Vaccinia-based oncolytic immunotherapy Pexastimogene Devacirepvec in patients with advanced hepatocellular carcinoma after sorafenib failure: a randomized multicenter Phase IIb trial (TRAVERSE)

M Moehler, J Heo, H C Lee, W Y Tak, Y Chao, S W Paik, H J Yim, K S Byun, A Baron, G Ungerechts, D Jonker, L Ruo, M Cho, A Kaubisch, H Wege, P Merle, O Ebert, F Habersetzer, J F Blanc, Olivier Rosmorduc, R Lencioni, R Patt, A M Leen, F Foerster, M Homerin, N Stojkowitz, M Lusky, J M Limacher, M Hennequi, N Gaspar, B McFadden, N De Silva, D Shen, A Pelusio, D H Kirn, C J Breitbach, J M Burke, M Moehler, J Heo, H C Lee, W Y Tak, Y Chao, S W Paik, H J Yim, K S Byun, A Baron, G Ungerechts, D Jonker, L Ruo, M Cho, A Kaubisch, H Wege, P Merle, O Ebert, F Habersetzer, J F Blanc, Olivier Rosmorduc, R Lencioni, R Patt, A M Leen, F Foerster, M Homerin, N Stojkowitz, M Lusky, J M Limacher, M Hennequi, N Gaspar, B McFadden, N De Silva, D Shen, A Pelusio, D H Kirn, C J Breitbach, J M Burke

Abstract

Pexastimogene devacirepvec (Pexa-Vec) is a vaccinia virus-based oncolytic immunotherapy designed to preferentially replicate in and destroy tumor cells while stimulating anti-tumor immunity by expressing GM-CSF. An earlier randomized Phase IIa trial in predominantly sorafenib-naïve hepatocellular carcinoma (HCC) demonstrated an overall survival (OS) benefit. This randomized, open-label Phase IIb trial investigated whether Pexa-Vec plus Best Supportive Care (BSC) improved OS over BSC alone in HCC patients who failed sorafenib therapy (TRAVERSE). 129 patients were randomly assigned 2:1 to Pexa-Vec plus BSC vs. BSC alone. Pexa-Vec was given as a single intravenous (IV) infusion followed by up to 5 IT injections. The primary endpoint was OS. Secondary endpoints included overall response rate (RR), time to progression (TTP) and safety. A high drop-out rate in the control arm (63%) confounded assessment of response-based endpoints. Median OS (ITT) for Pexa-Vec plus BSC vs. BSC alone was 4.2 and 4.4 months, respectively (HR, 1.19, 95% CI: 0.78-1.80; p = .428). There was no difference between the two treatment arms in RR or TTP. Pexa-Vec was generally well-tolerated. The most frequent Grade 3 included pyrexia (8%) and hypotension (8%). Induction of immune responses to vaccinia antigens and HCC associated antigens were observed. Despite a tolerable safety profile and induction of T cell responses, Pexa-Vec did not improve OS as second-line therapy after sorafenib failure. The true potential of oncolytic viruses may lie in the treatment of patients with earlier disease stages which should be addressed in future studies. ClinicalTrials.gov: NCT01387555.

Keywords: Hepatocellular carcinoma; Pexa-Vec; oncolytic immunotherapy; oncolytic vaccinia; sorafenib.

Figures

Figure 1.
Figure 1.
CONSORT diagram of sorafenib-pretreated patients with advanced hepatocellular carcinoma in the TRAVERSE study.
Figure 2.
Figure 2.
Kaplan-Meier estimates overall survival (OS). OS was computed on all randomized patients. Those patients who had not died or were lost to follow-up at the time of database lock were censored on the last date on which they were known to be alive.
Figure 3.
Figure 3.
Overall survival in selected subsets. Hep B, hepatitis B; Hep C, hepatitis C; EtOH, alcohol, NASH, non-alcoholic steatohepatitis; HR, hazard ratio; LCL lower control limit; UCL, upper control limit.
Figure 4.
Figure 4.
Patient 211–001 exhibited a response to Pexa-Vec treatment in the injected tumor as demonstrated by CT scans of this patient before (baseline), during (intervention) and 23 weeks after treatment showing a strong reduction in the extent of the tumor at week 23.
Figure 5.
Figure 5.
ELISPOT analysis of immune response to vaccinia, β-galactosidase and tumor antigens before (pre-dose) and 6 weeks after treatment (post-dose). Detection of T-cells specific for (a) vaccinia and (c) β-galactosidase peptides for all evaluable patients treated with Pexa-Vec (23 patients for vaccinia [A] and 22 patients for β-galactosidase [C]) and for 10 patients in the control arm (b = vaccinia and d = β-galactosidase peptides) is shown. The y axis represents the SFC/2x10E05 of the sample normalized by subtracting the respective negative pool (NC). The grey diamonds represent the 95% confidence interval. The data points depicted with an x indicate that one of the replicate values for either the sample or the respective negative pool was missing. (e) Detection of T-cells specific for tumor-associated antigen peptides for two patients with detectable responses against MAGE-A1 and MAGE-A3, respectively. Detection of T-cells specific for HCV peptides in HCV positive patients (Supplementary Figure).

