Spinal Control of Locomotion: Individual Neurons, Their Circuits and Functions

Marie-Pascale Côté, Lynda M Murray, Maria Knikou, Marie-Pascale Côté, Lynda M Murray, Maria Knikou

Abstract

Systematic research on the physiological and anatomical characteristics of spinal cord interneurons along with their functional output has evolved for more than one century. Despite significant progress in our understanding of these networks and their role in generating and modulating movement, it has remained a challenge to elucidate the properties of the locomotor rhythm across species. Neurophysiological experimental evidence indicates similarities in the function of interneurons mediating afferent information regarding muscle stretch and loading, being affected by motor axon collaterals and those mediating presynaptic inhibition in animals and humans when their function is assessed at rest. However, significantly different muscle activation profiles are observed during locomotion across species. This difference may potentially be driven by a modified distribution of muscle afferents at multiple segmental levels in humans, resulting in an altered interaction between different classes of spinal interneurons. Further, different classes of spinal interneurons are likely activated or silent to some extent simultaneously in all species. Regardless of these limitations, continuous efforts on the function of spinal interneuronal circuits during mammalian locomotion will assist in delineating the neural mechanisms underlying locomotor control, and help develop novel targeted rehabilitation strategies in cases of impaired bipedal gait in humans. These rehabilitation strategies will include activity-based therapies and targeted neuromodulation of spinal interneuronal circuits via repetitive stimulation delivered to the brain and/or spinal cord.

Keywords: interneurons; locomotion; motoneurons; spinal neural circuits; spinal reflexes.

Figures

FIGURE 1
FIGURE 1
Spinal interneuronal circuits. Wiring diagram reflecting the connections of the monosynaptic Ia excitation, polysynaptic group II excitation, reciprocal Ia, RCs, and Ib inhibitory interneurons in humans. Soleus (SOL) group Ia afferents have monosynaptic excitatory projections to homonymous motoneurons and activate Ia inhibitory interneurons (IaINs) that inhibit tibialis anterior (TA) motoneurons. IaINs affected by SOL Ia afferents are inhibited by RCs activated by recurrent collaterals from SOL motor axons. Extensor-coupled IaINs inhibit contralateral flexor-coupled IaINs, and vice versa. The Ib inhibitory pathway from medial gastrocnemius (MG) to SOL motoneurons is also depicted along with presynaptic inhibitory interneurons acting on group Ia and II afferent terminals. The function of this complex spinal interneuronal circuitry is detrimental to motor output and behavior. Note that neurons within the gray matter of the spinal cord are not indicated per their laminae anatomical position due to illustration constrains.
FIGURE 2
FIGURE 2
Commissural interneurons of the spinal cord. (A) Projections and terminations of short- and long range commissural interneurons (CINs). (B) CINs play an important role in the control of locomotion by projections to Renshaw cells, Ia inhibitory interneurons and other classes of inhibitory interneurons, and by direct monosynaptic excitation and inhibition to motoneurons. Adapted and modified from Quinlan and Kiehn (2007) and Chédotal (2014).
FIGURE 3
FIGURE 3
Long propriospinal interneurons (PINs) reciprocally connect the cervical and lumbar spinal cord and contribute to locomotor movement in rodents. (A) Descending PINs form a complex bilateral system with excitatory and inhibitory components to mediate interlimb coordination and to relate information to the CPG. Their cell body is located through all laminae of the cervical cord, but most originate from laminae VII-VIII and the deep dorsal horn. They project to non-motoneuronal elements in similar proportion to the ipsilateral and contralateral rostral lumbar cord through the ventrolateral funiculus (red). The ipsilateral population terminals are evenly distributed throughout the gray matter, whereas the projections of the contralateral population are concentrated in laminae VII-VIII. The vast majority of descending PINs are excitatory both on the ipsilateral or contralateral side but the small inhibitory population terminates ipsilaterally. (B) Ascending PINs form a powerful ipsilateral excitatory pathway from the rostral lumbar cord to motoneurons controlling proximal muscles of the forelimbs. Ascending PINs originate mostly from the intermediate gray in the lumbar spinal cord and preferentially project ipsilaterally with a very limited number of terminals found contralaterally. They project to the intermediate gray matter and the ventral horn throughout the length of the cervical spinal cord. However, a large proportion directly connects to motoneurons in ventrolateral motor nuclei (blue) in caudal cervical segments controlling muscles of the elbow and shoulder. The thickness of the lines represents more PINS. Figure adapted and modified from Flynn et al. (2011) and Brockett et al. (2013).
FIGURE 4
FIGURE 4
Genetically identified interneurons contributing to locomotion. Schematic of the synaptic connectivity of genetically identified populations of interneurons developing from the ventral spinal cord and involved in (A) intralimb and (B) interlimb coordination during locomotion. Experimentally demonstrated projections are illustrated by a solid line and predicted connectivity with a dashed line. Figure was developed based on Kiehn (2011, 2016) and Gosgnach et al. (2017).
FIGURE 5
FIGURE 5
Locomotor electromyographic activity in the intact human, monkey, dog, cat, and rat. Duration of leg/hindlimb muscle activity is shown against normalized step cycle that starts at heel or paw contact; shaded areas mark the stance phase duration. Forward walking is shown as a solid black box whilst backward walking is a patterned box. Absent boxes among muscles is due to the lack of available data. Walking muscle activation patterns adopted and modified from Knikou et al. (2009) and La Scaleia et al. (2014) (human EMG); Courtine et al. (2005) (monkey EMG); Deban et al. (2012) and Goslow et al. (1981) (dog EMG); Buford and Smith (1990) and Yakovenko et al. (2002) (cat EMG); Thota et al. (2005) and Courtine et al. (2009) (rat EMG). SOL, soleus; MG, medialis gastrocnemius; LG, lateral gastrocnemius; PL, peroneus longus; TA, tibialis anterior; MH, medial hamstrings; LH, lateral hamstrings; GRC, gracilis; VL, vastus lateral; RF, rectus femoris.

References

    1. Abbruzzese M., Rubino V., Schieppati M. (1996). Task-dependent effects evoked by foot muscle afferents on leg muscle activity in humans. Electroencephalogr. Clin. Neurophysiol. 101 339–348.
    1. Akazawa K., Aldridge J. W., Steeves J. D., Stein R. B. (1982). Modulation of stretch reflexes during locomotion in the mesencephalic cat. J. Physiol. 329 553–567. 10.1113/jphysiol.1982.sp014319
    1. Alstermark B., Kümmel H. (1990a). Transneuronal transport of wheat germ agglutinin conjugated horseradish peroxidase into last order spinal interneurones projecting to acromio- and spinodeltoideus motoneurones in the cat. 1. Location of labelled interneurones and influence of synaptic activity on the transneuronal transport. Exp. Brain Res. 80 83–95. 10.1007/BF00228850
    1. Alstermark B., Kümmel H. (1990b). Transneuronal transport of wheat germ agglutinin conjugated horseradish peroxidase into last order spinal interneurones projecting to acromio- and spinodeltoideus motoneurones in the cat. 2. Differential labelling of interneurones depending on movement type. Exp. Brain Res. 80 96–103. 10.1007/BF00228851
    1. Alstermark B., Lindström S., Lundberg A., Sybirska E. (1981). Integration in descending motor pathways controlling the forelimb in the cat. 8. Ascending projection to the lateral reticular nucleus from C3-C4 propriospinal also projecting to forelimb motoneurones. Exp. Brain Res. 42 282–298. 10.1007/BF00237495
    1. Alstermark B., Lundberg A., Pinter M., Sasaki S. (1987). Subpopulations and functions of long C3-C5 propriospinal neurones. Brain Res. 404 395–400. 10.1016/0006-8993(87)91402-8
    1. Alvarez F. J., Dewey D. E., Harrington D. A., Fyffe R. E. (1997). Cell-type specific organization of glycine receptor clusters in the mammalian spinal cord. J. Comp. Neurol. 379 150–170. 10.1002/(SICI)1096-9861(19970303)379:1<150::AID-CNE10>;2-T
    1. Alvarez F. J., Fyffe R. E. (2007). The continuing case for the Renshaw cell. J. Physiol. 584 31–45. 10.1113/jphysiol.2007.136200
    1. Alvarez F. J., Jonas P. C., Sapir T., Hartley R., Berrocal M. C., Geiman E. J., et al. (2005). Postnatal phenotype and localization of spinal cord V1 derived interneurons. J. Comp. Neurol. 493 177–192. 10.1002/cne.20711
    1. Andersson L. S., Larhammar M., Memic F., Wootz H., Schwochow D., Rubin C. J., et al. (2012). Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice. Nature 488 642–646. 10.1038/nature11399
    1. Andersson O., Forssberg H., Grillner S., Lindquist M. (1978). Phasic gain control of the transmission in cutaneous reflex pathways to motoneurones during ‘fictive’ locomotion. Brain Res. 149 503–507. 10.1016/0006-8993(78)90493-6
    1. Andersson O., Grillner S. (1983). Peripheral control of the cat’s step cycle. II. Entrainment of the central pattern generators for locomotion by sinusoidal hip movements during fictive locomotion. Acta Physiol. Scand. 118 229–239. 10.1111/j.1748-1716.1983.tb07267.x
    1. Angel M. J., Jankowska E., McCrea D. A. (2005). Candidate interneurones mediating group I disynaptic EPSPs in extensor motoneurones during fictive locomotion in the cat. J. Physiol. 563 597–610. 10.1113/jphysiol.2004.076034
    1. Aniss A. M., Gandevia S. C., Burke D. (1992). Reflex responses in active muscles elicited by stimulation of low-threshold afferents from the human foot. J. Neurophysiol. 67 1375–1384. 10.1152/jn.1992.67.5.1375
    1. Araki T., Eccles J. C., Ito M. (1960). Correlation of the inhibitory post-synaptic potential of motoneurones with the latency and time course of inhibition of monosynaptic reflexes. J. Physiol. 154 354–377. 10.1113/jphysiol.1960.sp006584
    1. Arber S. (2012). Motor circuits in action: specification, connectivity, and function. Neuron 74 975–989. 10.1016/j.neuron.2012.05.011
    1. Azim E., Jiang J., Alstermark B., Jessell T. M. (2014). Skilled reaching relies on a V2a propriospinal internal copy circuit. Nature 508 357–363. 10.1038/nature13021
    1. Ballion B., Morin D., Viala D. (2001). Forelimb locomotor generators and quadrupedal locomotion in the neonatal rat. Eur. J. Neurosci. 14 1727–1738 10.1046/j.0953-816x.2001.01794.x
    1. Bannatyne B. A., Edgley S. A., Hammar I., Jankowska E., Maxwell D. J. (2003). Networks of inhibitory and excitatory commissural interneurons mediating crossed reticulospinal actions. Eur. J. Neurosci. 18 2273–2284. 10.1046/j.1460-9568.2003.02973.x
    1. Baret M., Katz R., Lamy J. C., Pénicaud A., Wargon I. (2003). Evidence for recurrent inhibition of reciprocal inhibition from soleus to tibialis anterior in man. Exp. Brain Res. 152 133–136. 10.1007/s00221-003-1547-9
    1. Bareyre F. M., Kerschensteiner M., Raineteau O., Mettenleiter T. C., Weinmann O., Schwab M. E. (2004). The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat. Neurosci. 7 269–277. 10.1038/nn1195
    1. Bautista W., Nagy J. I., Dai Y., McCrea D. A. (2012). Requirement of neuronal connexin36 in pathways mediating presynaptic inhibition of primary afferents in functionally mature mouse spinal cord. J. Physiol. 590 3821–3839. 10.1113/jphysiol.2011.225987
    1. Behrends T., Schomburg E. D., Steffens H. (1983a). Facilitatory interaction between cutaneous afferents from low threshold mechanoreceptors and nociceptors in segmental reflex pathways to alpha-motoneurons. Brain Res. 260 131–134.
