Nucleus Basalis of Meynert Stimulation for Dementia: Theoretical and Technical Considerations

Deepak Kumbhare, Viktoras Palys, Jamie Toms, Chathurika S Wickramasinghe, Kasun Amarasinghe, Milos Manic, Evan Hughes, Kathryn L Holloway, Deepak Kumbhare, Viktoras Palys, Jamie Toms, Chathurika S Wickramasinghe, Kasun Amarasinghe, Milos Manic, Evan Hughes, Kathryn L Holloway

Abstract

Deep brain stimulation (DBS) of nucleus basalis of Meynert (NBM) is currently being evaluated as a potential therapy to improve memory and overall cognitive function in dementia. Although, the animal literature has demonstrated robust improvement in cognitive functions, phase 1 trial results in humans have not been as clear-cut. We hypothesize that this may reflect differences in electrode location within the NBM, type and timing of stimulation, and the lack of a biomarker for determining the stimulation's effectiveness in real time. In this article, we propose a methodology to address these issues in an effort to effectively interface with this powerful cognitive nucleus for the treatment of dementia. Specifically, we propose the use of diffusion tensor imaging to identify the nucleus and its tracts, quantitative electroencephalography (QEEG) to identify the physiologic response to stimulation during programming, and investigation of stimulation parameters that incorporate the phase locking and cross frequency coupling of gamma and slower oscillations characteristic of the NBM's innate physiology. We propose that modulating the baseline gamma burst stimulation frequency, specifically with a slower rhythm such as theta or delta will pose more effective coupling between NBM and different cortical regions involved in many learning processes.

Keywords: Parkinson’s disease dementia; basal nucleus of Meynert; deep brain stimulation; diffusion tensor imaging; neuronal oscillations; quantitative electroencephalography.

Figures

FIGURE 1
FIGURE 1
(A) This figure was originally published in Mesulam and Geula (1988). These coronal slices of the human brain from Mesulam and Geula (1988) demonstrate the locations of the ChAT positive neurons in the sub-nuclei of the Ch4 complex (NBM) within the context of the basal ganglia anatomy. Permission was granted by John Wiley and Sons (license number: 4330331169891). ac, anterior commissure; Am, amygdaloid nuclei; an, ansa lenticularis; aP, ansa peduncularis; Ch4a, anterior sector of Ch4; Ch4ai, anterointermediate sector of Ch4; Ch4al, anterolateral subsector of Ch4; Ch4am, anteromedial subsector of Ch4; Ch4id, interomediodorsal subsector of Ch4; Ch4iv, interomedioventral subsector of Ch4; Cl, claustrum; cp, cerebral peduncle; eml, external medullary lamina of the globus pallidus; ent, entorhinal cortex; Fx, fornix; GP, globus pallidus; GPe, globus pallidus (external segment); GPi, globus pallidus (internal segment); Hp, hippocampal formation; Hy, hypothalamus; IC, internal capsule; iml, internal medullary lamina of the globus pallidus; IN, insular cortex; itp, inferior thalamic peduncle; nst, nucleus of the stria terminalis; oc, optic chiasm; ot, optic tract; PO, preoptic area; pt, putamen. (B) Illustration of different NBM territories in the axial (i) and coronal (ii) plane, based on the range of coordinates described in the following NBM studies in rats. Boix-Trelis et al. (2006) observed increased C-Fos expression in cingulate, parietal, piriform and perirhinal cortices, but not in entorhinal cortex or amygdala nuclei when stimulated NBM sub regions around 0.95–1.8 mm posterior to bregma and 2.8 mm lateral to midline (black asterisks) (Boix-Trelis et al., 2006). Weinberger et al on the other hand showed that the activity of NBM in posterior 2.3 mm and lateral 3.3 mm (blue asterisks) is strongly correlated to auditory cortex (Weinberger et al., 2009, 2013). On the other hand, the barrel cortex is more predominantly affected by NBM stimulation in the region posterior 0.8 mm, L 2.6 mm (red asterisks). Visual cortex, has been estimated to be influenced by an NBM sub-region around posterior 2.8 and lateral 4 mm (Goard and Dan, 2009) (green asterisks). Buzsáki and Wang (2012) have noted that the NBM stimulation changes in EEG are in agreement with the anatomical findings, which provides additional evidence that the NBM projection to the cortex is topographically specific. The GP and STN region (yellow and pink regions respectively) are also shown for reference.
FIGURE 2
FIGURE 2
This figure from Gratwicke et al. (2013) demonstrates the NBM and its major cholinergic pathways in human brain. A, amygdala; AC, anterior commissure (lateral aspect); C, caudate; Cg, Cingulate gyrus; F, frontal lobe (medial surface); GPi, globus pallidus (internus); IN, insular cortex; NBM, nucleus basalis of Meynert; Oc, occipital lobe (medial surface); OF, orbitofrontal cortex; P, putamen; Pr, parietal lobe (medial surface). Permission was granted by Elsevier (license number: 4325321354014).
FIGURE 3
FIGURE 3
The entire left NBM has been seeded in a patient who subsequently underwent placement of a Left GPI DBS. The post-operative CT has been merged and the lead extracted to demonstrate the relative position of a standard GPI lead in relation to the bulk of the NBM outflow tracts. The bilateral NBM nuclei are reconstructed as described in the text and shown here in blue. The optic chiasm (yellow) and midline aspect of the anterior commissure (red) are shown for perspective. Frontal, temporal (via uncinate fasciculus) and parieto-occipital fibers are visualized.
