regulates antiviral CD8(+) T cell survival in a cell-extrinsic manner. ImmunoHorizons. 2020;4:217–230. doi: 10.4049/immunohorizons.2000016.
    1. Cooper H.A. Targeting mitochondrial fission as a potential therapeutic for abdominal aortic aneurysm. Cardiovasc. Res. 2020 doi: 10.1093/cvr/cvaa133.
    1. Currie M.S. Immunosenescence. Compr. Ther. 1992;18:26–34.
    1. Dantzer R. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Reviews. Neuroscience. 2008;9:46–56. doi: 10.1038/nrn2297.
    1. De la Fuente M., Miquel J. An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging. Curr. Pharm. Des. 2009;15:3003–3026. doi: 10.2174/138161209789058110.
    1. De la Fuente M. Strategies to improve the functions and redox state of the immune system in aged subjects. Curr. Pharm. Des. 2011;17:3966–3993. doi: 10.2174/138161211798764861.
    1. De Martinis M. Apoptosis remodeling in immunosenescence: implications for strategies to delay ageing. Curr. Med. Chem. 2007;14:1389–1397. doi: 10.2174/092986707780831122.
    1. Desdín-Micó G. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science. 2020 doi: 10.1126/science.aax0860.
    1. Dikalova A.E. Mitochondrial deacetylase Sirt3 reduces vascular dysfunction and hypertension while Sirt3 depletion in essential hypertension is linked to vascular inflammation and oxidative stress. Circ. Res. 2020;126:439–452. doi: 10.1161/circresaha.119.315767.
    1. Dludla P.V. Coenzyme Q(10) supplementation improves adipokine levels and alleviates inflammation and lipid peroxidation in conditions of metabolic syndrome: a meta-analysis of randomized controlled trials. Int. J. Mol. Sci. 2020;21 doi: 10.3390/ijms21093247.
    1. Dutta S., Das N., Mukherjee P. Picking up a fight: fine tuning mitochondrial innate immune defenses against RNA viruses. Front. Microbiol. 2020;11:1990. doi: 10.3389/fmicb.2020.01990.
    1. Engin A.B., Engin E.D., Engin A. Two important controversial risk factors in SARS-CoV-2 infection: obesity and smoking. Environ. Toxicol. Pharmacol. 2020 doi: 10.1016/j.etap.2020.103411.
    1. Etard J.F. Potential lethal outbreak of coronavirus disease (COVID-19) among the elderly in retirement homes and long-term facilities, France, March 2020. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin. 2020;25 doi: 10.2807/1560-7917.ES.2020.25.15.2000448.
    1. Evans T.D. Target acquired: selective autophagy in cardiometabolic disease. Sci. Signal. 2017;10 doi: 10.1126/scisignal.aag2298.
    1. Fernandez-Ayala D.J. Survival transcriptome in the coenzyme Q10 deficiency syndrome is acquired by epigenetic modifications: a modelling study for human coenzyme Q10 deficiencies. BMJ Open. 2013;3 doi: 10.1136/bmjopen-2012-002524.
    1. Ferrucci L., Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018;15:505–522. doi: 10.1038/s41569-018-0064-2.
    1. Fischer M. Early effector maturation of naïve human CD8(+) T cells requires mitochondrial biogenesis. Eur. J. Immunol. 2018;48:1632–1643. doi: 10.1002/eji.201747443.
    1. Folkers K., Wolaniuk A. Research on coenzyme Q10 in clinical medicine and in immunomodulation. Drugs Exp. Clin. Res. 1985;11:539–545.
    1. Forte M. Pharmacological restoration of autophagy reduces hypertension-related stroke occurrence. Autophagy. 2019:1–14. doi: 10.1080/15548627.2019.1687215.
    1. Franceschi C., Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 2014;69(Suppl. 1):S4–S9. doi: 10.1093/gerona/glu057.
    1. Franceschi C. Inflammaging and 'Garb-aging'. Trends in Endocrinology and Metabolism: TEM. 2017;28:199–212. doi: 10.1016/j.tem.2016.09.005.
    1. Frasca D., Blomberg B.B. The impact of obesity and metabolic syndrome on vaccination success. Interdiscip. Top Gerontol. Geriatr. 2020;43:86–97. doi: 10.1159/000504440.
    1. Garrido A. Oxidative-inflammatory stress in immune cells from adult mice with premature aging. Int. J. Mol. Sci. 2019;20 doi: 10.3390/ijms20030769.
    1. Geerlings S.E., Hoepelman A.I. Immune dysfunction in patients with diabetes mellitus (DM) FEMS Immunol. Med. Microbiol. 1999;26:259–265. doi: 10.1111/j.1574-695X.1999.tb01397.x.
