Functional activities of beta-glucans in the prevention or treatment of cervical cancer

Shahla Chaichian, Bahram Moazzami, Fatemeh Sadoughi, Hamed Haddad Kashani, Marsa Zaroudi, Zatollah Asemi, Shahla Chaichian, Bahram Moazzami, Fatemeh Sadoughi, Hamed Haddad Kashani, Marsa Zaroudi, Zatollah Asemi

Abstract

Cervical cancer is the fourth-ranked cancer in the world and is associated with a large number of deaths annually. Chemotherapy and radiotherapy are known as the common therapeutic approaches in the treatment of cervical cancer, but because of their side effects and toxicity, researchers are trying to discovery alternative therapies. Beta-glucans, a group of glucose polymers that are derived from the cell wall of fungi, bacteria, and etc. it has been showed that beta-glucans have some anti-cancer properties which due to their impacts on adaptive and innate immunity. Along to these impacts, these molecules could be used as drug carriers. In this regard, the application of beta-glucans is a promising therapeutic option for the cancer prevention and treatment especially for cervical cancer. Herein, we have summarized the therapeutic potential of beta-glucans alone or as adjuvant therapy in the treatment of cervical cancer. Moreover, we highlighted beta-glucans as drug carriers for preventive and therapeutic purposes.

Keywords: Anti-cancer; Beta-glucans; Cervical cancer; Prevention; Sizofiran; Treatment.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Schematic representation in targeting different pathways using beta-glucans as a novel therapeutic approach in the treatment of cervical cancer

References

    1. Sadri Nahand Javid, Moghoofei Mohsen, Salmaninejad Arash, Bahmanpour Zahra, Karimzadeh Mohammad, Nasiri Mitra, Mirzaei Hamid Reza, Pourhanifeh Mohammad Hossein, Bokharaei‐Salim Farah, Mirzaei Hamed, Hamblin Michael R. Pathogenic role of exosomes and microRNAs in HPV‐mediated inflammation and cervical cancer: A review. International Journal of Cancer. 2019;146(2):305–320. doi: 10.1002/ijc.32688.
    1. Ghasemi F, Shafiee M, Banikazemi Z, Pourhanifeh MH, Khanbabaei H, Shamshirian A, Amiri Moghadam S, ArefNezhad R, Sahebkar A, Avan A, et al. Curcumin inhibits NF-kB and Wnt/beta-catenin pathways in cervical cancer cells. Pathol Res Pract. 2019;215(10):152556. doi: 10.1016/j.prp.2019.152556.
    1. Shafabakhsh Rana, Reiter Russel J., Mirzaei Hamed, Teymoordash Somayyeh Noei, Asemi Zatollah. Melatonin: A new inhibitor agent for cervical cancer treatment. Journal of Cellular Physiology. 2019;234(12):21670–21682. doi: 10.1002/jcp.28865.
    1. Nahand Javid Sadri, Taghizadeh‐boroujeni Sima, Karimzadeh Mohammad, Borran Sarina, Pourhanifeh Mohammad Hossein, Moghoofei Mohsen, Bokharaei‐Salim Farah, Karampoor Sajad, Jafari Amir, Asemi Zatollah, Tbibzadeh Alireza, Namdar Afshin, Mirzaei Hamed. microRNAs: New prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. Journal of Cellular Physiology. 2019;234(10):17064–17099. doi: 10.1002/jcp.28457.
    1. Bosch FX, Lorincz A, Munoz N, Meijer CJ, Shah KV. The causal relation between human papillomavirus and cervical cancer. J Clin Pathol. 2002;55(4):244–265. doi: 10.1136/jcp.55.4.244.
    1. Cogliano V, Grosse Y, Baan R, Straif K, Secretan B, El Ghissassi F. Carcinogenicity of combined oestrogen-progestagen contraceptives and menopausal treatment. Lancet Oncology. 2005;6(8):552–553. doi: 10.1016/S1470-2045(05)70273-4.