    1. Behrends T., Schomburg E. D., Steffens H. (1983b). Group II muscle afferents and low threshold mechanoreceptive skin afferents converging onto interneurons in a common reflex pathway to alpha-motoneurons. Brain Res. 265 125–128. 10.1016/0006-8993(83)91341-0
    1. Benthall K. N., Hough R. A., McClellan A. D. (2017). Descending propriospinal neurons mediate restoration of locomotor function following spinal cord injury. J. Neurophysiol. 117 215–229. 10.1152/jn.00544.2016
    1. Berardelli A., Day B. L., Marsden C. D., Rothwell J. C. (1987). Evidence favouring presynaptic inhibition between antagonist muscle afferents in the human forearm. J. Physiol. 391 71–83. 10.1113/jphysiol.1987.sp016726
    1. Berkowitz A. (2010). Multifunctional and specialized spinal interneurons for turtle limb movements. Ann. N. Y. Acad. Sci. 1198 119–132. 10.1111/j.1749-6632.2009.05428.x
    1. Bikoff J. B., Gabitto M. I., Rivard A. F., Drobac E., Machado T. A., Miri A., et al. (2016). Spinal inhibitory interneuron diversity delineates variant motor microcircuits. Cell 165 207–219. 10.1016/j.cell.2016.01.027
    1. Birinyi A., Viszokay K., Wéber I., Kiehn O., Antal M. (2003). Synaptic targets of commissural interneurons in the lumbar spinal cord of neonatal rats. J. Comp. Neurol. 461 429–440. 10.1002/cne.10696
    1. Biróet Z., Hill R. H., Grillner S. (2008). The activity of spinal commissural interneurons during fictive locomotion in the lamprey. J. Neurophysiol. 100 716–722. 10.1152/jn.90206.2008
    1. Blatow M., Caputi A., Burnashev N., Monyer H., Rozov A. (2003). Ca2+ buffer saturation underlies paired pulse facilitation in calbindin-D28k-containing terminals. Neuron 38 79–88. 10.1016/S0896-6273(03)00196-X
    1. Borowska J., Jones C. T., Zhang H., Blacklaws J., Goulding M., Zhang Y. (2013). Functional subpopulations of V3 interneurons in the mature mouse spinal cord. J. Neurosci. 33 18553–18565. 10.1523/JNEUROSCI.2005-13.2013
    1. Bouyer L. J., Rossignol S. (2003a). Contribution of cutaneous inputs from the hindpaws to the control of locomotion. I. Intact cats. J. Neurophysiol. 90 3625–3639. 10.1152/jn.00496.2003
    1. Bouyer L. J., Rossignol S. (2003b). Contribution of cutaneous inputs from the hindpaws to the control of locomotion. II. Spinal cats. J. Neurophysiol. 90 3640–3653. 10.1152/jn.00497.2003
    1. Bras H., Cavallari P., Jankowska E., Kubin L. (1989). Morphology of midlumbar interneurones relaying information from group II muscle afferents in the cat spinal cord. J. Comp. Neurol. 290 1–15. 10.1002/cne.902900102
    1. Britz O., Zhang J., Grossmann K. S., Dyck J., Kim J. C., Dymecki S., et al. (2015). A genetically defined asymmetry underlies the inhibitory control of flexor-extensor locomotor movements. eLife 4:e04718. 10.7554/eLife.04718
    1. Brockett E. G., Seenan P. G., Bannatyne B. A., Maxwell D. J. (2013). Ascending and descending propriospinal pathways between lumbar and cervical segments in the rat: evidence for a substantial ascending excitatory pathway. Neuroscience 240 83–97. 10.1016/j.neuroscience.2013.02.039
    1. Brooks V. B., Wilson V. J. (1959). Recurrent inhibition in the cat’s spinal cord. J. Physiol. 146 380–391. 10.1113/jphysiol.1959.sp006199
    1. Brown A. G., Fyffe R. E. (1981). Direct observations on the contacts made between Ia afferent fibres and alpha-motoneurones in the cat’s lumbosacral spinal cord. J. Physiol. 313 121–140. 10.1113/jphysiol.1981.sp013654
    1. Brownstone R. M., Wilson J. M. (2008). Strategies for delineating spinal locomotor rhythm-generating networks and the possible role of Hb9 interneurones in rhythmogenesis. Brain Res. Rev. 57 64–76. 10.1016/j.brainresrev.2007.06.025
    1. Buchanan J. T., Grillner S. (1987). Newly identified ‘glutamate interneurons’ and their role in locomotion in the lamprey spinal cord. Science 236 312–314. 10.1126/science.3563512
    1. Buchanan J. T., McPherson D. R. (1995). The neuronal network for locomotion in the lamprey spinal cord: evidence for the involvement of commissural interneurons. J. Physiol. Paris 89 221–233. 10.1016/0928-4257(96)83638-2
    1. Buford J. A., Smith J. L. (1990). Adaptive control for backward quadrupedal walking. II. Hindlimb muscle synergies. J. Neurophysiol. 64 756–766. 10.1152/jn.1990.64.3.756
    1. Burke D., Dickson H. G., Skuse N. F. (1991). Task-dependent changes in the responses to low-threshold cutaneous afferent volleys in the human lower limb. J. Physiol. 432 445–458. 10.1113/jphysiol.1991.sp018393
    1. Burke D., Gandevia S. C., McKeon B. (1983). The afferent volleys responsible for spinal proprioceptive reflexes in man. J. Physiol. 339 535–552. 10.1113/jphysiol.1983.sp014732
    1. Burke D., Gandevia S. C., McKeon B. (1984). Monosynaptic and oligosynaptic contributions to human ankle jerk and H-reflex. J. Neurophysiol. 52 435–448. 10.1152/jn.1984.52.3.435
    1. Burke D., Schiller H. H. (1976). Discharge pattern of single motor units in the tonic vibration reflex of human triceps surae. J. Neurol. Neurosurg. Psychiatry 39 729–741. 10.1136/jnnp.39.8.729
    1. Burke R. (1999). The use of state-dependent modulation of spinal reflexes as a tool to investigate the organization of spinal interneurons. Exp. Brain Res. 128 263–277. 10.1007/s002210050847
    1. Burke R. E., Degtyarenko A. M., Simon E. S. (2001). Patterns of locomotor drive to motoneurons and last-order interneurons: clues to the structure of the CPG. J. Neurophysiol. 86 447–462. 10.1152/jn.2001.86.1.447
    1. Burke R. E., Fedina L., Lundberg A. (1971). Spatial synaptic distribution of recurrent and group Ia inhibitory systems in cat spinal motoneurones. J. Physiol. 214 305–326. 10.1113/jphysiol.1971.sp009434
    1. Bussel B., Pierrot-Deseilligny E. (1977). Inhibition of human motoneurons, probably of Renshaw origin, elicited by an orthodromic motor discharge. J. Physiol. 269 319–339. 10.1113/jphysiol.1977.sp011904
    1. Bussel B., Roby-Brami A., Néris O. R., Yakovleff A. (1996). Evidence for a spinal stepping generator in man. Paraplegia 34 91–92. 10.1038/sc.1996.15
    1. Calancie B., Alexeeva N., Broton J. G., Molano M. R. (2005). Interlimb reflex activity after spinal cord injury in man: strengthening response patterns are consistent with ongoing synaptic plasticity. Clin. Neurophysiol. 116 75–86. 10.1016/j.clinph.2004.07.018
    1. Caldeira V., Dougherty K. J., Borgius L., Kiehn O. (2017). Spinal Hb9: cre-derived excitatory interneurons contribute to rhythm generation in the mouse. Sci. Rep. 7:41369. 10.1038/srep41369
    1. Capaday C., Cody F. W., Stein R. B. (1990). Reciprocal inhibition of soleus motor output in humans during walking and voluntary tonic activity. J. Neurophysiol. 64 607–616. 10.1152/jn.1990.64.2.607
    1. Capaday C., Stein R. B. (1986). Amplitude modulation of the soleus H-reflex in the human during walking and standing. J. Neurosci. 6 1308–1313. 10.1523/JNEUROSCI.06-05-01308.1986
    1. Carpenter D. O., Rudomin P. (1973). The organization of primary afferent depolarization in the isolated spinal cord of the frog. J. Physiol. 229 471–493. 10.1113/jphysiol.1973.sp010148
    1. Cavallari P., Edgley S. A., Jankowska E. (1987). Post-synaptic actions of midlumbar interneurones on motoneurones of hindlimb muscles in the cat. J. Physiol. 389 675–689. 10.1113/jphysiol.1987.sp016677
    1. Cavallari P., Katz R., Penicaud A. (1992). Pattern of projections of group I afferents from elbow muscles to motoneurones supplying wrist muscles in man. Exp. Brain Res. 91 311–319. 10.1007/BF00231664
    1. Cazalets J. R., Borde M., Clarac F. (1995). Localization and organization of the central pattern generator for hindlimb locomotion in newborn rat. J. Neurosci. 15 4943–4951. 10.1523/JNEUROSCI.15-07-04943
    1. Chaix Y., Marque P., Meunier S., Pierrot-Deseilligny E., Simonetta-Moreau M. (1997). Further evidence for non-monosynaptic group I excitation of motoneurones in the human lower limb. Exp. Brain Res. 115 35–46. 10.1007/PL00005683
    1. Chédotal A. (2014). Development and plasticity of commissural circuits: from locomotion to brain repair. Trends Neurosci. 37 551–562. 10.1016/j.tins.2014.08.009
    1. Conta A. C., Stelzner D. J. (2004). Differential vulnerability of propriospinal tract neurons to spinal cord contusion injury. J. Comp. Neurol. 479 347–359. 10.1002/cne.20319
    1. Conway B. A., Hultborn H., Kiehn O. (1987). Proprioceptive input resets central locomotor rhythm in the spinal cat. Exp. Brain Res. 68 643–656. 10.1007/BF00249807
    1. Corna S., Grasso M., Nardone A., Schieppati M. (1995). Selective depression of medium-latency leg and foot muscle responses to stretch by an alpha 2-agonist in humans. J. Physiol. 484 803–809. 10.1113/jphysiol.1995.sp020705
    1. Coste B., Mathur J., Schmidt M., Earley T. J., Ranade S., Petrus M. J., et al. (2010). Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330 55–60. 10.1126/science.1193270
    1. Courtine G., Gerasimenko Y., van den Brand R., Yew A., Musienko P., Zhong H., et al. (2009). Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat. Neurosci. 12 1333–1342. 10.1038/nn.2401
    1. Courtine G., Roy R. R., Hodgson J., McKay H., Raven J., Zhong H., et al. (2005). Kinematic and EMG determinants in quadrupedal locomotion of a non-human primate (Rhesus). J. Neurophysiol. 93 3127–3145. 10.1152/jn.01073.2004
    1. Courtine G., Song B., Roy R. R., Zhong H., Herrmann J. E., Ao Y., et al. (2008). Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat. Med. 14 69–74. 10.1038/nm1682
    1. Cowley K. C., Schmidt B. J. (1997). Regional distribution of the locomotor pattern-generating network in the neonatal rat spinal cord. J. Neurophysiol. 77 247–259. 10.1152/jn.1997.77.1.247
    1. Cowley K. C., Zaporozhets E., Schmidt B. J. (2010). Propriospinal transmission of the locomotor command signal in the neonatal rat. Ann. N. Y. Acad. Sci. 1198 42–53. 10.1111/j.1749-6632.2009.05421.x
    1. Crone C., Hultborn H., Jespersen B., Nielsen J. (1987). Reciprocal Ia inhibition between ankle flexors and extensors in man. J. Physiol. 389 163–185. 10.1113/jphysiol.1987.sp016652
    1. Crone S. A., Quinlan K. A., Zagoraiou L., Droho S., Restrepo C. E., Lundfald L., et al. (2008). Genetic ablation of V2a ipsilateral interneurons disrupts left-right locomotor coordination in mammalian spinal cord. Neuron 60 70–83. 10.1016/j.neuron.2008.08.009
    1. Crone S. A., Zhong G., Harris-Warrick R., Sharma K. (2009). In mice lacking V2a interneurons, gait depends on speed of locomotion. J. Neurosci. 29 7098–7109. 10.1523/JNEUROSCI.1206-09.2009
    1. Cullheim S., Kellerth J. O. (1978). A morphological study of the axons and recurrent axon collaterals of cat alpha-motoneurones supplying different hind-limb muscles. J. Physiol. 281 285–299. 10.1113/jphysiol.1978.sp012422
    1. Cullheim S., Kellerth J. O. (1981). Two kinds of recurrent inhibition of cat spinal alpha-motoneurones as differentiated pharmacologically. J. Physiol. 312 209–224. 10.1113/jphysiol.1981.sp013624
    1. Danner S. M., Wilshin S. D., Shevtsova N. A., Rybak I. A. (2016). Central control of interlimb coordination and speed-dependent gait expression in quadrupeds. J. Physiol. 594 6947–6967. 10.1113/JP272787
    1. Deban S. M., Schilling N., Carrier D. R. (2012). Activity of extrinsic limb muscles in dogs at walk, trot, gallop. J. Exp. Biol. 215 287–300. 10.1242/jeb.063230
    1. Degtyarenko A. M., Simon E. S., Burke R. E. (1996). Differential modulation of disynaptic cutaneous inhibition and excitation in ankle flexor motoneurons during fictive locomotion. J. Neurophysiol. 76 2972–2985. 10.1152/jn.1996.76.5.2972
    1. Delwaide P. J., Figiel C., Richelle C. (1977). Effects of postural changes of the upper limb on reflex transmission in the lower limb. J. Neurol. Neurosurg. Psychiatry 40 616–621. 10.1136/jnnp.40.6.616
