Association of Empagliflozin Treatment With Albuminuria Levels in Patients With Heart Failure: A Secondary Analysis of EMPEROR-Pooled

João Pedro Ferreira, Faiez Zannad, Javed Butler, Gerasimos Filippatos, Stuart J Pocock, Martina Brueckmann, Dominik Steubl, Elke Schueler, Stefan D Anker, Milton Packer, João Pedro Ferreira, Faiez Zannad, Javed Butler, Gerasimos Filippatos, Stuart J Pocock, Martina Brueckmann, Dominik Steubl, Elke Schueler, Stefan D Anker, Milton Packer

Abstract

Importance: Albuminuria, routinely assessed as spot urine albumin-to-creatinine ratio (UACR), indicates structural damage of the glomerular filtration barrier and is associated with poor kidney and cardiovascular outcomes. Sodium-glucose cotransporter-2 (SGLT2) inhibitors have been found to reduce UACR in patients with type 2 diabetes, but its use in patients with heart failure (HF) is less well studied.

Objective: To analyze the association of empagliflozin with study outcomes across baseline levels of albuminuria and change in albuminuria in patients with HF across a wide range of ejection fraction levels.

Design, setting, and participants: This post hoc analysis included all patients with HF from the EMPEROR-Pooled analysis using combined individual patient data from the international multicenter randomized double-blind parallel-group, placebo-controlled EMPEROR-Reduced and EMPEROR-Preserved trials. Participants in the original trials were excluded from this analysis if they were missing baseline UACR data. EMPEROR-Preserved was conducted from March 27, 2017, to April 26, 2021, and EMPEROR-Reduced was conducted from April 6, 2017, to May 28, 2020. Data were analyzed from January to June 2022.

Interventions: Randomization to empagliflozin or placebo.

Main outcomes and measures: New-onset macroalbuminuria and regression to normoalbuminuria and microalbuminuria.

Results: A total of 9673 patients were included (mean [SD] age, 69.9 [10.4] years; 3551 [36.7%] female and 6122 [63.3%] male). Of these, 5552 patients had normoalbuminuria (UACR <30 mg/g) and 1025 had macroalbuminuria (UACR >300 mg/g). Compared with normoalbuminuria, macroalbuminuria was associated with younger age, races other than White, obesity, male sex, site region other than Europe, higher levels of N-terminal pro-hormone brain natriuretic peptide and high-sensitivity troponin T, higher blood pressure, higher New York Heart Association class, greater HF duration, more frequent previous HF hospitalizations, diabetes, hypertension, lower eGFR, and less frequent use of angiotensin-converting enzyme inhibitors or angiotensin receptor blockers and mineralocorticoid receptor antagonists. An increase in events was observed in individuals with higher UACR levels. The association of empagliflozin with cardiovascular mortality or HF hospitalization was consistent across UACR categories (hazard ratio [HR], 0.80; 95% CI, 0.69-0.92 for normoalbuminuria; HR, 0.74; 95% CI, 0.63-0.86 for microalbuminuria; HR, 0.78; 95% CI, 0.63-0.98 for macroalbuminuria; interaction P trend = .71). Treatment with empagliflozin was associated with lower incidence of new macroalbuminuria (HR, 0.81; 95% CI, 0.70-0.94; P = .005) and an increase in rate of remission to sustained normoalbuminuria or microalbuminuria (HR, 1.31; 95% CI, 1.07-1.59; P = .009) but not with a reduction in UACR in the overall population; however, UACR was reduced in patients with diabetes, who had higher UACR levels than patients without diabetes (geometric mean for diabetes at baseline, 0.91; 95% CI, 0.85-0.98 and for no diabetes at baseline, 1.08; 95% CI, 1.01-1.16; interaction P = .008).