    1. Smith JS, Green J, de Gonzalez AB, Appleby P, Peto J, Plummer M, Franceschi S, Beral V. Cervical cancer and use of hormonal contraceptives: a systematic review. Lancet. 2003;361(9364):1159–1167. doi: 10.1016/S0140-6736(03)12949-2.
    1. Cancer ICoESoC Carcinoma of the cervix and tobacco smoking: collaborative reanalysis of individual data on 13,541 women with carcinoma of the cervix and 23,017 women without carcinoma of the cervix from 23 epidemiological studies. Int J Cancer. 2006;118(6):1481–1495. doi: 10.1002/ijc.21493.
    1. Cancer ICoESoC Cervical carcinoma and reproductive factors: collaborative reanalysis of individual data on 16,563 women with cervical carcinoma and 33,542 women without cervical carcinoma from 25 epidemiological studies. Int J Cancer. 2006;119(5):1108–1124. doi: 10.1002/ijc.21953.
    1. Smith JS, Herrero R, Bosetti C, Munoz N, Bosch FX, Eluf-Neto J, Castellsague X, Meijer CJ, Van den Brule AJ, Franceschi S. Herpes simplex virus-2 as a human papillomavirus cofactor in the etiology of invasive cervical cancer. J Natl Cancer Inst. 2002;94(21):1604–1613. doi: 10.1093/jnci/94.21.1604.
    1. Smith JS, Bosetti C, MUnoz N, Herrero R, Bosch FX, Eluf-Neto J, Meijer CJ, Van Den Brule AJ, Franceschi S, Peeling RW. Chlamydia trachomatis and invasive cervical cancer: a pooled analysis of the IARC multicentric case-control study. Int J Cancer. 2004;111(3):431–439. doi: 10.1002/ijc.20257.
    1. Palefsky JM, Holly EA. Chapter 6: immunosuppression and co-infection with HIV. JNCI Monogr. 2003;2003(31):41–46. doi: 10.1093/oxfordjournals.jncimonographs.a003481.
    1. Munoz N, Castellsague X, de Gonzalez AB, Gissmann L. Chapter 1: HPV in the etiology of human cancer. Vaccine. 2006;24(Suppl 3):S3/1–S310.
    1. Mirzaei HR, Sahebkar A, Salehi R, Nahand JS, Karimi E, Jaafari MR, Mirzaei H. Boron neutron capture therapy: moving toward targeted cancer therapy. J Cancer Res Ther. 2016;12(2):520–525. doi: 10.4103/0973-1482.176167.
    1. Mirzaei H, Sahebkar A, Sichani LS, Moridikia A, Nazari S, Sadri Nahand J, Salehi H, Stenvang J, Masoudifar A, Mirzaei HR, et al. Therapeutic application of multipotent stem cells. J Cell Physiol. 2018;233(4):2815–2823. doi: 10.1002/jcp.25990.
    1. Saadatpour Z, Bjorklund G, Chirumbolo S, Alimohammadi M, Ehsani H, Ebrahiminejad H, Pourghadamyari H, Baghaei B, Mirzaei HR, Sahebkar A, et al. Molecular imaging and cancer gene therapy. Cancer Gene Ther. 2016. 10.1038/cgt.2016.62.
    1. Hashemi Goradel Nasser, Ghiyami-Hour Farshid, Jahangiri Samira, Negahdari Babak, Sahebkar Amirhossein, Masoudifar Aria, Mirzaei Hamed. Nanoparticles as new tools for inhibition of cancer angiogenesis. Journal of Cellular Physiology. 2017;233(4):2902–2910. doi: 10.1002/jcp.26029.
    1. Mirzaei H, Sahebkar A, Jaafari MR, Hadjati J, Javanmard SH, Mirzaei HR, Salehi R. PiggyBac as a novel vector in cancer gene therapy: current perspective. Cancer Gene Ther. 2016;23(2–3):45–47. doi: 10.1038/cgt.2015.68.