    1. Dietz V. (2002). Do human bipeds use quadrupedal coordination? Trends Neurosci. 25 462–467.
    1. Dietz V., Faist M., Pierrot-Deseilligny E. (1990). Amplitude modulation of the quadriceps H-reflex in the human during the early stance phase of gait. Exp. Brain Res. 79 221–224. 10.1007/BF00228893
    1. Dimitrijevic M. R., Gerasimenko Y., Pinter M. M. (1998). Evidence for a spinal central pattern generator in humans. Ann. N. Y. Acad. Sci. 860 360–376. 10.1111/j.1749-6632.1998.tb09062.x
    1. Donelan J. M., McVea D. A., Pearson K. G. (2009). Force regulation of ankle extensor muscle activity in freely walking cats. J. Neurophysiol. 101 360–371. 10.1152/jn.90918.2008
    1. Donelan J. M., Pearson K. G. (2004). Contribution of force feedback to ankle extensor activity in decerebrate walking cats. J. Neurophysiol. 92 2093–2104. 10.1152/jn.00325.2004
    1. Dougherty K. J., Kiehn O. (2010). Functional organization of V2a-related locomotor circuits in the rodent spinal cord. Ann. N. Y. Acad. Sci. 1198 85–93. 10.1111/j.1749-6632.2010.05502.x
    1. Dougherty K. J., Zagoraiou L., Satoh D., Rozani I., Doobar S., Arber S., et al. (2013). Locomotor rhythm generation linked to the output of spinal shox2 excitatory interneurons. Neuron 80 920–933. 10.1016/j.neuron.2013.08.015
    1. Drew T., Marigold D. S. (2015). Taking the next step: cortical contributions to the control of locomotion. Curr. Opin. Neurobiol. 33 25–33. 10.1016/j.conb.2015.01.011
    1. Dubuc R., Brocard F., Antri M., Fénelon K., Gariépy J. F., Smetana R., et al. (2008). Initiation of locomotion in lampreys. Brain Res. Rev. 57 172–182. 10.1016/j.brainresrev.2007.07.016
    1. Dubuc R., Cabelguen J. M., Rossignol S. (1988). Rhythmic fluctuations of dorsal root potentials and antidromic discharges of primary afferents during fictive locomotion in the cat. J. Neurophysiol. 60 2014–2036. 10.1152/jn.1988.60.6.2014
    1. Dueñas S., Rudomin P. (1988). Excitability changes of ankle extensor group Ia and Ib fibers during fictive locomotion in the cat. Exp. Brain Res. 70 15–25.
    1. Dutton R. C., Carstens M. I., Antognini J. F., Carstens E. (2006). Long ascending propriospinal projections from lumbosacral to upper cervical spinal cord in the rat. Brain Res. 1119 76–85. 10.1016/j.brainres.2006.08.063
    1. Duysens J. (1977). Reflex control of locomotion as revealed by stimulation of cutaneous afferents in spontaneously walking premammillary cats. J. Neurophysiol. 40 737–751. 10.1152/jn.1977.40.4.737
    1. Duysens J., Loeb G. E. (1980). Modulation of ipsi- and contralateral reflex responses in unrestrained walking cats. J. Neurophysiol. 44 1024–1037. 10.1152/jn.1980.44.5.1024
    1. Duysens J., Loeb G. E., Weston B. J. (1980). Crossed flexor reflex responses and their reversal in freely walking cats. Brain Res. 197 538–542. 10.1016/0006-8993(80)91143-9
    1. Duysens J., Pearson K. G. (1976). The role of cutaneous afferents from the distal hindlimb in the regulation of the step cycle of thalamic cats. Exp. Brain Res. 24 245–255. 10.1007/BF00235013
    1. Duysens J., Stein R. B. (1978). Reflexes induced by nerve stimulation in walking cats with implanted cuff electrodes. Exp. Brain Res. 32 213–224. 10.1007/BF00239728
    1. Duysens J., Tax A. A., Nawijn S., Berger W., Prokop T., Altenmüller E. (1995). Gating of sensation and evoked potentials following foot stimulation during human gait. Exp. Brain Res. 105 423–431.
    1. Duysens J., Tax A. A., Trippel M., Dietz V. (1992). Phase-dependent reversal of reflexly induced movements during human gait. Exp. Brain Res. 90 404–414. 10.1007/BF00227255
    1. Duysens J., Trippel M., Horstmann G. A., Dietz V. (1990). Gating and reversal of reflexes in ankle muscles during human walking. Exp. Brain Res. 82 351–358. 10.1007/BF00231254
    1. Eccles J. C., Eccles R. M., Iggo A., Ito M. (1961a). Distribution of recurrent inhibition among motoneurones. J. Physiol. 159 479–499. 10.1113/jphysiol.1961.sp006822
    1. Eccles J. C., Eccles R. M., Iggo A., Lundberg A. (1961b). Electrophysiological investigations on Renshaw cells. J. Physiol. 159 461–478. 10.1113/jphysiol.1961.sp006821
    1. Eccles J. C., Eccles R. M., Lundberg A. (1957a). Synaptic actions on motoneurones caused by impulses in Golgi tendon organ afferents. J. Physiol. 138 227–252. 10.1113/jphysiol.1957.sp005849
    1. Eccles J. C., Eccles R. M., Lundberg A. (1957b). Synaptic actions on motoneurones in relation to the two components of the group I muscle afferent volley. J. Physiol. 136 527–546. 10.1113/jphysiol.1957.sp005778
    1. Eccles J. C., Eccles R. M., Magni F. (1961c). Central inhibitory action attributable to presynaptic depolarization produced by muscle afferent volleys. J. Physiol. 159 147–166. 10.1113/jphysiol.1961.sp006798
    1. Eccles J. C., Fatt P., Koketsu K. (1954a). Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J. Physiol. 126 524–562. 10.1113/jphysiol.1954.sp005226
    1. Eccles J. C., Fatt P., Landgren S. (1956). Central pathway for direct inhibitory action of impulses in largest afferent nerve fibres to muscle. J. Neurophysiol. 19 75–98. 10.1152/jn.1956.19.1.75
    1. Eccles J. C., Fatt P., Landgren S., Winsbury G. J. (1954b). Spinal cord potentials generated by volleys in the large muscle afferents. J. Physiol. 125 590–606. 10.1113/jphysiol.1954.sp005183
    1. Eccles J. C., Krnjevic K. (1959). Potential changes recorded inside primary afferent fibres within the spinal cord. J. Physiol. 149 250–273. 10.1113/jphysiol.1959.sp006338
    1. Eccles J. C., Schmidt R. F., Willis W. D. (1962). Presynaptic inhibition of the spinal monosynaptic reflex pathway. J. Physiol. 161 282–297. 10.1113/jphysiol.1962.sp006886
    1. Eccles R. M., Lundberg A. (1958). Integrative pattern of Ia synaptic actions on motoneurones of hip and knee muscles. J. Physiol. 144 271–298. 10.1113/jphysiol.1958.sp006101
    1. Eccles R. M., Lundberg A. (1959). Supraspinal control of interneurones mediating spinal reflexes. J. Physiol. 147 565–584. 10.1113/jphysiol.1959.sp006262
    1. Edgley S. A., Jankowska E. (1987). An interneuronal relay for group I and II muscle afferents in the midlumbar segments of the cat spinal cord. J. Physiol. 389 647–674. 10.1113/jphysiol.1987.sp016676
    1. Eguibar J. R., Quevedo J., Jiménez I., Rudomin P. (1994). Selective cortical control of information flow through different intraspinal collaterals of the same muscle afferent fiber. Brain Res. 643 328–333. 10.1016/0006-8993(94)90042-6
    1. Eide A. L., Glover J., Kjaerulff O., Kiehn O. (1999). Characterization of commissural interneurons in the lumbar region of the neonatal rat spinal cord. J. Comp. Neurol. 403 332–345. 10.1002/(SICI)1096-9861(19990118)403:3<332::AID-CNE4>;2-R
    1. Eklöf-Ljunggren E., Haupt S., Ausborn J., Dehnisch I., Uhlén P., Higashijima S., et al. (2012). Origin of excitation underlying locomotion in the spinal circuit of zebrafish. Proc. Natl. Acad. Sci. U.S.A. 109 5511–5516. 10.1073/pnas.1115377109
    1. Elftman H., Manter J. (1935). The evolution of the human foot, with especial reference to the joints. J. Anat. 70 56–67.