    1. Goronzy J.J., Weyand C.M. Successful and maladaptive T cell aging. Immunity. 2017;46:364–378. doi: 10.1016/j.immuni.2017.03.010.
    1. Grasselli G. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study. Lancet Respir. Med. 2020 doi: 10.1016/s2213-2600(20)30370-2.
    1. Guerrero-Ros I. The negative effect of lipid challenge on autophagy inhibits T cell responses. Autophagy. 2020;16:223–238. doi: 10.1080/15548627.2019.1606635.
    1. Haq K., McElhaney J.E. Ageing and respiratory infections: the airway of ageing. Immunol. Lett. 2014;162:323–328. doi: 10.1016/j.imlet.2014.06.009.
    1. Hegab A.E. Calorie restriction enhances adult mouse lung stem cells function and reverses several ageing-induced changes. J. Tissue Eng. Regen. Med. 2019;13:295–308. doi: 10.1002/term.2792.
    1. Heidari A. Effects of coenzyme Q10 supplementation on gene expressions related to insulin, lipid, and inflammation pathways in patients with diabetic nephropathy. Iran J Kidney Dis. 2018;12:14–21.
    1. Herb M. Mitochondrial reactive oxygen species enable proinflammatory signaling through disulfide linkage of NEMO. Sci. Signal. 2019;12 doi: 10.1126/scisignal.aar5926.
    1. Hernandez-Camacho J.D. Coenzyme Q10 supplementation in aging and disease. Front. Physiol. 2018;9:44. doi: 10.3389/fphys.2018.00044.
    1. Hu F., Liu F. Mitochondrial stress: a bridge between mitochondrial dysfunction and metabolic diseases? Cell. Signal. 2011;23:1528–1533. doi: 10.1016/j.cellsig.2011.05.008.
    1. Huang C. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395:10223. doi: 10.1016/S0140-6736(20)30183-5.
    1. Hunter D.C. Consumption of gold kiwifruit reduces severity and duration of selected upper respiratory tract infection symptoms and increases plasma vitamin C concentration in healthy older adults. Br. J. Nutr. 2012;108:1235–1245. doi: 10.1017/S0007114511006659.
    1. Jafarzadeh A. Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: lessons from SARS and MERS, and potential therapeutic interventions. Life Sci. 2020 doi: 10.1016/j.lfs.2020.118102.
    1. Janeway C.A., Jr., Medzhitov R. Innate immune recognition. Annu. Rev. Immunol. 2002;20:197–216. doi: 10.1146/annurev.immunol.20.083001.084359.
    1. Jing Y. Aging is associated with a numerical and functional decline in plasmacytoid dendritic cells, whereas myeloid dendritic cells are relatively unaltered in human peripheral blood. Human Immunology. 2009;70:777–784. doi: 10.1016/j.humimm.2009.07.005.
    1. Jolly C.A. Dietary restriction and immune function. J. Nutr. 2004;134:1853–1856. doi: 10.1093/jn/134.8.1853.
    1. Jorat M.V. The effects of coenzyme Q10 supplementation on biomarkers of inflammation and oxidative stress in among coronary artery disease: a systematic review and meta-analysis of randomized controlled trials. Inflammopharmacology. 2019;27:233–248. doi: 10.1007/s10787-019-00572-x.
    1. Julian M.W. Mitochondrial transcription factor A, an endogenous danger signal, promotes TNFα release via RAGE- and TLR9-responsive plasmacytoid dendritic cells. PLoS One. 2013;8 doi: 10.1371/journal.pone.0072354.
    1. Justiz Vaillant A.A., Jan A. StatPearls Publishing, StatPearls Publishing LLC; Treasure Island (FL): 2020. Physiology, Immune Response, StatPearls.
    1. Kalen A., Appelkvist E.L., Dallner G. Age-related changes in the lipid compositions of rat and human tissues. Lipids. 1989;24:579–584. doi: 10.1007/BF02535072.
    1. Kanigur Sultuybek G., Soydas T., Yenmis G. NF-κB as the mediator of metformin's effect on ageing and ageing-related diseases. Clin. Exp. Pharmacol. Physiol. 2019;46:413–422. doi: 10.1111/1440-1681.13073.
    1. Kelley N. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int. J. Mol. Sci. 2019;20 doi: 10.3390/ijms20133328.
    1. Kim M.J. SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy. 2016;12:1272–1291. doi: 10.1080/15548627.2016.1183081.
    1. Koenitzer J.R., Freeman B.A. Redox signaling in inflammation: interactions of endogenous electrophiles and mitochondria in cardiovascular disease. Ann. N. Y. Acad. Sci. 2010;1203:45–52. doi: 10.1111/j.1749-6632.2010.05559.x.