Conclusions and relevance: In this post hoc analysis of a randomized clinical trial, compared with placebo, empagliflozin was associated with reduced HF hospitalizations or cardiovascular death irrespective of albuminuria levels at baseline, reduced progression to macroalbuminuria, and reversion of macroalbuminuria.

Trial registration: ClinicalTrials.gov Identifiers: NCT03057977 and NCT03057951.

Conflict of interest statement

Conflict of Interest Disclosures: Dr Ferreria reports personal fees from Boehringer Ingelheim during the conduct of the study and personal fees from Boehringer Ingelheim outside the submitted work. Dr Zannad reports personal fees from Acceleron Boehringer Ingelheim during the conduct of the study and personal fees from Janssen, Novartis, Boston Scientific, Amgen, CVRx, AstraZeneca, Vifor Fresenius, Cardior, Cereno Pharmaceutical, Applied Therapeutics, Merck, Bayer, and Cellprothera and other from CardioVascular Clinical Trialists, Cardiorenal, Novo Nordisk, Servier and G3 Pharmaceuticals outside the submitted work. Dr Butler reports personal fees from Boehringer Ingelheim during the conduct of the study and personal fees from Adrenomed, Amgen, Array, AstraZeneca, Bayer, Bristol Myers Squibb, Boehringer Ingelheim, Cardior, CVRx, Foundry, G3 Pharmaceutical, Imbria, Impulse Dynamics, Innolife, Janssen, LivaNova, Luitpold, Medtronic, Merck, Novartis, Novo Nordisk, Relypsa, Roche, Sanofi, Sequana Medical, V-Wave, and Vifor outside the submitted work. Dr Filippatos reports personal fees from Boehringer Ingelheim during the conduct of the study and personal fees from Medtronic, Vifor, Servier, Novartis, Bayer, Amgen, Windtree, and Boehringer Ingelheim outside the submitted work. Dr Pocock reported personal fees from Boehringer Ingelheim Consultancy outside the submitted work. Dr Brueckmann reports personal fees from Boehringer Ingelheim International and is an employee of Boehringer Ingelheim. Dr Steubl is an employee of Boehringer Ingelheim. Dipl Math Schueler is an employee of mainanalytics, contracted by Boehringer Ingelheim. Dr Pocock reports personal fees from Boehringer Ingelheim during the conduct of the study and personal fees from Boehringer Ingelheim outside the submitted work. Dr Anker reports personal fees from Boehringer Ingelheim during the conduct of the study and grants and personal fees from Abbott Vascular and Vifor and personal fees from Bayer, Boehringer Ingelheim, Brahms, Cardiac Dimensions, Cordio, Novartis, Occlutech, Servier, and V-Wave outside the submitted work. Dr Packer reports personal fees from Boehringer Ingelheim during the conduct of the study and personal fees from AbbVie, Actavis, Altimmune, Amgen, Amarin, AstraZeneca, Boehringer Ingelheim, Bristol Myers Squibb, Caladrius, Casana, CSL Behring, Cytokinetics, Johnson & Johnson, Imara, Eli Lily & Company, Moderna, Novartis, ParatusRx, Pfizer, Reata, Relypsa, Salamandra, Synthetic Biologics, Theravance, and Casana outside the submitted work. No other disclosures were reported.