    1. English A. W., Tigges J., Lennard P. R. (1985). Anatomical organization of long ascending propriospinal neurons in the cat spinal cord. J. Comp. Neurol. 240 349–358. 10.1002/cne.902400403
    1. Enríquez-Denton M., Nielsen J., Perreault M. C., Morita H., Petersen N., Hultborn H. (2000). Presynaptic control of transmission along the pathway mediating disynaptic reciprocal inhibition in the cat. J. Physiol. 526 623–637. 10.1111/j.1469-7793.2000.t01-1-00623.x
    1. Ertekin C., Mungan B., Ertaş M. (1995). Human root and cord potentials evoked by Achilles tendon tap. Electromyogr. Clin. Neurophysiol. 35 259–271.
    1. Ertekin C., Mungan B., Uludağ B. (1996). Sacral cord conduction time of the soleus H-reflex. J. Clin. Neurophysiol. 13 77–83. 10.1097/00004691-199601000-00008
    1. Faist M., Hoefer C., Hodapp M., Dietz V., Berger W., Duysens J. (2006). In humans Ib facilitation depends on locomotion while suppression of Ib inhibition requires loading. Brain Res. 1076 87–92. 10.1016/j.brainres.2005.12.069
    1. Fedina L., Hultborn H., Illert M. (1975). Facilitation from contralateral primary afferents of interneuronal transmission in the Ia inhibitory pathway to motoneurones. Acta Physiol. Scand. 94 198–221. 10.1111/j.1748-1716.1975.tb05880.x
    1. Fetcho J. R., Higashijima S., McLean D. L. (2008). Zebrafish and motor control over the last decade. Brain Res. Rev. 57 86–93. 10.1016/j.brainresrev.2007.06.018
    1. Flynn J. R., Conn V. L., Boyle K. A., Hughes D. I., Watanabe M., Velasquez T., et al. (2017). Anatomical and molecular properties of long descending propriospinal neurons in mice. Front. Neuroanat. 11:5 10.3389/fnana.2017.00005
    1. Flynn J. R., Graham B. A., Galea M. P., Callister R. J. (2011). The role of propriospinal interneurons in recovery from spinal cord injury. Neuropharmacology 60 809–822. 10.1016/j.neuropharm.2011.01.016
    1. Forget R., Hultborn H., Meunier S., Pantieri R., Pierrot-Deseilligny E. (1989a). Facilitation of quadriceps motoneurones by group I afferents from pretibial flexors in man. 2. Changes occurring during voluntary contraction. Exp. Brain Res. 78 21–27.
    1. Forget R., Pantieri R., Pierrot-Deseilligny E., Shindo M., Tanaka R. (1989b). Facilitation of quadriceps motoneurones by group I afferents from pretibial flexors in man. 1. Possible interneuronal pathway. Exp. Brain Res. 78 10–20.
    1. Forssberg H., Grillner S., Rossignol S. (1975). Phase dependent reflex reversal during walking in chronic spinal cats. Brain Res. 85 103–107. 10.1016/0006-8993(75)91013-6
    1. Forssberg H., Grillner S., Rossignol S. (1977). Phasic gain control of reflexes from the dorsum of the paw during spinal locomotion. Brain Res. 132 121–139. 10.1016/0006-8993(77)90710-7
    1. Fournier E., Meunier S., Pierrot-Deseilligny E., Shindo M. (1986). Evidence for interneuronally mediated Ia excitatory effects to human quadriceps motoneurones. J. Physiol. 377 143–169. 10.1113/jphysiol.1986.sp016179
    1. Frank K., Fuortes M. G. F. (1957). Presynaptic and postsynaptic inhibition of monosynaptic reflexes. Fed. Proc. 16 39–40.
    1. Fu T. C., Hultborn H., Larsson R., Lundberg A. (1978). Reciprocal inhibition during the tonic stretch reflex in the decerebrate cat. J. Physiol. 284 345–369. 10.1113/jphysiol.1978.sp012544
    1. Fyffe R. E. (1990). Evidence for separate morphological classes of Renshaw cells in the cat’s spinal cord. Brain Res. 536 301–304. 10.1016/0006-8993(90)90038-D
    1. Gabitto M. I., Pakman A., Bikoff J. B., Abbott L. F., Jessell T. M., Paninski L. (2016). Bayesian sparse regression analysis documents the diversity of spinal inhibitory interneurons. Cell 165 220–233. 10.1016/j.cell.2016.01.026
    1. Gallaher S., Pollard J., Porter W. L. (2011). Locomotion in restricted space: kinematic and electromyographic analysis of stoopwalking and crawling. Gait Posture 33 71–76. 10.1016/j.gaitpost.2010.09.027
    1. Gauthier L., Rossignol S. (1981). Contralateral hindlimb responses to cutaneous stimulation during locomotion in high decerebrate cats. Brain Res. 207 303–320. 10.1016/0006-8993(81)90366-8
    1. Geertsen S. S., Stecina K., Meehan C. F., Nielsen J. B., Hultborn H. (2011). Reciprocal Ia inhibition contributes to motoneuronal hyperpolarisation during the inactive phase of locomotion and scratching in the cat. J. Physiol. 589 119–134. 10.1113/jphysiol.2010.199125
    1. Gervasio S., Farina D., Sinkjær T., Mrachacz-Kersting N. (2013). Crossed reflex reversal during human locomotion. J. Neurophysiol. 109 2335–2344. 10.1152/jn.01086.2012
    1. Gervasio S., Voigt M., Kersting U. G., Farina D., Sinkjær T., Mrachacz-Kersting N. (2017). Sensory feedback in interlimb coordination: contralateral afferent contribution to the short-latency crossed response during human walking. PLoS One 12:e0168557. 10.1371/journal.pone.0168557
    1. Giovanelli Barilari M., Kuypers H. G. (1969). Propriospinal fibers interconnecting the spinal enlargements in the cat. Brain Res. 14 321–330. 10.1016/0006-8993(69)90113-9
    1. Gosgnach S., Bikoff J. B., Dougherty K. J., El Manira A., Lanuza G. M., Zhang Y. (2017). Delineating the diversity of spinal interneurons in locomotor circuits. J. Neurosci. 37 10835–10841. 10.1523/JNEUROSCI.1829-17.2017
    1. Gosgnach S., Lanuza G. M., Butt S. J., Saueressig H., Zhang Y., Velasquez T., et al. (2006). V1 spinal neurons regulate the speed of vertebrate locomotor outputs. Nature 440 215–219. 10.1038/nature04545
    1. Gosgnach S., Quevedo J., Fedirchuk B., McCrea D. A. (2000). Depression of group Ia monosynaptic EPSPs in cat hindlimb motoneurones during fictive locomotion. J. Physiol. 526 639–652. 10.1111/j.1469-7793.2000.00639.x
    1. Goslow G. E., Jr., Seeherman H. J., Taylor C. R., McCutchin M. N., Heglund N. C. (1981). Electrical activity and relative length changes of dog limb muscles as a function of speed and gait. J. Exp. Biol. 94 15–42.
    1. Gossard J. P., Brownstone R. M., Barajon I., Hultborn H. (1994). Transmission in a locomotor-related group Ib pathway from hindlimb extensor muscles in the cat. Exp. Brain Res. 98 213–228. 10.1007/BF00228410
    1. Gossard J. P., Cabelguen J. M., Rossignol S. (1989). Intra-axonal recordings of cutaneous primary afferents during fictive locomotion in the cat. J. Neurophysiol. 62 1177–1188. 10.1152/jn.1989.62.5.1177
    1. Gossard J. P., Cabelguen J. M., Rossignol S. (1990). Phase-dependent modulation of primary afferent depolarization in single cutaneous primary afferents evoked by peripheral stimulation during fictive locomotion in the cat. Brain Res. 537 14–23. 10.1016/0006-8993(90)90334-8
    1. Goulding M. (2009). Circuits controlling vertebrate locomotion: moving in a new direction. Nat. Rev. Neurosci. 10 507–518. 10.1038/nrn2608
    1. Granit R. (1950). Reflex self-regulation of muscle contraction and autogenetic inhibition. J. Neurophysiol. 13 351–372. 10.1152/jn.1950.13.5.351
    1. Granit R., Haase J., Rutledge L. T. (1960). Recurrent inhibition in relation to frequency of firing and limitation of discharge rate of extensor motoneurones. J. Physiol. 154 308–328. 10.1113/jphysiol.1960.sp006581
    1. Grillner S. (1981). Control of Locomotion in Bipeds, Tetrapods, and Fish. Washington, DC: American Physiological Society; 10.1002/cphy.cp010226
    1. Grillner S. (1985). Neurobiological bases of rhythmic motor acts in vertebrates. Science 22 143–149. 10.1126/science.3975635
    1. Grillner S., Parker D., El Manira A. (1998). Vertebrate locomotion–a lamprey perspective. Ann. N. Y. Acad. Sci. 860 1–18. 10.1111/j.1749-6632.1998.tb09035.x
    1. Grillner S., Robertson B. (2015). The basal ganglia downstream control of brainstem motor centres–an evolutionarily conserved strategy. Curr. Opin. Neurobiol. 33 47–52. 10.1016/j.conb.2015.01.019
    1. Grillner S., Rossignol S. (1978). On the initiation of the swing phase of locomotion in chronic spinal cats. Brain Res. 146 269–277. 10.1016/0006-8993(78)90973-3
    1. Grillner S., Zangger P. (1979). On the central generation of locomotion in the low spinal cat. Exp. Brain Res. 34 241–261. 10.1007/BF00235671
    1. Hanna-Boutros B., Sangari S., Karasu A., Giboin L. S., Marchand-Pauvert V. (2014). Task-related modulation of crossed spinal inhibition between human lower limbs. J. Neurophysiol. 111 1865–1876. 10.1152/jn.00838.2013
    1. Haridas C., Zehr E. P. (2003). Coordinated interlimb compensatory responses to electrical stimulation of cutaneous nerves in the hand and foot during walking. J. Neurophysiol. 90 2850–2861. 10.1152/jn.00531.2003
    1. Harrison P. J., Jankowska E. (1985). Sources of input to interneurones mediating group I non-reciprocal inhibition of motoneurones in the cat. J. Physiol. 361 379–401. 10.1113/jphysiol.1985.sp015651
    1. Harrison P. J., Jankowska E. (1989). Primary afferent depolarization of central terminals of group II muscle afferents in the cat spinal cord. J. Physiol. 411 71–83. 10.1113/jphysiol.1989.sp017561
    1. Hiebert G. W., Whelan P. J., Prochazka A., Pearson K. G. (1996). Contribution of hind limb flexor muscle afferents to the timing of phase transitions in the cat step cycle. J. Neurophysiol. 75 1126–1137. 10.1152/jn.1996.75.3.1126
    1. Hirasaki E., Ogihara N., Hamada Y., Kumakura H., Nakatsukasa M. (2004). Do highly trained monkeys walk like humans? A kinematic study of bipedal locomotion in bipedally trained Japanese macaques. J. Hum. Evol. 46 739–750. 10.1016/j.jhevol.2004.04.004
    1. Hochman S., Shreckengost J., Kimura H., Quevedo J. (2010). Presynaptic inhibition of primary afferents by depolarization: observations supporting nontraditional mechanisms. Ann. N. Y. Acad. Sci. 1198 140–152. 10.1111/j.1749-6632.2010.05436.x
    1. Hofstoetter U. S., Knikou M., Guertin P. A., Minassian K. (2017). Probing the human spinal locomotor circuits by phasic step-induced feedback and by tonic electrical and pharmacological neuromodulation. Curr. Pharm. Des. 23 1805–1820. 10.2174/1381612822666161214144655
    1. Hongo T., Jankowska E., Ohno T., Sasaki S., Yamashita M., Yoshida K. (1983). The same interneurones mediate inhibition of dorsal spinocerebellar tract cells and lumbar motoneurones in the cat. J. Physiol. 342 161–180. 10.1113/jphysiol.1983.sp014845
    1. Hongo T., Lundberg A., Phillips C. G., Thompson R. F. (1984). The pattern of monosynaptic Ia-connections to hindlimb motor nuclei in the baboon: a comparison with the cat. Proc. R. Soc. Lond. B Biol. Sci. 221 261–289. 10.1098/rspb.1984.0034
    1. Hultborn H. (2006). Spinal reflexes, mechanisms, and concepts: from Eccles to Lundberg and beyond. Prog. Neurobiol. 78 215–232. 10.1016/j.pneurobio.2006.04.001
    1. Hultborn H., Brownstone R. B., Toth T. I., Gossard J. P. (2004). Key mechanisms for setting the input-output gain across the motoneuron pool. Prog. Brain Res. 143 77–95. 10.1016/S0079-6123(03)43008-2
    1. Hultborn H., Conway B. A., Gossard J. P., Brownstone R., Fedirchuk B., Schomburg E. D., et al. (1998). How do we approach the locomotor network in the mammalian spinal cord? Ann. N. Y. Acad. Sci. 860 70–82. 10.1111/j.1749-6632.1998.tb09039.x
    1. Hultborn H., Denton M. E., Wienecke J., Nielsen J. B. (2003). Variable amplification of synaptic input to cat spinal motoneurones by dendritic persistent inward current. J. Physiol. 552 945–952. 10.1113/jphysiol.2003.050971
    1. Hultborn H., Illert M., Santini M. (1976a). Convergence on interneurons mediating the reciprocal Ia inhibition of motoneurones. I. Disynaptic Ia inhibition of Ia inhibitory interneurones. Acta Physiol. Scand. 96 193–201. 10.1111/j.1748-1716.1976.tb10188.x
    1. Hultborn H., Illert M., Santini M. (1976b). Convergence on interneurons mediating the reciprocal Ia inhibition of motoneurones. II. Effects from segmental flexor reflex pathways. Acta Physiol. Scand. 96 351–367. 10.1111/j.1748-1716.1976.tb10205.x
    1. Hultborn H., Jankowska E., Lindström S. (1971a). Recurrent inhibition of interneurones monosynaptically activated from group Ia afferents. J. Physiol. 215 613–636.