    1. Koga H., Kaushik S., Cuervo A.M. Altered lipid content inhibits autophagic vesicular fusion. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2010;24:3052–3065. doi: 10.1096/fj.09-144519.
    1. Koshiba T. Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling. Sci. Signal. 2011;4:ra7. doi: 10.1126/scisignal.2001147.
    1. Kwok S. Obesity: a critical risk factor in the COVID-19 pandemic. Clin. Obes. 2020 doi: 10.1111/cob.12403.
    1. Lazear H.M. IRF-3, IRF-5, and IRF-7 coordinately regulate the type I IFN response in myeloid dendritic cells downstream of MAVS signaling. PLoS Pathog. 2013;9 doi: 10.1371/journal.ppat.1003118.
    1. Lee S.H. Coenzyme Q10 exerts anti-inflammatory activity and induces Treg in graft versus host disease. J. Med. Food. 2016;19:238–244. doi: 10.1089/jmf.2015.3535.
    1. Lee S.Y. Coenzyme Q10 inhibits Th17 and STAT3 signaling pathways to ameliorate colitis in mice. J. Med. Food. 2017;20:821–829. doi: 10.1089/jmf.2016.3859.
    1. Lee J.Y., Paik I.Y., Kim J.Y. Voluntary exercise reverses immune aging induced by oxidative stress in aging mice. Exp. Gerontol. 2019;115:148–154. doi: 10.1016/j.exger.2018.08.009.
    1. Lee Y.H. β-Cell autophagy: mechanism and role in β-cell dysfunction. Mol. Metab. 2019;27s:S92–s103. doi: 10.1016/j.molmet.2019.06.014.
    1. Li S.W. SARS coronavirus papain-like protease inhibits the TLR7 signaling pathway through removing Lys63-linked Polyubiquitination of TRAF3 and TRAF6. Int. J. Mol. Sci. 2016;17 doi: 10.3390/ijms17050678.
    1. Li Q. Knockout of dihydrofolate reductase in mice induces hypertension and abdominal aortic aneurysm via mitochondrial dysfunction. Redox Biol. 2019;24 doi: 10.1016/j.redox.2019.101185.
    1. Liang S. Murine macrophage autophagy protects against alcohol-induced liver injury by degrading interferon regulatory factor 1 (IRF1) and removing damaged mitochondria. J. Biol. Chem. 2019;294:12359–12369. doi: 10.1074/jbc.RA119.007409.
    1. Lin T.A., Wu V.C., Wang C.Y. Autophagy in chronic kidney diseases. Cells. 2019;8 doi: 10.3390/cells8010061.
    1. Liu Y. SS31 ameliorates sepsis-induced heart injury by inhibiting oxidative stress and inflammation. Inflammation. 2019;42:2170–2180. doi: 10.1007/s10753-019-01081-3.
    1. Lopez-Lluch G. Essential role of mitochondrial dynamics in muscle physiology. Acta Physiol. 2017;219:20–21. doi: 10.1111/apha.12750.
    1. Lopez-Lluch G. Mitochondrial activity and dynamics changes regarding metabolism in ageing and obesity. Mech. Ageing Dev. 2017;162:108–121. doi: 10.1016/j.mad.2016.12.005.
    1. Lopez-Lluch G. Springer International Publishing; Switzerland: 2020. Coenzyme Q in Aging.
    1. Lopez-Lluch G., Navas P. Calorie restriction as an intervention in ageing. J. Physiol. 2016;594:2043–2060. doi: 10.1113/JP270543.
    1. Lopez-Lluch G. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc. Natl. Acad. Sci. U. S. A. 2006;103:1768–1773. doi: 10.1073/pnas.0510452103.
    1. Lopez-Lluch G. Is coenzyme Q a key factor in aging? Mech. Ageing Dev. 2010;131:225–235. doi: 10.1016/j.mad.2010.02.003.
    1. Lopez-Lluch G. Mitochondrial responsibility in ageing process: innocent, suspect or guilty. Biogerontology. 2015;16:599–620. doi: 10.1007/s10522-015-9585-9.
    1. Lopez-Lluch G. Mitochondrial dysfunction in metabolism and ageing: shared mechanisms and outcomes? Biogerontology. 2018;19:461–480. doi: 10.1007/s10522-018-9768-2.
    1. Lopez-Lluch G. Bioavailability of coenzyme Q10 supplements depends on carrier lipids and solubilization. Nutrition. 2019;57:133–140. doi: 10.1016/j.nut.2018.05.020.
    1. Lopez-Moreno J. Mediterranean diet supplemented with coenzyme Q10 modulates the postprandial metabolism of advanced glycation end products in elderly men and women. J. Gerontol. A Biol. Sci. Med. Sci. 2018;73:340–346. doi: 10.1093/gerona/glw214.