    1. Mirzaei HR, Mirzaei H, Lee SY, Hadjati J, Till BG. Prospects for chimeric antigen receptor (CAR) gammadelta T cells: a potential game changer for adoptive T cell cancer immunotherapy. Cancer Lett. 2016;380(2):413–423. doi: 10.1016/j.canlet.2016.07.001.
    1. Mohammadi M, Jaafari MR, Mirzaei HR, Mirzaei H. Mesenchymal stem cell: a new horizon in cancer gene therapy. Cancer Gene Ther. 2016;23(9):285–286. doi: 10.1038/cgt.2016.35.
    1. Vora C, Gupta S. Targeted therapy in cervical cancer. ESMO Open. 2019;3(Suppl 1):e000462. doi: 10.1136/esmoopen-2018-000462.
    1. Goodridge HS, Wolf AJ, Underhill DM. Beta-glucan recognition by the innate immune system. Immunol Rev. 2009;230(1):38–50. doi: 10.1111/j.1600-065X.2009.00793.x.
    1. Akramiene D, Kondrotas A, Didziapetriene J, Kevelaitis E. Effects of beta-glucans on the immune system. Medicina (Kaunas) 2007;43(8):597–606. doi: 10.3390/medicina43080076.
    1. Vandamme E, De Baets S, Vanbaelen A, Joris K, De Wulf P. Improved production of bacterial cellulose and its application potential. Polym Degrad Stab. 1998;59(1–3):93–99. doi: 10.1016/S0141-3910(97)00185-7.
    1. Lin W-C, Lien C-C, Yeh H-J, Yu C-M, Hsu S-h. Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym. 2013;94(1):603–611. doi: 10.1016/j.carbpol.2013.01.076.
    1. Jonas R, Farah LF. Production and application of microbial cellulose. Polym Degrad Stab. 1998;59(1–3):101–106. doi: 10.1016/S0141-3910(97)00197-3.
    1. Ciechanska D. Multifunctional bacterial cellulose/chitosan composite materials for medical applications. Fibres Text East Eur. 2004;12(4):69–72.
    1. Nevell TP, Zeronian SH. Cellulose chemistry and its applications. 1985.
    1. Zhan X-B, Lin C-C, Zhang H-T. Recent advances in curdlan biosynthesis, biotechnological production, and applications. Appl Microbiol Biotechnol. 2012;93(2):525–531. doi: 10.1007/s00253-011-3740-2.
    1. Zhang R, Edgar KJ. Properties, chemistry, and applications of the bioactive polysaccharide curdlan. Biomacromolecules. 2014;15(4):1079–1096. doi: 10.1021/bm500038g.
    1. Sun Y, Liu Y, Li Y, Lv M, Li P, Xu H, Wang L. Preparation and characterization of novel curdlan/chitosan blending membranes for antibacterial applications. Carbohydr Polym. 2011;84(3):952–959. doi: 10.1016/j.carbpol.2010.12.055.
    1. Kanke M, Tanabe E, Katayama H, KODA Y, Yoshitomi H. Application of curdlan to controlled drug delivery. III. Drug release from sustained release suppositories in vitro. Biol Pharm Bull. 1995;18(8):1154–1158. doi: 10.1248/bpb.18.1154.
    1. Kanke M, Koda K, Koda Y, Katayama H. Application of curdlan to controlled drug delivery. I. the preparation and evaluation of theophylline-containing curdlan tablets. Pharm Res. 1992;9(3):414–418. doi: 10.1023/A:1015811523426.
    1. Custódio CA, Reis RL, Mano JF. Photo-cross-linked laminarin-based hydrogels for biomedical applications. Biomacromolecules. 2016;17(5):1602–1609. doi: 10.1021/acs.biomac.5b01736.