FIGURE 4
FIGURE 4
Topographical maps of QEEG from three patients with DBS leads in different nuclei (GPI, STN, VIM), using the Electrical Geodesics Inc. data acquisition system. (A) Subtraction plot of beta band (12–30 Hz) activity in the “On” minus “Off” stimulation conditions using optimal DBS lead configurations and parameters for in (A1) GPI (A2) STN (A3) VIM during the awake resting condition. (B) Topoplots for EEG beta band for single patient using the (B1) Optimal (1,2), (B2) contact 0, and (B3) contact 3 of DBS electrode demonstrating differential modulation of different sub-regions in the cortex.

References

    1. Achour B., Pascual O. (2010). Glia: the many ways to modulate synaptic plasticity. Neurochem. Int. 57 440–445. 10.1016/j.neuint.2010.02.013
    1. Adachi T., Baramidze D., Sato A. (1992). Stimulation of the nucleus basalis of meynert increases cortical cerebral blood flow without influencing diameter of the pial artery in rats. Neurosci. Lett. 143 173–176. 10.1016/0304-3940(92)90259-A
    1. Air E. L., Ryapolova-Webb E., de Hemptinne C, Ostrem J. L., Galifianakis N. B., Larson P. S., et al. (2012). Acute effects of thalamic deep brain stimulation and thalamotomy on sensorimotor cortex local field potentials in essential tremor. Clin. Neurophysiol. 123 2232–2238. 10.1016/j.clinph.2012.04.020
    1. Akam T., Kullmann D. (2014). Oscillatory multiplexing of population codes for selective communication in the mammalian brain. Nat. Rev. Neurosci. 15 111–122. 10.1038/nrn3668
    1. Avila I., Lin S. (2014). Distinct neuronal populations in the basal forebrain encode motivational salience and movement. Front. Behav. Neurosci. 8:421. 10.3389/fnbeh.2014.00421
    1. Bakin J. S., Weinberger N. M. (1993). Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. PNAS 93 11219–11224. 10.1073/pnas.93.20.11219
    1. Bambico F. R., Bregman T., Diwan M., Li J., Darvish-Ghane S., Li Z., et al. (2015). Neuroplasticity-dependent and -independent mechanisms of chronic deep brain stimulation in stressed rats. Transl. Psychiatry 3 3073–3085. 10.1038/tp.2015.166
    1. Bao S., Chang E. F., Davis J. D., Gobeske K. T., Merzenich M. M. (2003). Progressive degradation and subsequent refinement of acoustic representations in the adult auditory cortex. J. Neurosci. 23 10765–10775. 10.1523/JNEUROSCI.23-34-10765.2003
    1. Belardetti F., Borgia R., Mancia M. (1977). Proencephalic mechanisms of ECoG desynchronization in cerveau isole cats. Electroencephalogr. Clin. Neurophysiol. 42 213–235. 10.1016/0013-4694(77)90028-1
    1. Berg R., Friedman B., Schroeder L., Kleinfeld D. (2005). Activation of nucleus basalis facilitates cortical control of a brain stem. J. Neurophysiol. 94 699–711. 10.1152/jn.01125.2004
    1. Bi G., Poo M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18 10464–10472. 10.1523/JNEUROSCI.18-24-10464.1998
    1. Biesold D., Inanami O., Sato A., Sato Y. (1989). Stimulation of the nucleus basalis of Meynert increases cerebral cortical blood flow in rats. Neurosci. Lett. 98 39–44. 10.1016/0304-3940(89)90370-4
    1. Bina K., Rusak B., Semba K. (1993). Localization of cholinergic neurons in the forebrain and brainstem that project to the suprachiasmatic nucleus of the hypothalamus in rat. J. Comp. Neurol. 335 295–307. 10.1002/cne.903350212
    1. Bjordahl T., Dimyan M., Weinberger N. (1998). Induction of long-term receptive field plasticity in the auditory cortex of the waking guinea pig by stimulation of the nucleus basalis. Behav. Neurosci. 112 467–479. 10.1037/0735-7044.112.3.467
    1. Boban M., Kostovic I., Simic G. (2006). Nucleus subputaminalis: neglected part of the basal nucleus of Meynert. Brain 1129:E42. 10.1093/brain/awl025
    1. Boix-Trelis N., Vale-Martínez A., Guillazo-Blanch G., Costa-Miserachs D., Martí-Nicolovius M. (2006). Effects of nucleus basalis magnocellularis stimulation on a socially transmitted food preference and c-Fos expression. Learn. Mem. 13 783–793. 10.1101/lm.305306
    1. Boix-Trelis N., Vale-Martínez A., Guillazo-Blanch G., Martí-Nicolovius M. (2009). Induction of c-Fos expression by electrical stimulation of the nucleus basalis magnocellularis. Neurosci. Lett. 449 137–141. 10.1016/j.neulet.2008.10.105
    1. Broadway J. M., Holtzheimer P. E., Hilimire M. R., Parks N. A., Devylder J. E., Mayberg H. S., et al. (2012). Frontal theta cordance predicts 6-month antidepressant response to subcallosal cingulate deep brain stimulation for treatment-resistant depression: a pilot study. Neuropsychopharmacology 37 1764–1772. 10.1038/npp.2012.23
    1. Buehlmann A., Deco G. (2010). Optimal information transfer in the cortex through synchronization. PLoS Comput. Biol. 6:e1000934. 10.1371/journal.pcbi.1000934