    1. Hultborn H., Jankowska E., Lindström S., Roberts W. (1971b). Neuronal pathway of the recurrent facilitation of motoneurones. J. Physiol. 218 495–514.
    1. Hultborn H., Meunier S., Morin C., Pierrot-Deseilligny E. (1987). Assessing changes in presynaptic inhibition of Ia fibres: a study in man and the cat. J. Physiol. 389 729–756. 10.1113/jphysiol.1987.sp016680
    1. Hunt C. C. (1954). Relation of function to diameter in afferent fibers of muscle nerves. J. Gen. Physiol. 38 117–131. 10.1085/jgp.38.1.117
    1. Ikeda R., Cha M., Ling J., Jia Z., Coyle D., Gu J. G. (2014). Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses. Cell 157 664–675. 10.1016/j.cell.2014.02.026
    1. Illert M., Lundberg A., Tanaka R. (1976). Integration in descending motor pathways controlling the forelimb in the cat. 1. Pyramidal effects on motoneurones. Exp. Brain Res. 26 509–519. 10.1007/BF00238824
    1. Ivanenko Y. P., Dominici N., Cappellini G., Dan B., Cheron G., Lacquaniti F. (2004). Development of pendulum mechanism and kinematic coordination from the first unsupported steps in toddlers. J. Exp. Biol. 207 3797–3810. 10.1242/jeb.01214
    1. Jankowska E. (1992). Interneuronal relay in spinal pathways from proprioceptors. Prog. Neurobiol. 38 335–378. 10.1016/0301-0082(92)90024-9
    1. Jankowska E. (2001). Spinal interneuronal systems: identification, multifunctional character and reconfigurations in mammals. J. Physiol. 533 31–40. 10.1111/j.1469-7793.2001.0031b.x
    1. Jankowska E. (2016a). “Spinal interneurons”, in Neuroscience in the 21st Century eds Pfaff D. W., Volkow N. D. (New York, NY: Springer Science+Business Media; ) 1189–1224. 10.1007/978-1-4939-3474-4_34
    1. Jankowska E. (2016b). “Spinal reflexes”, in Neuroscience in the 21st Century eds Pfaff D. W., Volkow N. D. (New York, NY: Springer Science+Business Media; ) 1599–1621. 10.1007/978-1-4939-3474-4_50
    1. Jankowska E., Bannatyne B. A., Stecina K., Hammar I., Cabaj A., Maxwell D. J. (2009). Commissural interneurons with input from group I and II muscle afferents in feline lumbar segments: neurotransmitters, projections and target cells. J. Physiol. 587 401–418. 10.1113/jphysiol.2008.159236
    1. Jankowska E., Hammar I. (2002). Spinal interneurones; how can studies in animals contribute to the understanding of spinal interneuronal systems in man? Brain Res. Brain Res. Rev. 40 19–28. 10.1016/S0165-0173(02)00185-6
    1. Jankowska E., Hammar I., Slawinska U., Maleszak K., Edgley S. A. (2003). Neuronal basis of crossed actions from the reticular formation on feline hindlimb motoneurons. J. Neurosci. 23 1867–1878. 10.1523/JNEUROSCI.23-05-01867.2003
    1. Jankowska E., Johannisson T., Lipski J. (1981). Common interneurones in reflex pathways from group 1a and 1b afferents of ankle extensors in the cat. J. Physiol. 310 381–402. 10.1113/jphysiol.1981.sp013556
    1. Jankowska E., Jukes M. G., Lund S., Lundberg A. (1967). The effect of DOPA on the spinal cord. 6. Half-centre organization of interneurones transmitting effects from the flexor reflex afferents. Acta Physiol. Scand. 70 389–402. 10.1111/j.1748-1716.1967.tb03637.x
    1. Jankowska E., Krutki P., Matsuyama K. (2005). Relative contribution of Ia inhibitory interneurones to inhibition of feline contralateral motoneurones evoked via commissural interneurones. J. Physiol. 568 617–628. 10.1113/jphysiol.2005.088351
    1. Jankowska E., Lindström S. (1971). Morphological identification of Renshaw cells. Acta Physiol. Scand. 81 428–430. 10.1111/j.1748-1716.1971.tb04918.x
    1. Jankowska E., Lindström S. (1972). Morphology of interneurones mediating Ia reciprocal inhibition of motoneurones in the spinal cord of the cat. J. Physiol. 226 805–823. 10.1113/jphysiol.1972.sp010011
    1. Jankowska E., Lundberg A., Robers W. J., Stuart D. (1974). A long propriospinal system with direct effect on motoneurones and on interneurones in the cat lumbosacral cord. Exp. Brain Res. 21 169–194. 10.1007/BF00234388
    1. Jankowska E., Lundberg A., Stuart D. (1983). Propriospinal control of interneurons in spinal reflex pathways from tendon organs in the cat. Brain Res. 261 317–320. 10.1016/0006-8993(83)90636-4
    1. Jankowska E., McCrea D. A. (1983). Shared reflex pathways from Ib tendon organ afferents and Ia muscle spindle afferents in the cat. J. Physiol. 338 99–111. 10.1113/jphysiol.1983.sp014663
    1. Jankowska E., Noga B. R. (1990). Contralaterally projecting lamina VIII interneurones in middle lumbar segments in the cat. Brain Res. 535 327–330. 10.1016/0006-8993(90)91618-Q
    1. Jankowska E., Padel Y., Zarzecki P. (1978). Crossed disynaptic inhibition of sacral motoneurones. J. Physiol. 285 425–444. 10.1113/jphysiol.1978.sp012580
    1. Jankowska E., Roberts W. J. (1972). Synaptic actions of single interneurones mediating reciprocal Ia inhibition of motoneurones. J. Physiol. 222 623–642. 10.1113/jphysiol.1972.sp009818
    1. Jankowska E., Slawinska U., Hammar I. (2002). On organization of a neuronal network in pathways from group II muscle afferents in feline lumbar spinal segments. J. Physiol. 542 301–314. 10.1113/jphysiol.2001.014076
    1. Jessell T. M. (2000). Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1 20–29. 10.1038/35049541
    1. Jordan L. M., Liu J., Hedlund P. B., Akay T., Pearson K. G. (2008). Descending command systems for the initiation of locomotion in mammals. Brain Res. Rev. 57 183–191. 10.1016/j.brainresrev.2007.07.019
    1. Juvin L., Simmers J., Morin D. (2005). Propriospinal circuitry underlying interlimb coordination in mammalian quadrupedal locomotion. J. Neurosci. 25 6025–6035. 10.1523/JNEUROSCI.0696-05.2005
    1. Kiehn O. (2011). Development and functional organization of spinal locomotor circuits. Curr. Opin. Neurobiol. 21 100–109. 10.1016/j.conb.2010.09.004
    1. Kiehn O. (2016). Decoding the organization of spinal circuits that control locomotion. Nat. Rev. Neurosci. 17 224–238. 10.1038/nrn.2016.9
    1. Kiehn O., Dougherty K. J. (2013). “Locomotion: circuits and physiology,” in Neuroscience in the 21st Century ed. Pfaff D. W. (New York, NY: Springer; ) 1209–1236. 10.1007/978-1-4614-1997-6_42
    1. Kjaerulff O., Kiehn O. (1996). Distribution of networks generating and coordinating locomotor activity in the neonatal rat spinal cord in vitro: a lesion study. J. Neurosci. 16 5777–5794. 10.1523/JNEUROSCI.16-18-05777.1996
    1. Kniffki K. D., Schomburg E. D., Steffens H. (1981). Convergence in segmental reflex pathways from fine muscle afferents and cutaneous or group II muscle afferents to (-motoneurones. Brain Res. 218 342–346. 10.1016/0006-8993(81)91312-3
    1. Knikou M. (2007). Neural coupling between the upper and lower limbs in humans. Neurosci. Lett. 416 138–143. 10.1016/j.neulet.2007.01.072
    1. Knikou M. (2010). Neural control of locomotion and training-induced plasticity after spinal and cerebral lesions. Clin. Neurophysiol. 121 1655–1668. 10.1016/j.clinph.2010.01.039
    1. Knikou M. (2012). Plasticity of corticospinal neural control after locomotor training in human spinal cord injury. Neural Plast. 2012:254948. 10.1155/2012/254948
    1. Knikou M. (2014). Transpinal and transcortical stimulation alter corticospinal excitability and increase spinal output. PLoS One 9:e102313. 10.1371/journal.pone.0102313
    1. Knikou M., Angeli C. A., Ferreira C. K., Harkema S. J. (2009). Soleus H-reflex modulation during body weight support treadmill walking in spinal cord intact and injured subjects. Exp. Brain Res. 193 397–407. 10.1007/s00221-008-1636-x
    1. Knikou M., Hajela N., Mummidisetty C. K., Xiao M., Smith A. C. (2011). Soleus H-reflex phase-dependent modulation is preserved during stepping within a robotic exoskeleton. Clin. Neurophysiol. 122 1396–1404. 10.1016/j.clinph.2010.12.044
    1. Knikou M., Rymer Z. (2002). Effects of changes in hip joint angle on H-reflex excitability in humans. Exp. Brain Res. 143 149–159. 10.1007/s00221-001-0978-4
    1. Kriellaars D. J., Brownstone R. M., Noga B. R., Jordan L. M. (1994). Mechanical entrainment of fictive locomotion in the decerebrate cat. J. Neurophysiol. 71 2074–2086. 10.1152/jn.1994.71.6.2074
    1. La Scaleia V., Ivanenko Y. P., Zelik K. E., Lacquaniti F. (2014). Spinal motor outputs during step-to-step transitions of diverse human gaits. Front. Hum. Neurosci. 8:305. 10.3389/fnhum.2014.00305
    1. Lafleur J., Zytnicki D., Horcholle-Bossavit G., Jami L. (1992). Depolarization of Ib afferent axons in the cat spinal cord during homonymous muscle contraction. J. Physiol. 445 345–354. 10.1113/jphysiol.1992.sp018927
    1. Lamotte d’Incamps B., Ascher P. (2008). Four excitatory postsynaptic ionotropic receptors coactivated at the motoneuron-Renshaw cell synapse. J. Neurosci. 28 14121–14131. 10.1523/JNEUROSCI.3311-08.2008