    1. Lumini J.A. Beneficial effects of exercise on muscle mitochondrial function in diabetes mellitus. Sports Med. 2008;38:735–750. doi: 10.2165/00007256-200838090-00003.
    1. Ma R.C.W., Holt R.I.G. COVID-19 and diabetes. Diabetic Med. J. Brit. Diabetic Assoc. 2020;37:723–725. doi: 10.1111/dme.14300.
    1. Maddaloni E., Buzzetti R. Covid-19 and diabetes mellitus: unveiling the interaction of two pandemics. Diabetes Metab. Res. Rev. 2020 doi: 10.1002/dmrr.3321.
    1. van der Made C.I. Presence of genetic variants among young men with severe COVID-19. Jama. 2020;324:1–11. doi: 10.1001/jama.2020.13719.
    1. Malavolta M. Exploring the relevance of senotherapeutics for the current SARS-CoV-2 emergency and similar future global health threats. Cells. 2020;9 doi: 10.3390/cells9040909.
    1. Mantle D., Hargreaves I. Coenzyme Q10 and degenerative disorders affecting longevity: an overview. Antioxidants. 2019;8 doi: 10.3390/antiox8020044.
    1. Mau T. Life-span extension drug interventions affect adipose tissue inflammation in aging. J. Gerontol. A Biol. Sci. Med. Sci. 2020;75:89–98. doi: 10.1093/gerona/glz177.
    1. Mauvais-Jarvis F. Aging, male sex, obesity, and metabolic inflammation create the perfect storm for COVID-19. Diabetes. 2020;69:1857–1863. doi: 10.2337/dbi19-0023.
    1. McGettrick A.F., O'Neill L.A.J. The role of HIF in immunity and inflammation. Cell Metab. 2020 doi: 10.1016/j.cmet.2020.08.002.
    1. McGuire P.J. Mitochondrial dysfunction and the aging immune system. Biology (Basel) 2019;8 doi: 10.3390/biology8020026.
    1. McMaster W.G. Inflammation, immunity, and hypertensive end-organ damage. Circ. Res. 2015;116:1022–1033. doi: 10.1161/circresaha.116.303697.
    1. Menendez J.A. Metformin and SARS-CoV-2: mechanistic lessons on air pollution to weather the cytokine/thrombotic storm in COVID-19. Aging (Albany NY) 2020;12:8760–8765. doi: 10.18632/aging.103347.
    1. Messaoudi I. Delay of T cell senescence by caloric restriction in aged long-lived nonhuman primates. Proc. Natl. Acad. Sci. U. S. A. 2006;103:19448–19453. doi: 10.1073/pnas.0606661103.
    1. Miranda D. Deficient mitochondrial biogenesis in IL-2 activated NK cells correlates with impaired PGC1-alpha upregulation in elderly humans. Exp. Gerontol. 2018;110:73–78. doi: 10.1016/j.exger.2018.05.014.
    1. Mischel N.A. (In)activity-related neuroplasticity in brainstem control of sympathetic outflow: unraveling underlying molecular, cellular, and anatomical mechanisms. Am. J. Physiol. Heart Circ. Physiol. 2015;309:H235–H243. doi: 10.1152/ajpheart.00929.2014.
    1. Missiroli S. The role of mitochondria in inflammation: from cancer to neurodegenerative disorders. J. Clin. Med. 2020;9 doi: 10.3390/jcm9030740.
    1. Mitchell S.J. Daily fasting improves health and survival in male mice independent of diet composition and calories. Cell Metab. 2019;29:221–228. doi: 10.1016/j.cmet.2018.08.011. e223.
    1. Molony R.D. Aging impairs both primary and secondary RIG-I signaling for interferon induction in human monocytes. Sci. Signal. 2017;10 doi: 10.1126/scisignal.aan2392.
    1. Montecino-Rodriguez E., Berent-Maoz B., Dorshkind K. Causes, consequences, and reversal of immune system aging. The Journal of Clinical Investigation. 2013;123:958–965. doi: 10.1172/JCI64096.
    1. Moore J.B., June C.H. Cytokine release syndrome in severe COVID-19. Science. 2020;368:473–474. doi: 10.1126/science.abb8925.
    1. Morciano G. Mitophagy in cardiovascular diseases. J. Clin. Med. 2020;9 doi: 10.3390/jcm9030892.
    1. Moro L. Mitochondrial dysfunction in aging and cancer. J. Clin. Med. 2019;8 doi: 10.3390/jcm8111983.
    1. Mouton A.J. Obesity, hypertension, and cardiac dysfunction: novel roles of immunometabolism in macrophage activation and inflammation. Circ. Res. 2020;126:789–806. doi: 10.1161/circresaha.119.312321.