    1. Butt A. E., Schultz J. A., Arnold L. L., Garman E. E., George C. L., Garraghty P. E. (2003). Lesions of the rat nucleus basalis magnocellularis disrupt appetitive-to-aversive transfer learning. Integr. Physiol. Behav. Sci. 38 253–271. 10.1007/BF02688857
    1. Buzsáki G. (2010). Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68 362–385. 10.1016/j.neuron.2010.09.023
    1. Buzsaki G., Bickford R. G., Ponomareff G., Thal L. J., Mandel R., Gage F. H. (1988). Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J. Neurosci. 8 4007–4026. 10.1523/JNEUROSCI.08-11-04007.1988
    1. Buzsáki G., Geisler C., Henze D., Wang X.-J. (2004). Interneuron diversity series: circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci. 27 186–193. 10.1016/j.tins.2004.02.007
    1. Buzsáki G., Wang X. (2012). Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 35 203–225. 10.1146/annurev-neuro-062111-150444
    1. Cain S., Snutch T. (2013). T-type calcium channels in burst-firing, network synchrony, and epilepsy. Biochim. Biophys. Acta 1828 1572–1578. 10.1016/j.bbamem.2012.07.028
    1. Candy J., Perry R. H., Perry E. K., Irving D., Blessed G., Fairbairn A. F., et al. (1983). PAthological changes in the nucleus of Meynert in Alzhimer’s and Parkisnon’s diseases. J. Neurol. Sci. 59 277–289. 10.1016/0022-510X(83)90045-X
    1. Cao L., Wei D., Reid B., Zhao S., Pu J., Pan T., et al. (2013). Endogenous electric currents might guide rostral migration of neuroblasts. EMBO Rep. 14 184–190. 10.1038/embor.2012.215
    1. Cape E., Jones B. (1998). Differential modulation of high-frequency gammaelectroencephalogram activity and sleep-wake state by noradrenaline and serotonin microinjections into the region of cholinergic basalis neurons. J. Neurosci. 18 2653–2666. 10.1523/JNEUROSCI.18-07-02653.1998
    1. Capilla-Gonzalez V., Lavell E., Quiñones-Hinojosa A., Guerrero-Cazares H. (2015). Regulation of subventricular zone-derived cells migration in the adult brain. Adv. Exp. Med. Biol. 853 1–21. 10.1007/978-3-319-16537-0_1
    1. Castillo-Ruiz A., Nunez A. (2007). Cholinergic projections to the suprachiasmatic nucleus and lower subparaventricular zone of diurnal and nocturnal rodents. Brain Res. 1151 91–101. 10.1016/j.brainres.2007.03.010
    1. Celesia G., Jasper H. (1966). Acetylcholine released from cerebral cortex in relation to state of activation. Neurology 16 1053–1063. 10.1212/WNL.16.11.1053
    1. Choi S. H., Jung T. M., Lee J. E., Lee S. K., Sohn Y. H., Lee P. H. (2012). Volumetric analysis of the substantia innominata in patients with parkinson’s disease according to cognitive status. Neurobiol. Aging 33 1265–1272. 10.1016/j.neurobiolaging.2010.11.015
    1. Cozac V., Gschwandtner U., Hatz F., Hardmeier M., Rüegg S., Fuhr P. (2016). Quantitative EEG and cognitive decline in Parkinson’s disease. Parkinsons Dis. 2016:9060649. 10.1155/2016/9060649
    1. Détári L., Rasmusson D., Semba K. (1997). Phasic relationship between the activity of basal forebrain neurons and cortical EEG in urethane-anesthetized rat. Brain Res. 759 112–121. 10.1016/S0006-8993(97)00252-7
    1. Détári L., Rasmusson D., Semba K. (1999). The role of basal forebrain neurons in tonic and phasic activation of the cerebral cortex. Prog. Neurobiol. 58 249–277. 10.1016/S0301-0082(98)00084-7
    1. Dimyan M., Weinberger N. (1999). Basal forebrain stimulation induces discriminative receptive field plasticity in the auditory cortex. Behav. Neurosci. 113 691–702. 10.1037/0735-7044.113.4.691
    1. Do J. P., Xu M., Lee S. H., Chang W. C., Zhang S., Chung S., et al. (2016). Cell type-specific long-range connections of basal forebrain circuit. eLife 5:e13214. 10.7554/eLife.13214
    1. Dudai Y., Karni A., Born J. (2015). The consolidation and transformation of memory. Neuron 88 20–32. 10.1016/j.neuron.2015.09.004
    1. Duque A., Balatoni B., Détári L., Zaborszky L. (2000). EEG correlation of the discharge properties of identified neurons in the basal forebrain. J. Neurophysiol. 84 1627–1635. 10.1152/jn.2000.84.3.1627
    1. Fenn K., Nusbaum H., Margoliash D. (2003). Consolidation during sleep of perceptual learning of spoken language. Nature 425 614–616. 10.1038/nature01951
    1. Fountas Z., Shanahan M. (2017). The role of cortical oscillations in a spiking neural network model of the basal ganglia. PLoS One 12:e0189109. 10.1371/journal.pone.0189109
    1. Freund H., Kuhn J., Lenartz D., Mai J. K., Schnell T., Klosterkoetter J., et al. (2009). Cognitive functions in a patient with parkinson-dementia syndrome undergoing deep brain stimulation. Arch. Neurol. 66 781–785. 10.1001/archneurol.2009.102
    1. Fibiger H. C., Phillips A. G. (1986). “Reward, motivation, cognition: psychobiology of mesotelencephalic dopamine systems,” in Handbook of physiology: The Nervous System IV, eds Bloom F. E., Geiger S. D. (Bethesda, MD: American Physiology Society; ), 647–675.