    1. Lamy J. C., Iglesias C., Lackmy A., Nielsen J. B., Katz R., Marchand-Pauvert V. (2008). Modulation of recurrent inhibition from knee extensors to ankle motoneurones during human walking. J. Physiol. 586 5931–5946. 10.1113/jphysiol.2008.160630
    1. Lanuza G. M., Gosgnach S., Pierani A., Jessell T. M., Goulding M. (2004). Genetic identification of spinal interneurons that coordinate left–right locomotor activity necessary for walking movements. Neuron 42 375–386. 10.1016/S0896-6273(04)00249-1
    1. Laporte Y., Lloyd D. P. (1952). Nature and significance of the reflex connections established by large afferent fibers of muscular origin. Am. J. Physiol. 169 609–621. 10.1152/ajplegacy.1952.169.3.609
    1. Larsen B., Mrachacz-Kersting N., Lavoie B. A., Voigt M. (2006). The amplitude modulation of the quadriceps H-reflex in relation to the knee joint action during walking. Exp. Brain Res. 170 555–566. 10.1007/s00221-005-0237-1
    1. Levinsson A., Holmberg H., Broman J., Zhang M., Schouenborg J. (2002). Spinal sensorimotor transformation: relation between cutaneous somatotopy and a reflex network. J. Neurosci. 22 8170–8182. 10.1523/JNEUROSCI.22-18-08170.2002
    1. Liddell E. G. T., Sherrington C. (1924). Reflexes in response to stretch (myotatic reflexes). Proc. R. Soc. B 96 212–242. 10.1098/rspb.1924.0023
    1. Liddell E. G. T., Sherrington C. S. (1925). Recruitment and some other features of reflex inhibition. Proc. R. Soc. Lond. Ser. B 97 488–518. 10.1098/rspb.1925.0016
    1. Ljunggren E. E., Haupt S., Ausborn J., Ampatzis K., El Manira A. (2014). Optogenetic activation of excitatory premotor interneurons is sufficient to generate coordinated locomotor activity in larval zebrafish. J. Neurosci. 34 134–139. 10.1523/JNEUROSCI.4087-13.2014
    1. Lloyd D. P. C. (1943a). Conduction and synaptic transmission of the reflex response to stretch in spinal cats. J. Neurophysiol. 6 317–326. 10.1152/jn.1943.6.4.317
    1. Lloyd D. P. C. (1943b). Neuron patterns controlling transmission of ipsilateral hindlimb reflexes in cat. J. Neurophysiol. 6 293–315. 10.1152/jn.1943.6.4.293
    1. Lloyd D. P. C. (1946). Integrative pattern of excitation and inhibition in two neuron reflex arcs. J. Neurophysiol. 9 439–444. 10.1152/jn.1946.9.6.439
    1. Loeb G. E., Bak M. J., Duysens J. (1977). Long-term unit recording from somatosensory neurons in the spinal ganglia of the freely walking cat. Science 197 1192–1194. 10.1126/science.897663
    1. Lundberg A., Malmgren K., Schomburg E. D. (1987). Reflex pathways from group II muscle afferents. 1. Distribution and linkage of reflex actions to alpha-motoneurones. Exp. Brain Res. 65 271–281. 10.1007/BF00236299
    1. Lundberg A., Winsbury G. (1960). Selective adequate activation of large afferents from muscle spindles and Golgi tendon organs. Acta Physiol. Scand. 49 155–164. 10.1111/j.1748-1716.1960.tb01939.x
    1. Macefield V. G., Gandevia S. C., Bigland-Ritchie B., Gorman R. B., Burke D. (1993). The firing rates of human motoneurones voluntarily activated in the absence of muscle afferent feedback. J. Physiol. 471 429–443. 10.1113/jphysiol.1993.sp019908
    1. Mackey A. S., Uttaro D., McDonough M. P., Krivis L. I., Knikou M. (2016). Convergence of flexor reflex and corticospinal inputs on tibialis anterior network in humans. Clin. Neurophysiol. 127 706–715. 10.1016/j.clinph.2015.06.011
    1. MacLellan M. J., Ivanenko Y. P., Cappellini G., Sylos Labini F., Lacquaniti F. (2012). Features of hand-foot crawling behavior in human adults. J. Neurophysiol. 107 114–125. 10.1152/jn.00693.2011
    1. Magladery J. W., Porter W. E., Park A. M., Teasdall R. D. (1951a). Electrophysiological studies of nerve and reflex activity in normal man. IV. The two-neurone reflex and identification of certain action potentials from spinal roots and cord. Bull Johns Hopkins Hosp. 88 499–519.
    1. Magladery J. W., Teasdall R. D., Park A. M., Porter W. E. (1951b). Electrophysiological studies of nerve and reflex activity in normal man. V. Excitation and inhibition of two-neurone reflexes by afferent impulses in the same trunk. Bull Johns Hopkins Hosp. 88 520–537.
    1. Manter J. T. (1938). The dynamics of quadrupedal walking. J. Exp. Biol. 15 522–540.
    1. Marchand-Pauvert V., Nicolas G., Marque P., Iglesias C., Pierrot-Deseilligny E. (2005). Increase in group II excitation from ankle muscles to thigh motoneurones during human standing. J. Physiol. 566 257–271. 10.1113/jphysiol.2005.087817
    1. Marchand-Pauvert V., Nielsen J. B. (2002). Modulation of heteronymous reflexes from ankle dorsiflexors to hamstring muscles during human walking. Exp. Brain Res. 142 402–408. 10.1007/s00221-001-0942-3
    1. Marque P., Nicolas G., Simonetta-Moreau M., Pierrot-Deseilligny E., Marchand-Pauvert V. (2005). Group II excitations from plantar foot muscles to human leg and thigh motoneurones. Exp. Brain Res. 161 486–501. 10.1007/s00221-004-2096-6
    1. Martinez M., Delivet-Mongrain H., Leblond H., Rossignol S. (2012). Effect of locomotor training in completely spinalized cats previously submitted to a spinal hemisection. J. Neurosci. 32 10961–10970. 10.1523/JNEUROSCI.1578-12.2012
    1. Matsushita M., Ueyama T. (1973). Ventral motor nucleus of the cervical enlargement in some mammals; its specific afferents from the lower cord levels and cytoarchitecture. J. Comp. Neurol. 150 33–52. 10.1002/cne.901500103
    1. Matsuyama K., Nakajima K., Mori F., Aoki M., Mori S. (2004). Lumbar commissural interneurons with reticulospinal inputs in the cat: morphology and discharge patterns during fictive locomotion. J. Comp. Neurol. 474 546–561. 10.1002/cne.20131
    1. Mattei B., Schmied A., Vedel J. P. (2003). Recurrent inhibition of wrist extensor motoneurones: a single unit study on a deafferented patient. J. Physiol. 549 975–984. 10.1113/jphysiol.2003.039040
    1. Matthews P. B. C. (1991). The human stretch reflex and the motor cortex. Trends Neurosci. 14 87–121. 10.1016/0166-2236(91)90064-2
    1. McCrea D. A. (1998). Neuronal basis of afferent-evoked enhancement of locomotor activity. Ann. N. Y. Acad. Sci. 860 216–225. 10.1111/j.1749-6632.1998.tb09051.x
    1. McCrea D. A., Pratt C. A., Jordan L. M. (1980). Renshaw cell activity and recurrent effects on motoneurons during fictive locomotion. J. Neurophysiol. 44 475–488. 10.1152/jn.1980.44.3.475
    1. McKenna J. E., Prusky G. T., Whishaw I. Q. (2000). Cervical motoneuron topography reflects the proximodistal organization of muscles and movements of the rat forelimb: a retrograde carbocyanine dye analysis. J. Comp. Neurol. 419 286–296. 10.1002/(SICI)1096-9861(20000410)419:3<286::AID-CNE2>;2-3
    1. McVea D. A., Donelan J. M., Tachibana A., Pearson K. G. (2005). A role for hip position in initiating the swing-to-stance transition in walking cats. J. Neurophysiol. 94 3497–3508. 10.1152/jn.00511.2005
    1. Ménard A., Leblond H., Gossard J. P. (2002). Sensory integration in presynaptic inhibitory pathways during fictive locomotion in the cat. J. Neurophysiol. 88 163–171. 10.1152/jn.2002.88.1.163
    1. Ménard A., Leblond H., Gossard J. P. (2003). Modulation of monosynaptic transmission by presynaptic inhibition during fictive locomotion in the cat. Brain Res. 964 67–82. 10.1016/S0006-8993(02)04067-2
    1. Meunier S., Penicaud A., Pierrot-Deseilligny E., Rossi A. (1990). Monosynaptic Ia excitation and recurrent inhibition from quadriceps to ankle flexors and extensors in man. J. Physiol. 423 661–675. 10.1113/jphysiol.1990.sp018046
    1. Meunier S., Pierrot-Deseilligny E., Simonetta M. (1993). Pattern of monosynaptic heteronymous Ia connections in the human lower limb. Exp. Brain Res. 96 534–544. 10.1007/BF00234121
    1. Meunier S., Pierrot-Deseilligny E., Simonetta-Moreau M. (1994). Pattern of heteronymous recurrent inhibition in the human lower limb. Exp. Brain Res. 102 149–159. 10.1007/BF00232447
    1. Miller S., Reitsma D. J., van der Meché F. G. (1973). Functional organization of long ascending propriospinal pathways linking lumbo-sacral and cervical segments in the cat. Brain Res. 62 169–188. 10.1016/0006-8993(73)90626-4
    1. Miller S., Ruit J. B., van der Meché F. G. (1977). Reversal of sign of long spinal reflexes dependent on the phase of the step cycle in the high decerebrate cat. Brain Res. 128 447–459. 10.1016/0006-8993(77)90170-6
    1. Mizuno Y., Tanaka R., Yanagisawa N. (1971). Reciprocal group I inhibition on triceps surae motoneurons in man. J. Neurophysiol. 34 1010–1017. 10.1152/jn.1971.34.6.1010
    1. Morin C., Pierrot-Deseilligny E., Hultborn H. (1984). Evidence for presynaptic inhibition of muscle spindle Ia afferents in man. Neurosci. Lett. 44 137–142. 10.1016/0304-3940(84)90071-5
    1. Mountcastle V. B. (1957). Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J. Neurophysiol. 20 408–434. 10.1152/jn.1957.20.4.408