    1. Munguia L. High flavonoid cocoa supplement ameliorates plasma oxidative stress and inflammation levels while improving mobility and quality of life in older subjects: a double-blind randomized clinical trial. J. Gerontol. A Biol. Sci. Med. Sci. 2019;74:1620–1627. doi: 10.1093/gerona/glz107.
    1. Nakahira K. Autophagy: a crucial moderator of redox balance, inflammation, and apoptosis in lung disease. Antioxid. Redox Signal. 2014;20:474–494. doi: 10.1089/ars.2013.5373.
    1. Natarajan V. Mitochondrial dysfunction in age-related metabolic disorders. Proteomics. 2020;20 doi: 10.1002/pmic.201800404.
    1. Nishiga M. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat. Rev. Cardiol. 2020;17:543–558. doi: 10.1038/s41569-020-0413-9.
    1. Novoselova E.G. Naturally occurring antioxidant nutrients reduce inflammatory response in mice. Eur. J. Pharmacol. 2009;615:234–240. doi: 10.1016/j.ejphar.2009.05.004.
    1. Olcum M. Phytochemicals and NLRP3 inflammasome inhibitory effects of phytochemicals on NLRP3 inflammasome activation: a review. Phytomedicine. 2020 doi: 10.1016/j.phymed.2020.153238.
    1. Orekhov A.N. Possible role of mitochondrial DNA mutations in chronification of inflammation: focus on atherosclerosis. J. Clin. Med. 2020;9 doi: 10.3390/jcm9040978.
    1. Pagliaro P. Is macrophages heterogeneity important in determining COVID-19 lethality? Med. Hypotheses. 2020;143 doi: 10.1016/j.mehy.2020.110073.
    1. Pal R., Bhansali A. COVID-19, diabetes mellitus and ACE2: the conundrum. Diabetes Res. Clin. Pract. 2020;162 doi: 10.1016/j.diabres.2020.108132.
    1. Paladino R.A. Resveratrol reverses the effect of TNF-α on inflammatory markers in a model of autoimmune uveitis. Eur. J. Integr. Med. 2020;36 doi: 10.1016/j.eujim.2020.101137.
    1. Pangrazzi L., Weinberger B. T cells, aging and senescence. Exp. Gerontol. 2020;134 doi: 10.1016/j.exger.2020.110887.
    1. Parker D. Age-related adverse inflammatory and metabolic changes begin early in adulthood. J. Gerontol. A Biol. Sci. Med. Sci. 2019;74:283–289. doi: 10.1093/gerona/gly121.
    1. Parmigiani A. Impaired antibody response to influenza vaccine in HIV-infected and uninfected aging women is associated with immune activation and inflammation. PLoS One. 2013;8 doi: 10.1371/journal.pone.0079816.
    1. Pasquarelli-do-Nascimento G. Hypercoagulopathy and adipose tissue exacerbated inflammation may explain higher mortality in COVID-19 patients with obesity. Front. Endocrinol. (Lausanne) 2020;11:530. doi: 10.3389/fendo.2020.00530.
    1. Pence B.D., Yarbro J.R. Aging impairs mitochondrial respiratory capacity in classical monocytes. Exp. Gerontol. 2018;108:112–117. doi: 10.1016/j.exger.2018.04.008.
    1. Pinti M. Circulating mitochondrial DNA increases with age and is a familiar trait: implications for “inflamm-aging”. Eur. J. Immunol. 2014;44:1552–1562. doi: 10.1002/eji.201343921.
    1. Pirola C.J., Sookoian S. Age but not sex may explain the negative effect of arterial hypertension and diabetes on COVID-19 prognosis. The Journal of Infection. 2020 doi: 10.1016/j.jinf.2020.05.010.
    1. Prasun P. Mitochondrial dysfunction in metabolic syndrome. Biochim. Biophys. Acta Mol. Dis. 2020 doi: 10.1016/j.bbadis.2020.165838.
    1. Promislow D.E.L. A geroscience perspective on COVID-19 mortality. J. Gerontol. A Biol. Sci. Med. Sci. 2020 doi: 10.1093/gerona/glaa094.
    1. Proudfoot A.E. Chemokine receptors: multifaceted therapeutic targets. Nat. Rev. Immunol. 2002;2:106–115. doi: 10.1038/nri722.
    1. Rahmani H. Interferon β-1b in treatment of severe COVID-19: a randomized clinical trial. Int. Immunopharmacol. 2020;88 doi: 10.1016/j.intimp.2020.106903.
    1. Ramaiah M.J. mTOR inhibition and p53 activation, microRNAs: the possible therapy against pandemic COVID-19. Gene Rep. 2020;20 doi: 10.1016/j.genrep.2020.100765.