    1. Goard M., Dan Y. (2009). Basal forebrain activation enhances cortical coding of natural scenes. Nat. Neurosci. 12 1444–1449. 10.1038/nn.2402
    1. Gonzalez-Castaneda R., Galvez-Contreras A., Luquín S., Gonzalez-Perez O. (2011). Neurogenesis in Alzheimert’s disease: a realistic alternative to neuronal degeneration? Curr. Signal. Transduct. Ther. 6 314–319. 10.2174/157436211797483949
    1. Gratwicke J., Kahan J., Zrinzo L., Hariz M., Limousin P., Foltynie T., et al. (2013). The nucleus basalis of Meynert: a new target for deep brain stimulation in dementia? Neurosci. Biobehav. Rev. 37 2676–2688. 10.1016/j.neubiorev.2013.09.003
    1. Gratwicke J., Zrinzo L., Kahan J., Peters A., Beigi M., Akram H., et al. (2018). Bilateral deep brain stimulation of the nucleus Basalis of Meynert for Parkinson disease dementia a randomized clinical trial. JAMA Neurol. 75 169–178. 10.1001/jamaneurol.2017.3762
    1. Hamani C., Stone S. S., Garten A., Lozano A. M., Winocur G. (2011). Memory rescue and enhanced neurogenesis following electrical stimulation of the anterior thalamus in rats treated with corticosterone. Exp. Neurol. 232 100–104. 10.1016/j.expneurol.2011.08.023
    1. Han Y., Shi Y. F., Xi W., Zhou R., Tan Z. B., Wang H., et al. (2014). Selective activation of cholinerigc basal forebrain neurons induces immediate sleep-wake transitions. Curr. Biol. 24 693–698. 10.1016/j.cub.2014.02.011
    1. Hauk O., Giraud A., Clarke A. (2017). Brain oscillations in language comprehension. Lang. Cogn. Neurosci. 32 533–535. 10.1080/23273798.2017.1297842
    1. Headley D., Paré D. (2017). Common oscillatory mechanisms across multiple memory systems. npj Sci. Learn. 2:1 10.1038/s41539-016-0001-2
    1. Hepp D. H., Foncke E. M. J., Berendse H. W., Wassenaar T. M., Olde Dubbelink KTE, Groenewegen H. J., et al. (2017). Damaged fiber tracts of the nucleus basalis of Meynert in Parkinson’s disease patients with visual hallucinations. Sci. Rep. 7:10112. 10.1038/s41598-017-10146-y
    1. Hotta A., Kanai C., Uchida S., Kanda K. (2004). Stimulation of the nucleus basalis of Meynert increases diameter of the parenchymal blood vessels in the rat cerebral cortex. Neurosci. Lett. 358 103–106. 10.1016/j.neulet.2004.01.010
    1. Hotta H., Kagitani F., Kondo M., Uchida S. (2009). Basal forebrain stimulation induces NGF secretion in ipsilateral parietal cortex via nicotinic receptor activation in adult, but not aged rats. Neurosci. Res. 63 122–128. 10.1016/j.neures.2008.11.004
    1. Hotta H., Uchida S., Kagitani F. (2002). Effects of stimulating the nucleus basalis of Meynert on blood flow and delayed neuronal death following transient ischemia in the rat cerebral cortex. Jpn. J. Physiol. 52 383–393. 10.2170/jjphysiol.52.383
    1. Hotta H., Uchida S., Kagitani F. (2007). Stimulation of the nucleus basalis of Meynert produces an increase in the extracellular release of nerve growth factor in the rat cerebral cortex. J. Physiol. Sci. 57 383–387. 10.2170/physiolsci.SC008107
    1. Howard M., Simons D. (1994). Physiologic effects of nucleus basalis magnoceUularis stimulation on rat barrel cortex neurons. Exp. Brain Res. 102 21–33. 10.1007/BF00232435
    1. Irmak S., Lecea L. (2014). Basal forebrain cholinergic modulation of sleep transitions. Sleep 37 1941–1951. 10.5665/sleep.4246
    1. Isaac J., Buchanan K., Muller R., Mellor J. (2009). Hippocampal place cell firing patterns can induce long-term synaptic plasticity in vitro. J. Neurosci. 29 6840–6850. 10.1523/JNEUROSCI.0731-09.2009