Figures

Figure 1.. Association of Empagliflozin With Baseline…
Figure 1.. Association of Empagliflozin With Baseline Urinary Albumin-to-Creatinine Ratio (UACR) Categories
Cox proportional hazard model adjusted for age (continuous), baseline estimated glomerular filtration rate (eGFR; continuous), baseline left ventricular ejection fraction (continuous), study, region, baseline diabetes status, sex, UACR category, treatment, and treatment-by-UACR category. Composite kidney end point defined by sustained decline in eGFR ≥40% from baseline and sustained eGFR 2 for patients with baseline eGFR ≥ or <30 mL/min/1.73 m2, respectively; long-term dialysis; or kidney transplant. Alternative kidney end point defined by sustained decline in eGFR ≥50% from baseline and sustained eGFR <15 or <10 mL/min/1.73 m2 for patients with baseline eGFR ≥ or <30 mL/min/1.73 m2, respectively; long-term dialysis; or kidney transplant. Total hospitalizations for heart failure were analyzed using a joint frailty model accounting for cardiovascular death and adjusting for the same covariates as the Cox model. Hazard ratios (HRs) for the composite kidney end point should be interpreted with caution due to significant heterogeneity across the 2 trials. The subgroup analysis by trial estimated an HR of 0.51 (95% CI, 0.33 to 0.79) in the EMPEROR-Reduced trial and 0.95 (95% CI, 0.73 to 1.24) in the EMPEROR-Preserved trial;P value for interaction between trials = .02. NA indicates not applicable; NNH, number needed to harm; NNT, number needed to treat; py, person-year.
Figure 2.. Cumulative Incidence Curves Considering All-Cause…
Figure 2.. Cumulative Incidence Curves Considering All-Cause Mortality as Competing Risk for Time to Incidence of Macroalbuminuria
A, Time to incidence of macroalbuminuria in patients with normoalbuminuria or microalbuminuria (urinary albumin-to-creatinine ratio [UACR] ≤300 mg/dL) at baseline. B, Time to remission to normoalbuminuria or microalbuminuria in patients with macroalbuminuria (UACR >300 mg/dL) at baseline.
Figure 3.. Association of Empagliflozin With Incidence…
Figure 3.. Association of Empagliflozin With Incidence of Macroalbuminuria in Subgroups of Interest
A, Association of empagliflozin with macroalbuminuria in patients with normoalbuminuria or microalbuminuria (urinary albumin-to-creatinine ratio [UACR] ≤300 mg/dl) at baseline. B, Remission to microalbuminuria or normoalbuminuria in patients with macroalbuminuria (UACR >300 mg/dL) at baseline. Cox proportional hazard model adjusted for age (continuous), baseline estimated glomerular filtration rate (eGFR; continuous), baseline left ventricular ejection fraction (LVEF; continuous), study, region, baseline diabetes status, sex, subgroup of interest, treatment, and treatment-by-subgroup category.
Figure 4.. Association of Empagliflozin With Urinary…
Figure 4.. Association of Empagliflozin With Urinary Albumin-to-Creatinine Ratio (UACR) Over Time
A, Overall population. B, Patients with normoalbuminuria (UACR 300 mg/g) at baseline. Models analyzed using a mixed model for repeated measures, including age, baseline estimated glomerular filtration rate, and baseline left ventricular ejection fraction as linear covariates and study, region, baseline diabetes status, sex, log (baseline UACR) by visit, visit by treatment, and week reachable as fixed effects (overall population). For the subgroup analysis, visit by treatment-by-UACR subgroup was used. Gmean indicates geometric mean.