    1. Raz Y. Activation-induced autophagy is preserved in CD4+ T-cells in familial longevity. J. Gerontol. A Biol. Sci. Med. Sci. 2017;72:1201–1206. doi: 10.1093/gerona/glx020.
    1. Riou M. New insights into the implication of mitochondrial dysfunction in tissue, peripheral blood mononuclear cells, and platelets during lung diseases. J. Clin. Med. 2020;9 doi: 10.3390/jcm9051253.
    1. Rodríguez C.P. Peripheral lymphocytes, obesity, and metabolic syndrome in young adults: an immunometabolism study. Metab. Syndr. Relat. Disord. 2018;16:342–349. doi: 10.1089/met.2018.0005.
    1. Rodriguez-Bies E. Muscle physiology changes induced by every other day feeding and endurance exercise in mice: effects on physical performance. PLoS One. 2010;5 doi: 10.1371/journal.pone.0013900.
    1. Rodriguez-Bies E., Navas P., Lopez-Lluch G. Age-dependent effect of every-other-day feeding and aerobic exercise in ubiquinone levels and related antioxidant activities in mice muscle. J. Gerontol. A Biol. Sci. Med. Sci. 2015;70:33–43. doi: 10.1093/gerona/glu002.
    1. Rodriguez-Navarro J.A. Inhibitory effect of dietary lipids on chaperone-mediated autophagy. Proc. Natl. Acad. Sci. U. S. A. 2012;109:E705–E714. doi: 10.1073/pnas.1113036109.
    1. Ron-Harel N. Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation. Cell Metab. 2016;24:104–117. doi: 10.1016/j.cmet.2016.06.007.
    1. Roshanravan N. Targeting cytokine storm to manage patients with COVID-19: a mini-review. Arch. Med. Res. 2020 doi: 10.1016/j.arcmed.2020.06.012.
    1. Rothan H.A., Byrareddy S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020;109 doi: 10.1016/j.jaut.2020.102433.
    1. Roth-Cross J.K. Inhibition of the alpha/beta interferon response by mouse hepatitis virus at multiple levels. J. Virol. 2007;81:7189–7199. doi: 10.1128/jvi.00013-07.
    1. Roy S., Mazumder T., Banik S. The Association of Cardiovascular Diseases and Diabetes Mellitus with COVID-19 (SARS-CoV-2) and their possible mechanisms. SN Compr. Clin. Med. 2020:1–6. doi: 10.1007/s42399-020-00376-z.
    1. Ruan Q. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Medicine. 2020;46:846–848. doi: 10.1007/s00134-020-05991-x.
    1. Russo G.L. Mechanisms of aging and potential role of selected polyphenols in extending healthspan. Biochem. Pharmacol. 2020;173 doi: 10.1016/j.bcp.2019.113719.
    1. Ryter S.W., Choi A.M. Autophagy in lung disease pathogenesis and therapeutics. Redox Biol. 2015;4:215–225. doi: 10.1016/j.redox.2014.12.010.
    1. Sandhir R., Halder A., Sunkaria A. Mitochondria as a centrally positioned hub in the innate immune response. Biochim. Biophys. Acta. Mol. Dis. 2017;1863:1090–1097. doi: 10.1016/j.bbadis.2016.10.020.
    1. Schmelzer C. Supplementation with the reduced form of coenzyme Q10 decelerates phenotypic characteristics of senescence and induces a peroxisome proliferator-activated receptor-alpha gene expression signature in SAMP1 mice. Mol. Nutr. Food Res. 2010;54:805–815. doi: 10.1002/mnfr.200900155.
    1. Sellami M. Effects of acute and chronic exercise on immunological parameters in the elderly aged: can physical activity counteract the effects of aging? Front. Immunol. 2018;9:2187. doi: 10.3389/fimmu.2018.02187.
    1. Seth R.B. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell. 2005;122:669–682. doi: 10.1016/j.cell.2005.08.012.
    1. Shally A., McDonagh B. The redox environment and mitochondrial dysfunction in age-related skeletal muscle atrophy. Biogerontology. 2020;21:461–473. doi: 10.1007/s10522-020-09879-7.
    1. Shemiakova T. Mitochondrial dysfunction and DNA damage in the context of pathogenesis of atherosclerosis. Biomedicines. 2020;8 doi: 10.3390/biomedicines8060166.
    1. Shimizu M. Low circulating coenzyme Q10 during acute phase is associated with inflammation, malnutrition, and in-hospital mortality in patients admitted to the coronary care unit. Heart Vessel. 2017;32:668–673. doi: 10.1007/s00380-016-0923-x.