    1. Jech R., Růzicka E., Urgosík D., Serranová T., Volfová M., Nováková O., et al. (2016). Deep brain stimulation of the subthalamic nucleus affects resting EEG and visual evoked potentials in Parkinson’s disease. Clin. Neurophysiol. 117 1017–1028. 10.1016/j.clinph.2006.01.009
    1. Jeong D. U., Lee J. E., Lee S. E., Chang W. S., Kim S. J., Chang J. W. (2014). Improvements in memory after medial septum stimulation are associated with changes in hippocampal cholinergic activity and neurogenesis. Biomed. Res. Int. 2014:568587. 10.1155/2014/568587
    1. Jones E., Burton H., Saper C., Swanson L. (1976). Midbrain, diencephalic and cortical relationships of the basal nucleus of Meynert and associated structures in primates. J. Comp. Neurol. 167 385–419. 10.1002/cne.901670402
    1. Kalmbach A., Hedrick T., Waters J. (2012). Selective optogenetic stimulation of cholinergic axons in neocortex. J. Neurophysiol. 107 2008–2019. 10.1152/jn.00870.2011
    1. Kilgard M., Merzenich M. (1998). Plasticity of temporal information processing in the primary auditory cortex. Nat. Neurosci. 1 727–731. 10.1038/3729
    1. Kim H. J., Lee J. E., Shin S. J., Sohn Y. H., Lee P. H. (2011). Analysis of the substantia innominata volume in patients with parkinson’s disease with dementia, dementia with lewy bodies, and alzheimer’s disease. J. Mov. Disord. 4 68–72. 10.14802/jmd.11014
    1. Kimura A., Sato A., Takano T. (1990). Stimulation of the nucleus basalis of Meynert does not influence glucose utilization of the cerebral cortex in anesthetized rats. Neurosci. Lett. 119 101–104. 10.1016/0304-3940(90)90766-3
    1. Kiss J., Halász B. (1996). Synaptic contacts between cholinergic afferents and suprachiasmatic neurones of the rat. Neuroreport 7 1961–1964. 10.1097/00001756-199608120-00020
    1. Kobelt L. J., Wilkinson A. E., McCormick A. M., Willits R. K., Leipzig N. D. (2014). Short duration electrical stimulation to enhance neurite outgrowth and maturation of adult neural stem progenitor cells. Ann. Biomed. Eng. 42 2164–2176. 10.1007/s10439-014-1058-9
    1. Kocharyan A., Fernandes P., Tong X. K., Vaucher E., Hamel E. (2008). Specific subtypes of cortical GABA interneurons contribute to the neurovascular coupling response to basal forebrain stimulation. J. Cereb. Blood Flow Metab. 28 221–231. 10.1038/sj.jcbfm.9600558
    1. Kuhn J., Hardenacke K., Lenartz D., Gruendler T., Ullsperger M., Bartsch C., et al. (2015a). Deep brain stimulation of the nucleus basalis of meynert in alzheimer’s dementia. Mol. Psychiatry 20 353–360. 10.1038/mp.2014.32
    1. Kuhn J., Hardenacke K., Shubina E., Lenartz D., Visser-Vandewalle V., Zilles K., et al. (2015b). Deep brain stimulation of the nucleus basalis of meynert in early stage of alzheimer’s dementia. Brain Stimul. 8 838–839. 10.1016/j.brs.2015.04.002
    1. Kurosawa M., Sato A., Sato Y. (1989). Stimulation of the nucleus basalis of Meynert increases acetylcholine release in the cerebral cortex in rats. Neurosci. Lett. 98 45–50. 10.1016/0304-3940(89)90371-6
    1. Kurz X., Broers M., Scuvée-Moreau J., Salmon E., Ventura M., Pepin J. L., et al. (1999). Methodological issues in a cost-of-dementia study in Belgium: the National Dementia Economic Study (NADES). Acta Neurol. 99 167–175.
    1. Lacombe P., Sercombe R., Vaucher E., Seylaz J. (2006). Reduced cortical vasodilatory response to stimulation of the nucleus basalis of Meynert in the aged rat and evidence for a control of the cerebral circulation. Ann. N. Y. Acad. Sci. 826 410–415. 10.1111/j.1749-6632.1997.tb48494.x
    1. Lamour Y., Bassant M. H., Senut M. C. and Dutar. P. (1989). “Brain aging, Alzheimer’s disease and the cholinergic system,” in Neurotransmission and Cerebrovascular Function, eds Seylaz J., MacKenzie E. T. (Amsterdam: Elsevier; ) 3–28.