    1. Kadam S, O'Donnell C, Rai D, Hossain M, Burgess C, Walsh D, Tiwari B. Laminarin from Irish brown seaweeds Ascophyllum nodosum and Laminaria hyperborea: ultrasound assisted extraction, characterization and bioactivity. Marine Drugs. 2015;13(7):4270–4280. doi: 10.3390/md13074270.
    1. Kadam SU, Tiwari BK, O'Donnell CP. Extraction, structure and biofunctional activities of laminarin from brown algae. Int J Food Sci Technol. 2015;50(1):24–31. doi: 10.1111/ijfs.12692.
    1. Aziz A, Poinssot B, Daire X, Adrian M, Bézier A, Lambert B, Joubert J-M, Pugin A. Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Mol Plant-Microbe Interact. 2003;16(12):1118–1128. doi: 10.1094/MPMI.2003.16.12.1118.
    1. Carballo C, Chronopoulou EG, Letsiou S, Maya C, Labrou NE, Infante C, Power DM, Manchado M. Antioxidant capacity and immunomodulatory effects of a chrysolaminarin-enriched extract in Senegalese sole. Fish Shellfish Immunol. 2018;82:1–8. doi: 10.1016/j.fsi.2018.07.052.
    1. Xia S, Gao B, Li A, Xiong J, Ao Z, Zhang C. Preliminary characterization, antioxidant properties and production of chrysolaminarin from marine diatom Odontella aurita. Marine Drugs. 2014;12(9):4883–4897. doi: 10.3390/md12094883.
    1. Yang P, Liang M, Zhang Y, Shen B. Clinical application of a combination therapy of lentinan, multi-electrode RFA and TACE in HCC. Adv Ther. 2008;25(8):787. doi: 10.1007/s12325-008-0079-x.
    1. Drandarska I, Kussovski V, Nikolaeva S, Markova N. Combined immunomodulating effects of BCG and Lentinan after intranasal application in Guinea pigs. Int Immunopharmacol. 2005;5(4):795–803. doi: 10.1016/j.intimp.2004.12.008.
    1. Chihara G. Immunopharmacology of lentinan and glucans. In: Tissue Culture and Reticuloendothelial System: Proceedings of the Joint Congress of the European Tissue Culture Society and the European Reticuloendothelial Society, Held in Budapest, Hungary, 9–13 May 1983. Leiden: Brill Publishers; 1984. p. 179.
    1. Zhang Y, Li S, Wang X, Zhang L, Cheung PC. Advances in lentinan: isolation, structure, chain conformation and bioactivities. Food Hydrocoll. 2011;25(2):196–206. doi: 10.1016/j.foodhyd.2010.02.001.
    1. Perlin A, Suzuki S. The structure of lichenin: selective enzymolysis studies. Can J Chem. 1962;40(1):50–56. doi: 10.1139/v62-009.
    1. Hensel A. γ-Propoxy-sulfo-lichenin, an antitumor polysaccharide derived from lichenin. Pharm Acta Helv. 1995;70(1):25–31. doi: 10.1016/0031-6865(94)00048-Z.
    1. Podterob A. Chemical composition of lichens and their medical applications. Pharm Chem J. 2008;42(10):582–588. doi: 10.1007/s11094-009-0183-5.
    1. Hozova B, Kuniak L, Kelemenova B. Application of beta-D-glucans isolated from mushrooms Pleurotus ostreatus (Pleuran) and Lentinus edodes (Lentinan) for increasing the bioactivity of yoghurts. Czech J Food Sci-UZPI (Czech Republic). 2004;22(6):204–14.
    1. Jesenak M, Urbancek S, Majtan J, Banovcin P, Hercogova J. β-Glucan-based cream (containing pleuran isolated from Pleurotus ostreatus) in supportive treatment of mild-to-moderate atopic dermatitis. J Dermatol Treat. 2016;27(4):351–354. doi: 10.3109/09546634.2015.1117565.