    1. Sims C.A. Nicotinamide mononucleotide preserves mitochondrial function and increases survival in hemorrhagic shock. JCI Insight. 2018;3 doi: 10.1172/jci.insight.120182.
    1. Skuratovskaia D. Mitochondrial destiny in type 2 diabetes: the effects of oxidative stress on the dynamics and biogenesis of mitochondria. PeerJ. 2020;8 doi: 10.7717/peerj.9741.
    1. Spiegel M. Inhibition of Beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3. J. Virol. 2005;79:2079–2086. doi: 10.1128/jvi.79.4.2079-2086.2005.
    1. Stead E.R. Agephagy - adapting autophagy for health during aging. Front. Cell Develop. Biol. 2019;7:308. doi: 10.3389/fcell.2019.00308.
    1. Stefan N. Obesity and impaired metabolic health in patients with COVID-19. Nat. Rev. Endocrinol. 2020;16:341–342. doi: 10.1038/s41574-020-0364-6.
    1. Stigger F.S. Effects of exercise on inflammatory, oxidative, and neurotrophic biomarkers on cognitively impaired individuals diagnosed with dementia or mild cognitive impairment: a systematic review and meta-analysis. J. Gerontol. A Biol. Sci. Med. Sci. 2019;74:616–624. doi: 10.1093/gerona/gly173.
    1. Suárez-Rivero J.M. Atherosclerosis and coenzyme Q(10) Int. J. Mol. Sci. 2019:20. doi: 10.3390/ijms20205195.
    1. Sun L. Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling. PLoS One. 2012;7 doi: 10.1371/journal.pone.0030802.
    1. Sun L. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339:786–791. doi: 10.1126/science.1232458.
    1. Tang D. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol. Rev. 2012;249:158–175. doi: 10.1111/j.1600-065X.2012.01146.x.
    1. Tannahill G.M. Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature. 2013;496:238–242. doi: 10.1038/nature11986.
    1. Tarasenko T.N. Cytochrome c oxidase activity is a metabolic checkpoint that regulates cell fate decisions during T cell activation and differentiation. Cell Metab. 2017;25:1254–1268. doi: 10.1016/j.cmet.2017.05.007. e1257.
    1. Tavernarakis N. Inflammation brakes mitochondrial metabolism in obesity. Nat. Immunol. 2020;21:1143–1145. doi: 10.1038/s41590-020-0780-8.
    1. Teijaro J.R. Mapping the innate signaling cascade essential for cytokine storm during influenza virus infection. Proc. Natl. Acad. Sci. U. S. A. 2014;111:3799–3804. doi: 10.1073/pnas.1400593111.
    1. Ten V.S., Ratner V. Mitochondrial bioenergetics and pulmonary dysfunction: current progress and future directions. Paediatr. Respir. Rev. 2020;34:37–45. doi: 10.1016/j.prrv.2019.04.001.
    1. Thompson M.R. Pattern recognition receptors and the innate immune response to viral infection. Viruses. 2011;3:920–940. doi: 10.3390/v3060920.
    1. To E.E. Mitochondrial reactive oxygen species contribute to pathological inflammation during influenza A virus infection in mice. Antioxid. Redox Signal. 2020;32:929–942. doi: 10.1089/ars.2019.7727.
    1. Tosti V., Bertozzi B., Fontana L. Health benefits of the Mediterranean diet: metabolic and molecular mechanisms. J. Gerontol. A Biol. Sci. Med. Sci. 2018;73:318–326. doi: 10.1093/gerona/glx227.
    1. Tumova L. Azorella compacta infusion activates human immune cells and scavenges free radicals in vitro. Pharmacogn. Mag. 2017;13:260–264. doi: 10.4103/0973-1296.204558.
    1. Tung B.T. Modulation of endogenous antioxidant activity by resveratrol and exercise in mouse liver is age dependent. J. Gerontol. A Biol. Sci. Med. Sci. 2014;69:398–409. doi: 10.1093/gerona/glt102.
    1. Tung B.T. Anti-inflammatory effect of resveratrol in old mice liver. Exp. Gerontol. 2015;64:1–7. doi: 10.1016/j.exger.2015.02.004.
    1. Turner J.E. Is immunosenescence influenced by our lifetime “dose” of exercise? Biogerontology. 2016;17:581–602. doi: 10.1007/s10522-016-9642-z.
    1. Velazquez-Salinas L. The role of interleukin 6 during viral infections. Front. Microbiol. 2019;10:1057. doi: 10.3389/fmicb.2019.01057.
    1. Veloso C.D. A mitochondrial approach to cardiovascular risk and disease. Curr. Pharm. Des. 2019;25:3175–3194. doi: 10.2174/1389203720666190830163735.