    1. Laxton A. W., Tang-Wai D. F., McAndrews M. P., Zumsteg D., Wennberg R., Keren R., et al. (2010). A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Ann. Neurol. 68 521–534. 10.1002/ana.22089
    1. Lee J., Jeong D. U., Lee J., Chang W. S., Chang J. W. (2016). The effect of nucleus basalis magnocellularis deep brain stimulation on memory function in a rat model of dementia. BMC Neurol. 16:6. 10.1186/s12883-016-0529-z
    1. Lee M., Hassani O., Alonso A., Jones B. (2005). Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep. J. Neurosci. 25 4365–4369. 10.1523/JNEUROSCI.0178-05.2005
    1. Lee M., Manns I., Alonso A., Jones B. (2004). Sleep-wake related discharge properties of basal forebrain neurons recorded with micropipettes in head-fixed rats. J. Neurophysiol. 92 1182–1198. 10.1152/jn.01003.2003
    1. Lin S., Gervasoni D., Nicolelis M. (2006). Fast modulation of prefrontal cortex activity by basal forebrain noncholinergic neuronal ensembles. J. Neurophysiol. 96 3209–3219. 10.1152/jn.00524.2006
    1. Lin S. C., Brown R. E., Hussain Shuler MG, Petersen C. C., Kepecs A. (2015). Optogenetic dissection of the basal forebrain neuromodulatory control of cortical activation, plasticity, and cognition. J. Neurosci. 35 13896–13903. 10.1523/JNEUROSCI.2590-15.2015
    1. Linster C., Hasselmo M. (2001). Neuromodulation and the functional dynamics of piriform cortex. Chem. Senses 26 585–594. 10.1093/chemse/26.5.585
    1. Linster C., Wyble B., Hasselmo M. (1999). Electrical stimulation of the horizontal limb of the diagonal band of broca modulates population EPSPs in piriform cortex. J. Neurophysiol. 81 2737–2742. 10.1152/jn.1999.81.6.2737
    1. Lowet E., Roberts M. J., Bonizzi P., Karel J., De Weerd P. (2016). Quantifying neural oscillatory synchronization: a comparison between spectral coherence and phase-locking value approaches. PLoS One 11:e0146443. 10.1371/journal.pone.0146443
    1. Lun Liu A. K., Chang R. C.-C., Pearce R. K. B., Gentleman S. M. (2015). Nucleus basalis of meynert revisited: anatomy, history and differential involvement in Alzheimer’s and Parkinson’s disease. Acta Neuropathol. 129 527–540. 10.1007/s00401-015-1392-5
    1. Ma W., Maric D., Li B. S., Hu Q., Andreadis J. D., Grant G. M., et al. (2000). Acetyilcholine stimulates cortical precursor cell proliferation in Vitro via muscarinic receptor activation and MAP Kinase phosphorylation. Eur. J. Neurosci. 12 1227–1240. 10.1046/j.1460-9568.2000.00010.x
    1. Maho C., Hars B., Edeline J., Hennevin E. (1995). Conditioned changes in the basal forebrain: relations with learning-induced cortical plasticity. Psychobiology 23 10–25.
    1. McLin D., Miasnikov A., Weinberger N. (2002a). Induction of behavioral associative memory by stimulation of the nucleus basalis. Proc. Natl. Acad. Sci. U.S.A. 99 4002–4007.
    1. McLin D., Miasnikov A., Weinberger N. (2002b). The effects of electrical stimulation of the nucleus basalis on the electroencephalogram heart rate and respiration. Behav. Neurosci. 116 795–806.
    1. Mesulam M., Geula C. (1988). Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J. Comp. Neurol. 275 216–240. 10.1002/cne.902750205
    1. Mesulam M., Mufson E., Levey A., Wainer B. (1984). Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J. Comp. Neurol. 214 170–197. 10.1002/cne.902140206
    1. Mesulam M., Mufson E., Wainer B., Levey A. (1983). Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1–Ch6). Neurosci. 10 1185–1201. 10.1016/0306-4522(83)90108-2
    1. Metherate R., Cox C., Ashe J. (1992). Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine. J. Neurosci. 12 4701–4711. 10.1523/JNEUROSCI.12-12-04701.1992
    1. Miasnikov A., Chen J., Weinberger N. (2006). Rapid induction of specific associative behavioral memory by stimulation of the nucleus basalis in the rat. Neurobiol. Learn. Mem. 86 47–65. 10.1016/j.nlm.2005.12.010
    1. Miasnikov A., Chen J., Weinberger N. (2011). Consolidation and long-term retention of an implanted behavioral memory. Neurobiol. Learn. Mem. 95 286–295. 10.1016/j.nlm.2010.12.004
    1. Miasnikov A., McLin D., Weinberger N. (2001). Muscarinic dependence of nucleus basalis induced conditioned receptive field plasticity. Neuroreport 12 1537–1542. 10.1097/00001756-200105250-00047
    1. Montero-Pastor A., Vale-Martínez A., Guillazo-Blanch G., Nadal-Alemany R., Martí-Nicolovius M., Morgado-Bernal I. (2001). Nucleus basalis magnocellularis electrical stimulation facilitates two-way active avoidance retention, in rats. Brain Res. 900 337–341. 10.1016/S0006-8993(01)02325-3
    1. Montero-Pastor A., Vale-Martínez A., Guillazo-Blanch G. (2004). Effects of electrical stimulation of the nucleus basalis on two-way active avoidance acquisition, retention, and retrieval. Behav. Brain Res. 154 41–54. 10.1016/j.bbr.2004.01.017
    1. Mufson E., Bothwell M., Kordower J. (1989). Loss of nerve growth factor receptor-containing neurons in Alzheimer’s disease: a quantitative analysis across subregions of the basal forebrain. Exp. Neurol. 105 221–232. 10.1016/0014-4886(89)90124-6
    1. Nguyen D., Lin S.-C. (2014). A frontal cortex event-related potential driven by the basal forebrain. eLife 3:e02148. 10.7554/eLife.02148
    1. Perry E., Curtis M., Dick D. J., Candy J. M., Atack J. R., Bloxham C. A., et al. (1985). Cholinergic correlates of cognitive impairment in Parkinson’s disease: comparisons with Alzheimer’s disease. J. Neurol. Neurosurg. 48 413–421. 10.1136/jnnp.48.5.413
    1. Piché M., Uchida S., Hara S., Aikawa Y., Hotta H. (2010). Modulation of somatosensory-evoked cortical blood flow changes by GABAergic inhibition of the nucleus basalis of Meynert in urethane-anaesthetized rats. J. Physiol. 588 2163–2171. 10.1113/jphysiol.2010.187633
    1. Pikovsky A., Rosenblum M., Kurths J. (2003). Synchronization: A Universal Concept in Nonlinear Sciences, Vol. 12. Cambridge: Cambridge University Press.