References

    1. GLOBOCAN Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012; 2012. doi:10.1094/PDIS-11-11-0999-PDN
    1. El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142:1264. doi:10.1053/j.gastro.2011.12.061.
    1. Wilhelm SM, Carter C, Tang L, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64:7099–7109. doi:10.1158/0008-5472.CAN-04-1443.
    1. Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther. 2008;7:3129–3140. doi:10.1158/1535-7163.MCT-08-0013.
    1. Kudo M, Finn RS, Qin S, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018;391:1163–1173. doi:10.1016/S0140-6736(18)30207-1.
    1. Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–390. doi:10.1056/NEJMoa0708857.
    1. Cheng AL, Kang YK, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10:25–34. doi:10.1016/S1470-2045(08)70285-7.
    1. Lencioni R, Kudo M, Ye SL, et al. First interim analysis of the GIDEON (Global Investigation of therapeutic decisions in hepatocellular carcinoma and of its treatment with sorafeNib) non-interventional study. Int J Clin Pract. 2012;66:675–683. doi:10.1111/j.1742-1241.2012.02940.x.
    1. Lencioni R. New data supporting modified RECIST (mRECIST) for hepatocellular carcinoma. Clin Cancer Res. 2013;19:1312–1314. doi:10.1158/1078-0432.CCR-12-3796.
    1. Llovet JM, Di Bisceglie AM, Bruix J, et al. Design and endpoints of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst. 2008;100:698–711. doi:10.1093/jnci/djn134.
    1. Kang YK, Yau T, Park JW, et al. Randomized phase II study of axitinib versus placebo plus best supportive care in second-line treatment of advanced hepatocellular carcinoma. Ann Oncol. 2015;26:2457–2463. doi:10.1093/annonc/mdv388.
    1. Llovet JM, Decaens T, Raoul JL, et al. Brivanib in patients with advanced hepatocellular carcinoma who were intolerant to Sorafenib or for whom Sorafenib failed: results from the randomized phase III BRISK-PS study. J Clin Oncol. 2013;31:3509. doi:10.1200/JCO.2013.49.0219.
    1. Zhu AX, Park JO, Ryoo BY, et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2015;16:859–870. doi:10.1016/S1470-2045(15)00050-9.
    1. Abou-Alfa GK, Meyer T, Cheng AL, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med. 2018;379:54–63. doi:10.1056/NEJMoa1717002.
    1. Bruix J, Qin SK, Merle P, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389:56–66. doi:10.1016/S0140-6736(16)32453-9.
    1. El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389:2492–2502. doi:10.1016/S0140-6736(17)31046-2.
    1. Zhu AX, Finn RS, Edeline J, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018;19:940–952. doi:10.1016/S1470-2045(18)30351-6.
    1. Zhu AX, Kang YK, Yen CJ, et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased alpha-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20:282–296. doi:10.1016/S1470-2045(18)30937-9.
    1. Finn RS, Chan SL, Zhu AX, et al. KEYNOTE-240: randomized phase III study of pembrolizumab versus best supportive care for second-line advanced hepatocellular carcinoma. J Clin Oncol. 2017;35(4_suppl):TPS503-TPS503.
    1. Bell J, McFadden G. Viruses for tumor therapy. Cell Host Microbe. 2014;15:260–265. doi:10.1016/j.chom.2014.01.002.
    1. Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy. Nat Biotechnol. 2012;30:658–670. doi:10.1038/nbt.2287.
    1. Kirn DH, Thorne SH. Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat Rev Cancer. 2009;9:64–71. doi:10.1038/nrc2545.
    1. Moehler M, Goepfert K, Heinrich B, Breitbach CJ, Delic M, Galle PR, Rommelaere J. Oncolytic virotherapy as emerging immunotherapeutic modality: potential of parvovirus h-1. Front Oncol. 2014;4:92. doi:10.3389/fonc.2014.00092.
    1. Lichty BD, Breitbach CJ, Stojdl DF, Bell JC. Going viral with cancer immunotherapy. Nat Rev Cancer. 2014;14:559–567. doi:10.1038/nrc3770.
    1. Kim JH, Oh JY, Park BH, et al. Systemic armed oncolytic and immunologic therapy for cancer with JX-594, a targeted poxvirus expressing GM-CSF. Mol Ther. 2006;14:361–370. doi:10.1016/j.ymthe.2006.05.008.
    1. Parato KA, Breitbach CJ, Le Boeuf F, et al. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Mol Ther. 2012 Apr;20(4):749–758.