    1. Vetvicka V., Vetvickova J. Combination therapy with glucan and coenzyme Q10 in murine experimental autoimmune disease and cancer. Anticancer Res. 2018;38:3291–3297. doi: 10.21873/anticanres.12594.
    1. Weinberg S.E., Sena L.A., Chandel N.S. Mitochondria in the regulation of innate and adaptive immunity. Immunity. 2015;42:406–417. doi: 10.1016/j.immuni.2015.02.002.
    1. van der Windt G.J. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl. Acad. Sci. U. S. A. 2013;110:14336–14341. doi: 10.1073/pnas.1221740110.
    1. de Wit E. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2016;14:523–534. doi: 10.1038/nrmicro.2016.81.
    1. Wu Y., Chen M., Jiang J. Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion. 2019;49:35–45. doi: 10.1016/j.mito.2019.07.003.
    1. Xu Y., Shen J., Ran Z. Emerging views of mitophagy in immunity and autoimmune diseases. Autophagy. 2020;16:3–17. doi: 10.1080/15548627.2019.1603547.
    1. Yamaguchi O. Autophagy in the heart. Circ. J. 2019;83:697–704. doi: 10.1253/circj.CJ-18-1065.
    1. Yang H., Youm Y.H., Dixit V.D. Inhibition of thymic adipogenesis by caloric restriction is coupled with reduction in age-related thymic involution. J. Immunol. 2009;183:3040–3052. doi: 10.4049/jimmunol.0900562.
    1. Yang X. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet. Respiratory medicine. 2020;8:475–481. doi: 10.1016/S2213-2600(20)30079-5.
    1. Yao Z. Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease. Neurosci. Lett. 2017;647:133–140. doi: 10.1016/j.neulet.2017.03.027.
    1. Yuan J. Dietary intake of resveratrol enhances the adaptive immunity of aged rats. Rejuvenation Res. 2012;15:507–515. doi: 10.1089/rej.2012.1321.
    1. Yuan Y. Mitochondrial ROS-induced lysosomal dysfunction impairs autophagic flux and contributes to M1 macrophage polarization in a diabetic condition. Clin. Sci. 2019;133:1759–1777. doi: 10.1042/CS20190672.
    1. Yubero-Serrano E.M. Mediterranean diet supplemented with coenzyme Q10 modifies the expression of proinflammatory and endoplasmic reticulum stress-related genes in elderly men and women. J. Gerontol. A Biol. Sci. Med. Sci. 2012;67:3–10. doi: 10.1093/gerona/glr167.
    1. Zaki N., Alashwal H., Ibrahim S. Association of hypertension, diabetes, stroke, cancer, kidney disease, and high-cholesterol with COVID-19 disease severity and fatality: a systematic review. Diabetes Metab. Syndrome. 2020;14:1133–1142. doi: 10.1016/j.dsx.2020.07.005.
    1. Zhai J. Effects of coenzyme Q10 on markers of inflammation: a systematic review and meta-analysis. PLoS One. 2017;12 doi: 10.1371/journal.pone.0170172.
    1. Zhang L. Decreasing pro-inflammatory cytokine and reversing the immunosenescence with extracts of Pu-erh tea in senescence accelerated mouse (SAM) Food Chem. 2012;135:2222–2228. doi: 10.1016/j.foodchem.2012.07.033.
    1. Zhang R. Short-term administration of nicotinamide mononucleotide preserves cardiac mitochondrial homeostasis and prevents heart failure. J. Mol. Cell. Cardiol. 2017;112:64–73. doi: 10.1016/j.yjmcc.2017.09.001.
    1. Zhang Q. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370 doi: 10.1126/science.abd4570.
    1. Zheng H.Y. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cellular & Molecular Immunology. 2020 doi: 10.1038/s41423-020-0401-3.
    1. Zheng M. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cellular & molecular immunology. 2020;17:533–535. doi: 10.1038/s41423-020-0402-2.
    1. Zheng Z. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. The Journal of Infection. 2020 doi: 10.1016/j.jinf.2020.04.021.
    1. Zhao C., Zhao W. NLRP3 inflammasome-a key player in antiviral responses. Front. Immunol. 2020;11:211. doi: 10.3389/fimmu.2020.00211.
    1. Zhong Z. NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell. 2016;164:896–910. doi: 10.1016/j.cell.2015.12.057.
    1. Zhou Y. Post-translational regulation of antiviral innate signaling. Eur. J. Immunol. 2017;47:1414–1426. doi: 10.1002/eji.201746959.
    1. Zhou F. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–1062. doi: 10.1016/S0140-6736(20)30566-3.
    1. Zhou P. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7.
    1. Zust R. Ribose 2'-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat. Immunol. 2011;12:137–143. doi: 10.1038/ni.1979.

Source: PubMed

3
購読する