    1. Pirch J. (1993). during visual discrimination in the rat. Basal forebrain and frontal cortex neuron responses. Brain Res. Bull. 31 73–83. 10.1016/0361-9230(93)90013-2
    1. Puckett A., Pandya P. K., Moucha R., Dai W., Kilgard M. P. (1998). Plasticity in the rat posterior auditory field following nucleus basalis stimulation. J. Neurphysiol. 98 253–265. 10.1152/jn.01309.2006
    1. Raghavachari S., Kahana M. J., Rizzuto D. S., Caplan J. B., Kirschen M. P., Bourgeois B., et al. (2001). Gating of human theta oscillations by a working memory task. J. Neurophysiol. 21 3175–3183. 10.1523/JNEUROSCI.21-09-03175.2001
    1. Raghavachari S., Lisman J. E., Tully M., Madsen J. R., Bromfield E. B., Kahana M. J. (2006). Theta oscillations in human cortex during a working-memory task: evidence for local generators. J. Neurophysiol. 95 1630–1638. 10.1152/jn.00409.2005
    1. Ribeiro S., Gervasoni D., Soares E. S., Zhou Y., Lin S. C., Pantoja J., et al. (2004). Long-lasting novelty-induced neuronal reverberation during slow-wave sleep in multiple forebrain areas. PLoS Biol. 2:E24. 10.1371/journal.pbio.0020024
    1. Richardson R., DeLong M. (1991). Electrophysiological studies of the functions of the nucleus basalis in primates. Adv. Exp. Med. Biol. 295 233–252. 10.1007/978-1-4757-0145-6_12
    1. Saha B., Peron S., Murray K., Jaber M., Gaillard A. (2013). Cortical lesion stimulates adult subventricular zone neural progenitor cell proliferation and migration to the site of injury. Stem Cell Res. 11 965–977. 10.1016/j.scr.2013.06.006
    1. Sakurai T., Nagata R., Yamanaka A., Kawamura H., Tsujino N., Muraki Y., et al. (2005). Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron 46 297–308. 10.1016/j.neuron.2005.03.010
    1. Sanchez-Alavez M., Robledo P., Wills D. N., Havstad J., Ehlers C. L. (2014). Cholinergic modulation of event-related oscillations (ERO). Brain Res. 1559 11–25. 10.1016/j.brainres.2014.02.043
    1. Sarter M., Bruno J. (2002). The neglected constituent of the basal forebrain corticopetal projection system: GABAergic projections. Eur. J. Neurosci. 15 1867–1873. 10.1046/j.1460-9568.2002.02004.x
    1. Sarter M., Lustig C., Howe W. M., Gritton H., Berry A. S. (2014). Deterministic functions of cortical acetylcholine. Eur. J. Neurosci. 39 1912–1920. 10.1111/ejn.12515
    1. Sato A., Sato Y., Uchida S. (2001). Regulation of regional cerebral blood flow by cholinergic fibers originating in the basal forebrain. Int. J. Dev. Neurosci. 19 327–327. 10.1016/S0736-5748(01)00017-X
    1. Scarmeas N., Brandt J., Blacker D., Albert M., Hadjigeorgiou G., Dubois B., et al. (2007). Disruptive behavior as a predictor in Alzheimer disease. Arch. Neurol. 64 1755–1761. 10.1001/archneur.64.12.1755
    1. Schmuckermair C., Gaburro S., Sah A., Landgraf R., Sartori S. B., Singewald N. (2013). Behavioral and neurobiological effects of deep brain stimulation in a mouse model of high anxiety- and depression-like behavior. Neuropsychopharmacology 38 1234–1244. 10.1038/npp.2013.21
    1. Selden N. R., Gitelman D. R., Salamon-Murayama N., Parrish T. B., Mesulam M. M. (1998). Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain 121 2249–2257. 10.1093/brain/121.12.2249
    1. Silver M. A., Fagiolini M., Gillespie D. C., Howe C. L., Frank M. G., Issa N. P., et al. (2001). Infusion of nerve growth factor (NGF) into kitten visual cortex increases immunoreactivity for NGF, NGF receptors, and choline acetyltransferase in basal forebrain without affecting ocular dominance plasticity or column development. Neuroscience 108 569–585. 10.1016/S0306-4522(01)00391-8
    1. Simić G., Mrzljak L., Fucić A., Winblad B., Lovrić H., Kostović I. (1999). Nucleus subputaminalis (Ayala): the still disregarded magnocellular component of the basal forebrain may be human specific and connected with the cortical speech area. Neuroscience 89 73–89. 10.1016/S0306-4522(98)00304-2
    1. Spitzer B., Haegens S. (2017). ). Beyond the status quo: a role for beta oscillations in endogenous content (Re)activation. eNeuro 4 1–15. 10.1523/ENEURO.0170-17.2017