    1. Breitbach CJ, Arulanandam R, De Silva N, et al. Oncolytic vaccinia virus disrupts tumor-associated vasculature in humans. Cancer Res. 2013;73:1265–1275. doi:10.1158/0008-5472.CAN-12-2687.
    1. Heo J, Reid T, Ruo L, et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med. 2013;19:329–336. doi:10.1038/nm.3089.
    1. Andtbacka RH, Kaufman HL, Collichio F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33:2780–2788. doi:10.1200/JCO.2014.58.3377.
    1. Chen HS, Qin LL, Cong X, et al. Expression of tumor-specific cancer/testis antigens in hepatocellular carcinoma. Zhonghua Gan Zang Bing Za Zhi. 2003;11:145–148.
    1. Zhao L, Mou DC, Leng XS, Peng J-R, Wang W-X, Huang L, Li S, Zhu J-Y. Expression of cancer-testis antigens in hepatocellular carcinoma. World J Gastroenterol. 2004;10:2034–2038. doi:10.3748/wjg.v10.i14.2034.
    1. Zhao X, Ogunwobi OO, Liu C, Gaetano C. Survivin inhibition is critical for Bcl-2 inhibitor-induced apoptosis in hepatocellular carcinoma cells. PLoS One. 2011;6:e21980. doi:10.1371/journal.pone.0021980.
    1. Worns MA, Galle PR. HCC therapies–lessons learned. Nat Rev Gastroenterol Hepatol. 2014;11:447–452. doi:10.1038/nrgastro.2014.10.
    1. Ringelhan M, Pfister D, O’Connor T, Pikarsky E, Heikenwalder M. The immunology of hepatocellular carcinoma. Nat Immunol. 2018;19:222–232. doi:10.1038/s41590-018-0044-z.
    1. Sia D, Jiao Y, Martinez-Quetglas I, et al. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology. 2017;153:812–826. doi:10.1053/j.gastro.2017.06.007.
    1. Foerster F, Hess M, Gerhold-Ay A, Marquardt JU, Becker D, Galle PR, Schuppan D, Binder H, Bockamp E. The immune contexture of hepatocellular carcinoma predicts clinical outcome. Sci Rep. 2018;8. doi:10.1038/s41598-018-21937-2.
    1. Liu TC, Hwang T, Park BH, Bell J, Kirn DH. The targeted oncolytic poxvirus JX-594 demonstrates antitumoral, antivascular, and anti-HBV activities in patients with hepatocellular carcinoma. Mol Ther. 2008;16:1637–1642. doi:10.1038/mt.2008.143.
    1. Zhu AX, Kudo M, Assenat E, et al. Effect of everolimus on survival in advanced hepatocellular carcinoma after failure of sorafenib: the EVOLVE-1 randomized clinical trial. Jama. 2014;312:57–67. doi:10.1001/jama.2014.7189.
    1. Moehler MH, Zeidler M, Wilsberg V, Cornelis JJ, Woelfel T, Rommelaere J, Galle PR, Heike M. Parvovirus H-1-induced tumor cell death enhances human immune response in vitro via increased phagocytosis, maturation, and cross-presentation by dendritic cells. Hum Gene Ther. 2005;16:996–1005. doi:10.1089/hum.2005.16.996.
    1. Sieben M, Schafer P, Dinsart C, Galle PR, Moehler M. Activation of the human immune system via toll-like receptors by the oncolytic parvovirus H-1. Int J Cancer. 2013;132:2548–2556. doi:10.1002/ijc.27938.
    1. Kim MK, Breitbach CJ, Moon A, et al. Oncolytic and immunotherapeutic vaccinia induces antibody-mediated complement-dependent cancer cell lysis in humans. Sci Transl Med. 2013;(5):185ra163.
    1. Moehler M, Delic M, Goepfert K, et al. Immunotherapy in gastrointestinal cancer: recent results, current studies and future perspectives. Eur J Cancer. 2016;59:160–170. doi:10.1016/j.ejca.2016.02.020.
    1. Duffy AG, Ulahannan SV, Makorova-Rusher O, et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol. 2017;66:545–551. doi:10.1016/j.jhep.2016.10.029.
    1. Sangro B, Gomez-Martin C, de la Mata M, et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol. 2013;59:81–88. doi:10.1016/j.jhep.2013.02.022.
    1. European Association for Study of L, European Organisation for R, Treatment of C EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. Eur J Cancer. 2012;48:599–641. doi:10.1016/j.ejca.2011.12.021.
    1. Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis. 2010;30:52–60. doi:10.1055/s-0030-1247132.
    1. Jd Wolchok, Hoos A, O’Day S, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15:7412–7420. doi:10.1158/1078-0432.CCR-09-1624.
    1. Koren E, Smith HW, Shores E, et al. Recommendations on risk-based strategies for detection and characterization of antibodies against biotechnology products. J Immunol Methods. 2008;333:1–9. doi:10.1016/j.jim.2008.01.001.

Source: PubMed

3
購読する