References

    1. Satchell S. The role of the glomerular endothelium in albumin handling. Nat Rev Nephrol. 2013;9(12):717-725. doi:10.1038/nrneph.2013.197
    1. Korakas E, Ikonomidis I, Markakis K, Raptis A, Dimitriadis G, Lambadiari V. The endothelial glycocalyx as a key mediator of albumin handling and the development of diabetic nephropathy. Curr Vasc Pharmacol. 2020;18(6):619-631. doi:10.2174/1570161118666191224120242
    1. Gerstein HC, Mann JF, Yi Q, et al. . Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA. 2001;286(4):421-426. doi:10.1001/jama.286.4.421
    1. Blecker S, Matsushita K, Köttgen A, et al. . High-normal albuminuria and risk of heart failure in the community. Am J Kidney Dis. 2011;58(1):47-55. doi:10.1053/j.ajkd.2011.02.391
    1. Mogensen CE. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med. 1984;310(6):356-360. doi:10.1056/NEJM198402093100605
    1. Ibsen H, Wachtell K, Olsen MH, et al. . Albuminuria and cardiovascular risk in hypertensive patients with left ventricular hypertrophy: the LIFE Study. Kidney Int Suppl. 2004;(92):S56-S58. doi:10.1111/j.1523-1755.2004.09214.x
    1. Solomon SD, Lin J, Solomon CG, et al. ; Prevention of Events With ACE Inhibition (PEACE) Investigators . Influence of albuminuria on cardiovascular risk in patients with stable coronary artery disease. Circulation. 2007;116(23):2687-2693. doi:10.1161/CIRCULATIONAHA.107.723270
    1. Persson F, Bain SC, Mosenzon O, et al. ; LEADER Trial Investigators . Changes in albuminuria predict cardiovascular and renal outcomes in type 2 diabetes: a post hoc analysis of the LEADER trial. Diabetes Care. 2021;44(4):1020-1026. doi:10.2337/dc20-1622
    1. Heeg JE, de Jong PE, van der Hem GK, de Zeeuw D. Reduction of proteinuria by angiotensin converting enzyme inhibition. Kidney Int. 1987;32(1):78-83. doi:10.1038/ki.1987.174
    1. Viberti G, Mogensen CE, Groop LC, Pauls JF; European Microalbuminuria Captopril Study Group . Effect of captopril on progression to clinical proteinuria in patients with insulin-dependent diabetes mellitus and microalbuminuria. JAMA. 1994;271(4):275-279. doi:10.1001/jama.1994.03510280037029
    1. Parving HH, Lehnert H, Bröchner-Mortensen J, Gomis R, Andersen S, Arner P; Irbesartan in Patients with Type 2 Diabetes and Microalbuminuria Study Group . The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med. 2001;345(12):870-878. doi:10.1056/NEJMoa011489
    1. Davidson MB, Wong A, Hamrahian AH, Stevens M, Siraj ES. Effect of spironolactone therapy on albuminuria in patients with type 2 diabetes treated with angiotensin-converting enzyme inhibitors. Endocr Pract. 2008;14(8):985-992. doi:10.4158/EP.14.8.985
    1. Selvaraj S, Claggett B, Shah SJ, et al. . Prognostic value of albuminuria and influence of spironolactone in heart failure with preserved ejection fraction. Circ Heart Fail. 2018;11(11):e005288. doi:10.1161/CIRCHEARTFAILURE.118.005288
    1. Epstein M, Williams GH, Weinberger M, et al. . Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clin J Am Soc Nephrol. 2006;1(5):940-951. doi:10.2215/CJN.00240106
    1. Bakris GL, Agarwal R, Chan JC, et al. ; Mineralocorticoid Receptor Antagonist Tolerability Study–Diabetic Nephropathy (ARTS-DN) Study Group . Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA. 2015;314(9):884-894. doi:10.1001/jama.2015.10081
    1. Pitt B, Kober L, Ponikowski P, et al. . Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. Eur Heart J. 2013;34(31):2453-2463. doi:10.1093/eurheartj/eht187
    1. Bae JH, Park EG, Kim S, Kim SG, Hahn S, Kim NH. Effects of sodium-glucose cotransporter 2 inhibitors on renal outcomes in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Sci Rep. 2019;9(1):13009. doi:10.1038/s41598-019-49525-y