    1. Muir G. D., Steeves J. D. (1997). Sensorimotor stimulation to improve locomotor recovery after spinal cord injury. Trends Neurosci. 20 72–77. 10.1016/S0166-2236(96)10068-0
    1. Mummidisetty C. K., Smith A. C., Knikou M. (2013). Modulation of reciprocal and presynaptic inhibition during robotic-assisted stepping in humans. Clin. Neurophysiol. 124 557–564. 10.1016/j.clinph.2012.09.007
    1. Ni Y., Nawabi H., Liu X., Yang L., Miyamichi K., Tedeschi A., et al. (2014). Characterization of long descending premotor propriospinal neurons in the spinal cord. J. Neurosci. 34 9404–9417. 10.1523/JNEUROSCI.1771-14.2014
    1. Nishimaru H., Restrepo C. E., Kiehn O. (2006). Activity of Renshaw cells during locomotor-like rhythmic activity in the isolated spinal cord of neonatal mice. J. Neurosci. 26 5320–5328. 10.1523/JNEUROSCI.5127-05.2006
    1. Nishimaru H., Restrepo C. E., Ryge J., Yanagawa Y., Kiehn O. (2005). Mammalian motor neurons corelease glutamate and acetylcholine at central synapses. Proc. Natl. Acad. Sci. U.S.A. 102 5245–5249. 10.1073/pnas.0501331102
    1. Pang M. Y., Yang J. F. (2000). The initiation of the swing phase in human infant stepping: importance of hip position and leg loading. J. Physiol. 528 389–404. 10.1111/j.1469-7793.2000.00389.x
    1. Pang M. Y., Yang J. F. (2001). Interlimb co-ordination in human infant stepping. J. Physiol. 533 617–625. 10.1111/j.1469-7793.2001.0617a.x
    1. Patrick S. K., Noah J. A., Yang J. F. (2009). Interlimb coordination in human crawling reveals similarities in development and neural control with quadrupeds. J. Neurophysiol. 101 603–613. 10.1152/jn.91125.2008
    1. Pearson K. G., Ramirez J. M., Jiang W. (1992). Entrainment of the locomotor rhythm by group Ib afferents from ankle extensor muscles in spinal cats. Exp. Brain Res. 90 557–566. 10.1007/BF00230939
    1. Pearson K. G., Rossignol S. (1991). Fictive motor patterns in chronic spinal cats. J. Neurophysiol. 66 1874–1887. 10.1152/jn.1991.66.6.1874
    1. Perreault M. C., Angel M. J., Guertin P., McCrea D. A. (1995). Effects of stimulation of hindlimb flexor group II afferents during fictive locomotion in the cat. J. Physiol. 487 211–220. 10.1113/jphysiol.1995.sp020872
    1. Petersen N., Morita H., Nielsen J. (1999). Modulation of reciprocal inhibition between ankle extensors and flexors during walking in man. J. Physiol. 520 605–619. 10.1111/j.1469-7793.1999.00605.x
    1. Pierrot-Deseilligny E., Bergego C., Mazieres L. (1983). Reflex control of bipedal gait in man. Adv. Neurol. 39 699–716.
    1. Pierrot-Deseilligny E., Burke D. (2005). The Circuitry of the Human Spinal Cord: Its Role in Motor Control and Movement Disorders. Cambridge: Cambridge University Press; 10.1017/CBO9780511545047
    1. Pierrot-Deseilligny E., Katz R., Morin C. (1979). Evidence of Ib inhibition in human subjects. Brain Res. 166 176–179. 10.1016/0006-8993(79)90660-7
    1. Pocratsky A. M., Burke D. A., Morehouse J. R., Beare J. E., Riegler A. S., Tsoulfas P., et al. (2017). Reversible silencing of lumbar spinal interneurons unmasks a task-specific network for securing hindlimb alternation. Nat. Commun. 8:1963. 10.1038/s41467-017-02033-x
    1. Powers R. K., Binder M. D. (1985). Determination of afferent fibers mediating oligosynaptic group I input to cat medial gastrocnemius motoneurons. J. Neurophysiol. 53 518–529. 10.1152/jn.1985.53.2.518
    1. Pratt C. A., Jordan L. M. (1987). Ia inhibitory interneurons and Renshaw cells as contributors to the spinal mechanisms of fictive locomotion. J. Neurophysiol. 57 56–71. 10.1152/jn.1987.57.1.56
    1. Prost J. H. (1967). Bipedalism of man and gibbon compared using estimates of joint motion. Am. J. Phys. Anthrop. 26 135–148. 10.1002/ajpa.1330260205
    1. Quevedo J., Eguibar J. R., Lomeli J., Rudomin P. (1997). Patterns of connectivity of spinal interneurons with single muscle afferents. Exp. Brain Res. 115 387–402. 10.1007/PL00005709
    1. Quevedo J., Stecina K., Gosgnach S., McCrea D. A. (2005). Stumbling corrective reaction during fictive locomotion in the cat. J. Neurophysiol. 94 2045–2052. 10.1152/jn.00175.2005
    1. Quinlan K. A., Kiehn O. (2007). Segmental, synaptic actions of commissural interneurons in the mouse spinal cord. J. Neurosci. 27 6521–6530. 10.1523/JNEUROSCI.1618-07.2007
    1. Rastad J., Gad P., Jankowska E., McCrea D., Westman J. (1990). Light microscopical study of dendrites and perikarya of interneurones mediating la reciprocal inhibition of cat lumbar alpha-motoneurones. Anat. Embryol. 181 381–388. 10.1007/BF00186910
    1. Reed W. R., Shum-Siu A., Onifer S. M., Magnuson D. S. (2006). Inter-enlargement pathways in the ventrolateral funiculus of the adult rat spinal cord. Neuroscience 142 1195–1207. 10.1016/j.neuroscience.2006.07.017
    1. Reed W. R., Shum-Siu A., Whelan A., Onifer S. M., Magnuson D. S. (2009). Anterograde labeling of ventrolateral funiculus pathways with spinal enlargement connections in the adult rat spinal cord. Brain Res. 1302 76–84. 10.1016/j.brainres.2009.09.049
    1. Renshaw B. (1942). Effects of presynaptic volleys on spread of impulses over the soma of the motoneurones. J. Neurophysiol. 5 235–243. 10.1152/jn.1942.5.3.235
    1. Renshaw B. (1946). Central effects of centripetal impulses in axons of spinal ventral roots. J. Neurophysiol. 9 191–204. 10.1152/jn.1946.9.3.191
    1. Roberts A., Soffe S. R., Wolf E. S., Yoshida M., Zhao F. Y. (1998). Central circuits controlling locomotion in young frog tadpoles. Ann. N. Y. Acad. Sci. 860 19–34. 10.1111/j.1749-6632.1998.tb09036.x
    1. Rossignol S., Dubuc R., Gossard J. P. (2006). Dynamic sensorimotor interactions in locomotion. Physiol. Rev. 86 89–154. 10.1152/physrev.00028.2005
    1. Ruder L., Takeoka A., Arber S. (2016). Long-distance descending spinal neurons ensure quadrupedal locomotor stability. Neuron 92 1063–1078. 10.1016/j.neuron.2016.10.032
    1. Rudomin P. (1990). Presynaptic inhibition of muscle spindle and tendon organ afferents in the mammalian spinal cord. Trends Neurosci. 13 499–505. 10.1016/0166-2236(90)90084-N
    1. Rudomin P. (2002). Selectivity of the central control of sensory information in the mammalian spinal cord. Adv. Exp. Med. Biol. 508 157–170. 10.1007/978-1-4615-0713-0_19
    1. Rudomin P. (2009). In search of lost presynaptic inhibition. Exp. Brain Res. 196 139–151. 10.1007/s00221-009-1758-9
    1. Rudomin P., Lomelí J., Quevedo J. (2004). Differential modulation of primary afferent depolarization of segmental and ascending intraspinal collaterals of single muscle afferents in the cat spinal cord. Exp. Brain Res. 156 377–391. 10.1007/s00221-003-1788-7
    1. Rudomin P., Schmidt R.F. (1999). Presynaptic inhibition in the vertebrate spinal cord revisited. Exp. Brain Res. 129 1–37. 10.1007/s002210050933
    1. Ryall R. W. (1970). Renshaw cell mediated inhibition of Renshaw cells: patterns of excitation and inhibition from impulses in motor axon collaterals. J. Neurophysiol. 33 257–270. 10.1152/jn.1970.33.2.257
    1. Rybak I. A., Dougherty K. J., Shevtsova N. A. (2015). Organization of the mammalian locomotor CPG: review of computational model and circuit architectures based on genetically identified spinal interneurons. eNeuro 2:ENEURO.0069-15.2015. 10.1523/ENEURO.0069-15.2015
    1. Sarica Y., Ertekin C. (1985). Descending lumbosacral cord potentials (DLCP) evoked by stimulation of the median nerve. Brain Res. 325 299–301. 10.1016/0006-8993(85)90327-0
    1. Schieppati M., Nardone A. (1999). Group II spindle afferent fibers in humans: their possible role in the reflex control of stance. Prog. Brain Res. 123 461–472. 10.1016/S0079-6123(08)62882-4
    1. Schieppati M., Nardone A., Siliotto R., Grasso M. (1995). Early and late stretch responses of human foot muscles induced by perturbation of stance. Exp. Brain Res. 105 411–422.
    1. Schneider S. P., Fyffe R. E. (1992). Involvement of GABA and glycine in recurrent inhibition of spinal motoneurons. J. Neurophysiol. 68 397–406. 10.1152/jn.1992.68.2.397
    1. Schomburg E. D., Behrends H. B. (1978). The possibility of phase-dependent monosynaptic and polysynaptic is excitation to homonymous motoneurones during fictive locomotion. Brain Res. 143 533–537. 10.1016/0006-8993(78)90363-3
    1. Schomburg E. D., Petersen N., Barajon I., Hultborn H. (1998). Flexor reflex afferents reset the step cycle during fictive locomotion in the cat. Exp. Brain Res. 122 339–350. 10.1007/s002210050522
    1. Schomburg E. D., Roesler J., Meinck H. M. (1977). Phase-dependent transmission in the excitatory propriospinal reflex pathway from forelimb afferents to lumbar motoneurones during fictive locomotion. Neurosci. Lett. 4 249–252. 10.1016/0304-3940(77)90187-2
    1. Severin F. V. (1970). Role of the gamma-motor system in activation of extensor alpha-motor neurons during controlled locomotion. Biofizika 15 1096–1102.