    1. Maftoun P, Malek R, Abdel-Sadek M, Aziz R, Enshasy HE. Bioprocess for semi-industrial production of immunomodulator polysaccharide Pleuran by Pleurotus ostreatus in submerged culture. 2013.
    1. Jesenak M, Hrubisko M, Majtan J, Rennerova Z, Banovcin P. Anti-allergic effect of Pleuran (β-glucan from Pleurotus ostreatus) in children with recurrent respiratory tract infections. Phytother Res. 2014;28(3):471–474. doi: 10.1002/ptr.5020.
    1. Majtán J, Kumar P, Koller J, Dragúńová J, Gabriž J. Induction of metalloproteinase 9 secretion from human keratinocytes by pleuran (β-glucan from Pleurotus ostreatus) Zeitschrift für Naturforschung C. 2009;64(7–8):597–600. doi: 10.1515/znc-2009-7-820.
    1. Cash JL, White GE, Greaves DR. Zymosan-induced peritonitis as a simple experimental system for the study of inflammation. Methods Enzymol. 2009;461:379–396. doi: 10.1016/S0076-6879(09)05417-2.
    1. Randich A, Uzzell T, Cannon R, Ness TJ. Inflammation and enhanced nociceptive responses to bladder distension produced by intravesical zymosan in the rat. BMC Urol. 2006;6(1):2. doi: 10.1186/1471-2490-6-2.
    1. Watzlawick R, Kenngott EE, Liu FDM, Schwab JM, Hamann A. Anti-inflammatory effects of IL-27 in zymosan-induced peritonitis: inhibition of neutrophil recruitment partially explained by impaired mobilization from bone marrow and reduced chemokine levels. PLoS One. 2015;10(9):e0137651. doi: 10.1371/journal.pone.0137651.
    1. Harrigan TJ, Abdullaev IF, Jourd’heuil D, Mongin AA. Activation of microglia with zymosan promotes excitatory amino acid release via volume-regulated anion channels: the role of NADPH oxidases. J Neurochem. 2008;106(6):2449–2462. doi: 10.1111/j.1471-4159.2008.05553.x.
    1. Zhang Y, Kong H, Fang Y, Nishinari K, Phillips GO. Schizophyllan: a review on its structure, properties, bioactivities and recent developments. Bioactive Carbohydrates Dietary Fibre. 2013;1(1):53–71. doi: 10.1016/j.bcdf.2013.01.002.
    1. Sakurai K., Kimura T., Koumoto K., Mizu M., Kobayashi R., Shinkai S. Application of schizophyllan as a novel gene carrier. Nucleic Acids Symposium Series. 2001;1(1):223–224. doi: 10.1093/nass/1.1.223.
    1. Abdel-Mohsen A, Abdel-Rahman RM, Fouda MM, Vojtova L, Uhrova L, Hassan A, Al-Deyab SS, El-Shamy IE, Jancar J. Preparation, characterization and cytotoxicity of schizophyllan/silver nanoparticle composite. Carbohydr Polym. 2014;102:238–245. doi: 10.1016/j.carbpol.2013.11.040.
    1. Grisel M, Muller G. Rheological properties of the Schizophyllan− borax system. Macromolecules. 1998;31(13):4277–4281. doi: 10.1021/ma970485k.
    1. Kumar P, Jain K, Munilkumar S, Chalal R. Beta Glucan: Avaluable Nutraceuticalfor promoting health in aquaculture (short review) Afr J Basic Appl Sci. 2013;5(5):220–227.
    1. Chan GC, Chan WK, Sze DM. The effects of beta-glucan on human immune and cancer cells. J Hematol Oncol. 2009;2:25. doi: 10.1186/1756-8722-2-25.
    1. Bohn JA, JN BM. (1→ 3)-β-D-Glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydr Polym. 1995;28(1):3–14. doi: 10.1016/0144-8617(95)00076-3.