    1. Heerspink HJ, Johnsson E, Gause-Nilsson I, Cain VA, Sjöström CD. Dapagliflozin reduces albuminuria in patients with diabetes and hypertension receiving renin-angiotensin blockers. Diabetes Obes Metab. 2016;18(6):590-597. doi:10.1111/dom.12654
    1. Jongs N, Greene T, Chertow GM, et al. ; DAPA-CKD Trial Committees and Investigators . Effect of dapagliflozin on urinary albumin excretion in patients with chronic kidney disease with and without type 2 diabetes: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol. 2021;9(11):755-766. doi:10.1016/S2213-8587(21)00243-6
    1. Cherney DZI, Zinman B, Inzucchi SE, et al. . Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017;5(8):610-621. doi:10.1016/S2213-8587(17)30182-1
    1. Jackson CE, Solomon SD, Gerstein HC, et al. . Albuminuria in chronic heart failure: prevalence and prognostic importance. Lancet. 2009;374(9689):543-550. doi:10.1016/S0140-6736(09)61378-7
    1. Damman K, Gori M, Claggett B, et al. . Renal effects and associated outcomes during angiotensin-neprilysin inhibition in heart failure. JACC Heart Fail. 2018;6(6):489-498. doi:10.1016/j.jchf.2018.02.004
    1. Voors AA, Gori M, Liu LC, et al. ; PARAMOUNT Investigators . Renal effects of the angiotensin receptor neprilysin inhibitor LCZ696 in patients with heart failure and preserved ejection fraction. Eur J Heart Fail. 2015;17(5):510-517. doi:10.1002/ejhf.232
    1. Packer M, Butler J, Filippatos G, et al. ; EMPEROR Trial Committees and Investigators . Design of a prospective patient-level pooled analysis of two parallel trials of empagliflozin in patients with established heart failure. Eur J Heart Fail. 2020;22(12):2393-2398. doi:10.1002/ejhf.2065
    1. Packer M, Anker SD, Butler J, et al. ; EMPEROR-Reduced Trial Investigators . Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413-1424. doi:10.1056/NEJMoa2022190
    1. Packer M, Butler J, Zannad F, et al. ; EMPEROR Study Group . Empagliflozin and major renal outcomes in heart failure. N Engl J Med. 2021;385(16):1531-1533. doi:10.1056/NEJMc2112411
    1. Anker SD, Butler J, Filippatos G, et al. ; EMPEROR-Preserved Trial Investigators . Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385(16):1451-1461. doi:10.1056/NEJMoa2107038
    1. National Kidney Foundation . K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2)(suppl 1):S1-S266.
    1. Bakris GL, Molitch M. Microalbuminuria as a risk predictor in diabetes: the continuing saga. Diabetes Care. 2014;37(3):867-875. doi:10.2337/dc13-1870
    1. Laffin LJ, Bakris GL. Intersection between chronic kidney disease and cardiovascular disease. Curr Cardiol Rep. 2021;23(9):117. doi:10.1007/s11886-021-01546-8
    1. Bilous R, Chaturvedi N, Sjølie AK, et al. . Effect of candesartan on microalbuminuria and albumin excretion rate in diabetes: three randomized trials. Ann Intern Med. 2009;151(1):11-20,W3-4. doi:10.7326/0003-4819-151-1-200907070-00120
    1. Burgess E, Muirhead N, Rene de Cotret P, Chiu A, Pichette V, Tobe S; SMART (Supra Maximal Atacand Renal Trial) Investigators . Supramaximal dose of candesartan in proteinuric renal disease. J Am Soc Nephrol. 2009;20(4):893-900. doi:10.1681/ASN.2008040416
    1. Capes SE, Gerstein HC, Negassa A, Yusuf S. Enalapril prevents clinical proteinuria in diabetic patients with low ejection fraction. Diabetes Care. 2000;23(3):377-380. doi:10.2337/diacare.23.3.377
    1. McMurray JJ, Ostergren J, Swedberg K, et al. ; CHARM Investigators and Committees . Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme inhibitors: the CHARM-Added trial. Lancet. 2003;362(9386):767-771. doi:10.1016/S0140-6736(03)14283-3