    1. Stone S. S., Teixeira C. M., Devito L. M., Zaslavsky K., Josselyn S. A., Lozano A. M., et al. (2011). Stimulation of entorhinal cortex promotes adult neurogenesis and facilitates spatial memory. J. Neurosci. 31 13469–13484. 10.1523/JNEUROSCI.3100-11.2011
    1. Takata N., Mishima T., Hisatsune C., Nagai T., Ebisui E., Mikoshiba K., et al. (2011). Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity In Vivo. J. Neurosci. 31 18155–18165. 10.1523/JNEUROSCI.5289-11.2011
    1. Unal C., Golowasch J., Zaborszky L. (2012). Adult mouse basal forebrain brain harbors two distinct cholinergic populations defined by their electrophysiology. Front. Behav. Neurosci. 6:21. 10.3389/fnbeh.2012.00021
    1. Vaucher E., Borredon J., Bonvento G., Seylaz J., Lacombe P. (1997). Autoradiographic evidence for flow-metabolism uncoupling during stimulation of the nucleus basalis of Meynert in the conscious rat. J. Cereb. Blood Flow Metab. 17 686–694. 10.1097/00004647-199706000-00010
    1. Vaucher E., Dauphin F., Seylaz J., Lacombe P. (1994). Autoradiographic study of the cerebrovascular effects of stimulation of the substantia innominata: convenient stimulation paradigm. J. Auton. Nerv. Syst. 49 43–47. 10.1016/0165-1838(94)90085-X
    1. Vedam-Mai V., Gardner B., Okun M. S., Siebzehnrubl F. A., Kam M., Aponso P., et al. (2014). Increased precursor cell proliferation after deep brain stimulation for Parkinson’s disease: a human study. PLoS One 9:e88770. 10.1371/journal.pone.0088770
    1. Voytek B., Canolty R. T., Shestyuk A., Crone N. E., Parvizi J., Knight R. T. (2010). Shifts in gamma phase amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks. Front. Hum. Neuosci. 4:191. 10.3389/fnhum.2010.00191
    1. Walker H., Huang H., Gonzalez C. L., Bryant J. E., Killen J., Cutter G. R., et al. (2012). Short latency activation of cortex during clinically effective subthalamic deep brain stimulation for Parkinson’s disease. Mov. Disord. 27 864–873. 10.1002/mds.25025
    1. Weinberger N., Miasnikov A., Bieszczad K., Chen J. (2013). Gamma band plasticity in sensory cortex is a signature of the strongest memory rather than memory of the training stimulus. Neurobiol. Learn. Mem. 104 49–63. 10.1016/j.nlm.2013.05.001
    1. Weinberger N., Miasnikov A., Chen J. (2006). The level of cholinergic nucleus basalis activation controls the specicity of auditory associative memory. Neurobiol. Learn. Mem. 86 270–285. 10.1016/j.nlm.2006.04.004
    1. Weinberger N., Miasnikov A., Chen J. (2009). Sensory memory consolidation observed: increased specificity of detail over days. Neurobiol. Learn. Mem. 91 273–286. 10.1016/j.nlm.2008.10.012
    1. Wespatat V., Tennigkeit F., Singer W. (2004). Phase sensitivity of synaptic modifications in oscillating cells of rat visual cortex. J. Neurosci. 42 9067–9075. 10.1523/JNEUROSCI.2221-04.2004
    1. Whalen P., Kapp B. S., Pascoe J. P. (1994). Neuronal activity within the nucleus basalis and conditioned neocortical electroencephalographic activation. J. Neurosci. 14 1623–1633. 10.1523/JNEUROSCI.14-03-01623.1994
    1. Whittemore S., Seiger A. (1987). The expression, localization and functional significance of beta-nerve growth factor in the central nervous system. Brain Res. 434 439–464. 10.1016/0165-0173(87)90008-7
    1. Xu M., Chung S., Zhang S., Zhong P., Ma C., Chang W. C., et al. (2015). Basal forebrain circuit for sleep-wake control. Nat. Neurosci. 18 1641–1647. 10.1038/nn.4143
    1. Yamakawa G. R., Basu P., Cortese F., MacDonnell J., Whalley D., Smith V. M., et al. (2016). The cholinergic forebrain arousal system acts directly on the circadian pacemaker. PNAS 113 13498–13503. 10.1073/pnas.1610342113
    1. Zaborszky L., Hoemke L., Mohlberg H., Schleicher A., Amunts K., Zilles K. (2008). Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain. Neuroimage 42 1127–1141. 10.1016/j.neuroimage.2008.05.055
    1. Zant J. C., Kim T., Prokai L., Szarka S., McNally J., McKenna J. T., et al. (2016). Cholinergic neurons in the basal forebrain promote wakefulness by actions on neighboring non-cholinergic neruons: an opto-dialysis study. J. Neurosci. 36 2057–2067. 10.1523/JNEUROSCI.3318-15.2016

Source: PubMed

3
購読する