    1. Yadomae T. Structure and biological activities of fungal beta-1, 3-glucans. Yakugaku zasshi: J Pharmaceutical Soc Jpn. 2000;120(5):413–431. doi: 10.1248/yakushi1947.120.5_413.
    1. Brown GD, Gordon S. Fungal beta-glucans and mammalian immunity. Immunity. 2003;19(3):311–315. doi: 10.1016/S1074-7613(03)00233-4.
    1. Ishibashi K, Miura NN, Adachi Y, Ohno N, Yadomae T. Relationship between solubility of grifolan, a fungal 1,3-beta-D-glucan, and production of tumor necrosis factor by macrophages in vitro. Biosci Biotechnol Biochem. 2001;65(9):1993–2000. doi: 10.1271/bbb.65.1993.
    1. Lee DY, Ji IH, Chang HI, Kim CW. High-level TNF-alpha secretion and macrophage activity with soluble beta-glucans from Saccharomyces cerevisiae. Biosci Biotechnol Biochem. 2002;66(2):233–238. doi: 10.1271/bbb.66.233.
    1. Kim GY, Choi GS, Lee SH, Park YM. Acidic polysaccharide isolated from Phellinus linteus enhances through the up-regulation of nitric oxide and tumor necrosis factor-alpha from peritoneal macrophages. J Ethnopharmacol. 2004;95(1):69–76. doi: 10.1016/j.jep.2004.06.024.
    1. Lavigne LM, Albina JE, Reichner JS. Beta-glucan is a fungal determinant for adhesion-dependent human neutrophil functions. J Immunol. 2006;177(12):8667–8675. doi: 10.4049/jimmunol.177.12.8667.
    1. Sato T, Iwabuchi K, Nagaoka I, Adachi Y, Ohno N, Tamura H, Seyama K, Fukuchi Y, Nakayama H, Yoshizaki F, et al. Induction of human neutrophil chemotaxis by Candida albicans-derived beta-1,6-long glycoside side-chain-branched beta-glucan. J Leukoc Biol. 2006;80(1):204–211. doi: 10.1189/jlb.0106069.
    1. Ross GD, Vetvicka V, Yan J, Xia Y, Vetvickova J. Therapeutic intervention with complement and beta-glucan in cancer. Immunopharmacology. 1999;42(1–3):61–74. doi: 10.1016/S0162-3109(99)00013-2.
    1. Czop JK, Austen KF. A beta-glucan inhibitable receptor on human monocytes: its identity with the phagocytic receptor for particulate activators of the alternative complement pathway. J Immunol. 1985;134(4):2588–2593.
    1. Thornton BP, Vĕtvicka V, Pitman M, Goldman RC, Ross GD. Analysis of the sugar specificity and molecular location of the beta-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18) J Immunol. 1996;156(3):1235–1246.
    1. Zimmerman JW, Lindermuth J, Fish PA, Palace GP, Stevenson TT, DeMong DE. A novel carbohydrate-glycosphingolipid interaction between a beta-(1-3)-glucan immunomodulator, PGG-glucan, and lactosylceramide of human leukocytes. J Biol Chem. 1998;273(34):22014–22020. doi: 10.1074/jbc.273.34.22014.
    1. Rice PJ, Kelley JL, Kogan G, Ensley HE, Kalbfleisch JH, Browder IW, Williams DL. Human monocyte scavenger receptors are pattern recognition receptors for (1-->3)-beta-D-glucans. J Leukoc Biol. 2002;72(1):140–146.
    1. Brown GD, Gordon S. A new receptor for β-glucans. Nature. 2001;413(6851):36–37. doi: 10.1038/35092620.
    1. Lukacsi S, Nagy-Balo Z, Erdei A, Sandor N, Bajtay Z. The role of CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in complement-mediated phagocytosis and podosome formation by human phagocytes. Immunol Lett. 2017;189:64–72. doi: 10.1016/j.imlet.2017.05.014.