    1. Yusuf S, Pitt B, Davis CE, Hood WB, Cohn JN; SOLVD Investigators . Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med. 1991;325(5):293-302. doi:10.1056/NEJM199108013250501
    1. Yusuf S, Pfeffer MA, Swedberg K, et al. ; CHARM Investigators and Committees . Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved trial. Lancet. 2003;362(9386):777-781. doi:10.1016/S0140-6736(03)14285-7
    1. Pitt B, Zannad F, Remme WJ, et al. ; Randomized Aldactone Evaluation Study Investigators . The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med. 1999;341(10):709-717. doi:10.1056/NEJM199909023411001
    1. Zannad F, McMurray JJ, Krum H, et al. ; EMPHASIS-HF Study Group . Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364(1):11-21. doi:10.1056/NEJMoa1009492
    1. Pfeffer MA, Claggett B, Assmann SF, et al. . Regional variation in patients and outcomes in the Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist (TOPCAT) trial. Circulation. 2015;131(1):34-42. doi:10.1161/CIRCULATIONAHA.114.013255
    1. McMurray J, Seidelin PH, Howey JE, Balfour DJ, Struthers AD. The effect of atrial natriuretic factor on urinary albumin and beta 2-microglobulin excretion in man. J Hypertens. 1988;6(10):783-786. doi:10.1097/00004872-198810000-00003
    1. Lofton CE, Newman WH, Currie MG. Atrial natriuretic peptide regulation of endothelial permeability is mediated by cGMP. Biochem Biophys Res Commun. 1990;172(2):793-799. doi:10.1016/0006-291X(90)90744-8
    1. Imanishi M, Yoshioka K, Okumura M, et al. . Mechanism of decreased albuminuria caused by angiotensin converting enzyme inhibitor in early diabetic nephropathy. Kidney Int Suppl. 1997;63:S198-S200.
    1. Akiyama E, Sugiyama S, Matsuzawa Y, et al. . Incremental prognostic significance of peripheral endothelial dysfunction in patients with heart failure with normal left ventricular ejection fraction. J Am Coll Cardiol. 2012;60(18):1778-1786. doi:10.1016/j.jacc.2012.07.036
    1. Torre-Amione G, Kapadia S, Lee J, et al. . Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation. 1996;93(4):704-711. doi:10.1161/01.CIR.93.4.704
    1. Blake WD, Wegria R, Keating RP, Ward HP. Effect of increased renal venous pressure on renal function. Am J Physiol. 1949;157(1):1-13. doi:10.1152/ajplegacy.1949.157.1.1
    1. Butler MJ, Ramnath R, Kadoya H, et al. . Aldosterone induces albuminuria via matrix metalloproteinase-dependent damage of the endothelial glycocalyx. Kidney Int. 2019;95(1):94-107. doi:10.1016/j.kint.2018.08.024
    1. Kuriyama S. A potential mechanism of cardio-renal protection with sodium-glucose cotransporter 2 inhibitors: amelioration of renal congestion. Kidney Blood Press Res. 2019;44(4):449-456. doi:10.1159/000501081
    1. Locatelli M, Zoja C, Conti S, et al. . Empagliflozin protects glomerular endothelial cell architecture in experimental diabetes through the VEGF-A/caveolin-1/PV-1 signaling pathway. J Pathol. 2022;256(4):468-479. doi:10.1002/path.5862
    1. Abdollahi E, Keyhanfar F, Delbandi AA, Falak R, Hajimiresmaiel SJ, Shafiei M. Dapagliflozin exerts anti-inflammatory effects via inhibition of LPS-induced TLR-4 overexpression and NF-κB activation in human endothelial cells and differentiated macrophages. Eur J Pharmacol. 2022;918:174715. doi:10.1016/j.ejphar.2021.174715
    1. Perkovic V, Jardine MJ, Neal B, et al. ; CREDENCE Trial Investigators . Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295-2306. doi:10.1056/NEJMoa1811744
    1. Neuen BL, Ohkuma T, Neal B, et al. . Cardiovascular and renal outcomes with canagliflozin according to baseline kidney function. Circulation. 2018;138(15):1537-1550. doi:10.1161/CIRCULATIONAHA.118.035901

Source: PubMed

3
購読する