    1. Sherrington C. S. (1907). On reciprocal innervation of antagonistic muscle – Tenth note. Proc. R. Soc. Lond. Ser. 79 337–349. 10.1098/rspb.1907.0026
    1. Sherrington C. S. (1910). Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J. Physiol. 40 28–121. 10.1113/jphysiol.1910.sp001362
    1. Sherrington C. S., Laslett E. E. (1903). Observations on some spinal reflexes and the interconnection of spinal segments. J. Physiol. 29 58–96. 10.1113/jphysiol.1903.sp000946
    1. Simonetta-Moreau M., Marque P., Marchand-Pauvert V., Pierrot-Deseilligny E. (1999). The pattern of excitation of human lower limb motoneurones by probable group II muscle afferents. J. Physiol. 517 287–300. 10.1111/j.1469-7793.1999.0287z.x
    1. Sinkjær T., Andersen J. B., Ladouceur M., Christensen L. O., Nielsen J. B. (2000). Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man. J. Physiol. 523 817–827. 10.1111/j.1469-7793.2000.00817.x
    1. Sinkjær T., Andersen J. B., Larsen B. (1996). Soleus stretch reflex modulation during gait in humans. J. Neurophysiol. 76 1112–1120. 10.1152/jn.1996.76.2.1112
    1. Smith A. C., Knikou M. (2016). A review on locomotor training after spinal cord injury: reorganization of spinal neuronal circuits and recovery of motor function. Neural Plast. 2016:1216258. 10.1155/2016/1216258
    1. Smith R. R., Shum-Siu A., Baltzley R., Bunger M., Baldini A., Burke D. A., et al. (2006). Effects of swimming on functional recovery after incomplete spinal cord injury in rats. J. Neurotrauma 23 908–919. 10.1089/neu.2006.23.908
    1. Soteropoulos D. S., Edgley S. A., Baker S. N. (2013). Spinal commissural connections to motoneurons controlling the primate hand and wrist. J. Neurosci. 33 9614–9625. 10.1523/JNEUROSCI.0269-13.2013
    1. Stecina K., Quevedo J., McCrea D. A. (2005). Parallel reflex pathways from flexor muscle afferents evoking resetting and flexion enhancement during fictive locomotion and scratch in the cat. J. Physiol. 569 275–290. 10.1113/jphysiol.2005.095505
    1. Stein R. B., Misiaszek J. E., Pearson K. G. (2000). Functional role of muscle reflexes for force generation in the decerebrate walking cat. J. Physiol. 525 781–791. 10.1111/j.1469-7793.2000.00781.x
    1. Stephens M. J., Yang J. F. (1996). Short latency, non-reciprocal group I inhibition is reduced during the stance phase of walking in humans. Brain Res. 743 24–31. 10.1016/S0006-8993(96)00977-8
    1. Stepien A. E., Arber S. (2008). Probing the locomotor conundrum: descending the ‘V’ interneuron ladder. Neuron 60 1–4. 10.1016/j.neuron.2008.09.030
    1. Stepien A. E., Tripodi M., Arber S. (2010). Monosynaptic rabies virus reveals premotor network organization and synaptic specificity of cholinergic partition cells. Neuron 68 456–472. 10.1016/j.neuron.2010.10.019
    1. Sterling P., Kuypers H. G. (1968). Anatomical organization of the brachial spinal cord of the cat. 3. The propriospinal connections. Brain Res. 7 419–443. 10.1016/0006-8993(68)90008-5
    1. Stokke M. F., Nissen U. V., Glover J. C., Kiehn O. (2002). Projection patterns of commissural interneurons in the lumbar spinal cord of the neonatal rat. J. Comp. Neurol. 446 349–359. 10.1002/cne.10211
    1. Stuart G. J., Redman S. J. (1990). Voltage dependence of Ia reciprocal inhibitory currents in cat spinal motoneurones. J. Physiol. 420 111–125. 10.1113/jphysiol.1990.sp017903
    1. Stubbs P. W., Mrachacz-Kersting N. (2009). Short-latency crossed inhibitory responses in the human soleus muscle. J. Neurophysiol. 102 3596–3605. 10.1152/jn.00667.2009
    1. Stubbs P. W., Nielsen J. F., Sinkjær T., Mrachacz-Kersting N. (2011a). Crossed spinal soleus muscle communication demonstrated by H-reflex conditioning. Muscle Nerve 43 845–850. 10.1002/mus.21964
    1. Stubbs P. W., Nielsen J. F., Sinkjær T., Mrachacz-Kersting N. (2011b). Phase modulation of the short-latency crossed spinal response in the human soleus muscle. J. Neurophysiol. 105 503–511. 10.1152/jn.00786.2010
    1. Suzuki S., Nakajima T., Futatsubashi G., Mezzarane R. A., Ohtsuka H., Ohki Y., et al. (2016). Phase-dependent reversal of the crossed conditioning effect on the soleus Hoffmann reflex from cutaneous afferents during walking in humans. Exp. Brain Res. 234 617–626. 10.1007/s00221-015-4463-x
    1. Talpalar A. E., Bouvier J., Borgius L., Fortin G., Pierani A., Kiehn O. (2013). Dual-mode operation of neuronal networks involved in left-right alternation. Nature 500 85–88. 10.1038/nature12286
    1. Talpalar A. E., Endo T., Löw P., Borgius L., Hägglund M., Dougherty K. J., et al. (2011). Identification of minimal neuronal networks involved in flexor-extensor alternation in the mammalian spinal cord. Neuron 71 1071–1084. 10.1016/j.neuron.2011.07.011
    1. Thota A. K., Watson S. C., Knapp E., Thompson B., Jung R. (2005). Neuromechanical control of locomotion in the rat. J. Neurotrauma 22 442–465. 10.1089/neu.2005.22.442
    1. Trank T. V., Turkin V. V., Hamm T. M. (1999). Organization of recurrent inhibition and facilitation in motoneuron pools innervating dorsiflexors of the cat hindlimb. Exp. Brain Res. 125 344–352. 10.1007/s002210050690
    1. Turkin V. V., Monroe K. S., Hamm T. M. (1998). Organization of recurrent inhibition and facilitation in motor nuclei innervating ankle muscles of the cat. J. Neurophysiol. 79 778–790. 10.1152/jn.1998.79.2.778
    1. Uchiyama T., Windhorst U. (2007). Effects of spinal recurrent inhibition on motoneuron short-term synchronization. Biol. Cybern. 96 561–575. 10.1007/s00422-007-0151-7
    1. Vavrek R., Girgis J., Tetzlaff W., Hiebert G. W., Fouad K. (2006). BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats. Brain 129 1534–1545. 10.1093/brain/awl087
    1. Wenner P., O’Donovan M. J., Matise M. P. (2000). Topographical and physiological characterization of interneurons that express engrailed-1 in the embryonic chick spinal cord. J. Neurophysiol. 84 2651–2657. 10.1152/jn.2000.84.5.2651
    1. Willis W. D. (2006). John Eccles’ studies of spinal cord presynaptic inhibition. Prog. Neurobiol. 78 189–214. 10.1016/j.pneurobio.2006.02.007
    1. Woo S. H., Lukacs V., de Nooij J. C., Zaytseva D., Criddle C. R., Francisco A., et al. (2015). Piezo2 is the principal mechanotransduction channel for proprioception. Nat. Neurosci. 18 1756–1762. 10.1038/nn.416210.1038/nn.4162
    1. Yakovenko S., Mushahwar V., VanderHorst V., Holstege G., Prochazka A. (2002). Spatiotemporal activation of lumbosacral motoneurons in the locomotor step cycle. J. Neurophysiol. 87 1542–1553. 10.1152/jn.00479.2001
    1. Zagoraiou L., Akay T., Martin J. F., Brownstone R. M., Jessell T. M., Miles G. B. (2009). A cluster of cholinergic premotor interneurons modulates mouse locomotor activity. Neuron 64 645–662. 10.1016/j.neuron.2009.10.017
    1. Zaporozhets E., Cowley K. C., Schmidt B. J. (2006). Propriospinal neurons contribute to bulbospinal transmission of the locomotor command signal in the neonatal rat spinal cord. J. Physiol. 572 443–458. 10.1113/jphysiol.2005.102376
    1. Zehr E. P., Balter J. E., Ferris D. P., Hundza S. R., Loadman P. M., Stoloff R. H. (2007). Neural regulation of rhythmic arm and leg movement is conserved across human locomotor tasks. J. Physiol. 582 209–227. 10.1113/jphysiol.2007.133843
    1. Zehr E. P., Collins D. F., Chua R. (2001). Human interlimb reflexes evoked by electrical stimulation of cutaneous nerves innervating the hand and foot. Exp. Brain Res. 140 495–504. 10.1007/s002210100857
    1. Zehr E. P., Komiyama T., Stein R. B. (1997). Cutaneous reflexes during human gait: electromyographic and kinematic responses to electrical stimulation. J. Neurophysiol. 77 3311–3325. 10.1152/jn.1997.77.6.3311
    1. Zhang J., Lanuza G. M., Britz O., Wang Z., Siembab V. C., Zhang Y., et al. (2014). V1 and v2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion. Neuron 82 138–150. 10.1016/j.neuron.2014.02.013
    1. Zhang Y., Narayan S., Geiman E., Lanuza G. M., Velasquez T., Shanks B., et al. (2008). V3 spinal neurons establish a robust and balanced locomotor rhythm during walking. Neuron 60 84–96. 10.1016/j.neuron.2008.09.027
    1. Zhong G., Díaz-Ríos M., Harris-Warrick R. M. (2006). Intrinsic and functional differences among commissural interneurons during fictive locomotion and serotonergic modulation in the neonatal mouse. J. Neurosci. 26 6509–6517. 10.1523/JNEUROSCI.1410-06.2006
    1. Zhong G., Droho S., Crone S. A., Dietz S., Kwan A. C., Webb W. W., et al. (2010). Electrophysiological characterization of V2a interneurons and their locomotor-related activity in the neonatal mouse spinal cord. J. Neurosci. 30 170–182. 10.1523/JNEUROSCI.4849-09.2010
    1. Ziskind-Conhaim L., Mentis G. Z., Wiesner E. P., Titus D. J. (2010). Synaptic integration of rhythmogenic neurons in the locomotor circuitry: the case of Hb9 interneurons. Ann. N. Y. Acad. Sci. 1198 72–84. 10.1111/j.1749-6632.2010.05533.x
    1. Zytnicki D., Lafleur J., Horcholle-Bossavit G., Lamy F., Jami L. (1990). Reduction of Ib autogenetic inhibition in motoneurons during contractions of an ankle extensor muscle in the cat. J. Neurophysiol. 64 1380–1389. 10.1152/jn.1990.64.5.1380

Source: PubMed

3
購読する