    1. Brown GD, Taylor PR, Reid DM, Willment JA, Williams DL, Martinez-Pomares L, Wong SY, Gordon S. Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med. 2002;196(3):407–412. doi: 10.1084/jem.20020470.
    1. Taylor PR, Brown GD, Reid DM, Willment JA, Martinez-Pomares L, Gordon S, Wong SY. The β-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol. 2002;169(7):3876–3882. doi: 10.4049/jimmunol.169.7.3876.
    1. Suram S, Brown GD, Ghosh M, Gordon S, Loper R, Taylor PR, Akira S, Uematsu S, Williams DL, Leslie CC. Regulation of cytosolic phospholipase A2 activation and cyclooxygenase 2 expression in macrophages by the β-glucan receptor. J Biol Chem. 2006;281(9):5506–5514. doi: 10.1074/jbc.M509824200.
    1. Yadav M, Schorey JS. The β-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood. 2006;108(9):3168–3175. doi: 10.1182/blood-2006-05-024406.
    1. Barbisan LF, Spinardi-Barbisan ALT, Moreira ELT, Salvadori DMF, Ribeiro LR, AFd E, JLV d C. Agaricus blazei (Himematsutake) does not alter the development of rat diethylnitrosamine-initiated hepatic preneoplastic foci. Cancer Sci. 2003;94(2):188–192. doi: 10.1111/j.1349-7006.2003.tb01417.x.
    1. Barbisan L, Miyamoto M, Scolastici C, Salvadori DMF, Ribeiro L, Eira A, de Camargo JLV. Influence of aqueous extract of Agaricus blazei on rat liver toxicity induced by different doses of diethylnitrosamine. J Ethnopharmacol. 2002;83(1–2):25–32. doi: 10.1016/S0378-8741(02)00171-X.
    1. Volman JJ, Ramakers JD, Plat J. Dietary modulation of immune function by beta-glucans. Physiol Behav. 2008;94(2):276–284. doi: 10.1016/j.physbeh.2007.11.045.
    1. Mantovani MS, Bellini MF, Angeli JP, Oliveira RJ, Silva AF. Ribeiro LR: beta-Glucans in promoting health: prevention against mutation and cancer. Mutat Res. 2008;658(3):154–161. doi: 10.1016/j.mrrev.2007.07.002.
    1. Liang J, Melican D, Cafro L, Palace G, Fisette L, Armstrong R, Patchen ML. Enhanced clearance of a multiple antibiotic resistant Staphylococcus aureus in rats treated with PGG-glucan is associated with increased leukocyte counts and increased neutrophil oxidative burst activity. Int J Immunopharmacol. 1998;20(11):595–614. doi: 10.1016/S0192-0561(98)00007-1.
    1. Williams DL. Overview of (1-->3)-beta-D-glucan immunobiology. Mediat Inflamm. 1997;6(4):247–250. doi: 10.1080/09629359791550.
    1. Tzianabos AO. Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clin Microbiol Rev. 2000;13(4):523–533. doi: 10.1128/CMR.13.4.523.
    1. Zeković DB, Kwiatkowski S, Vrvić MM, Jakovljević D, Moran CA. Natural and modified (1→ 3)-β-D-glucans in health promotion and disease alleviation. Crit Rev Biotechnol. 2005;25(4):205–230. doi: 10.1080/07388550500376166.
    1. Olson EJ, Standing JE, Griego-Harper N, Hoffman OA, Limper AH. Fungal beta-glucan interacts with vitronectin and stimulates tumor necrosis factor alpha release from macrophages. Infect Immun. 1996;64(9):3548–3554. doi: 10.1128/IAI.64.9.3548-3554.1996.
    1. Young S-H, Ye J, Frazer DG, Shi X, Castranova V. Molecular mechanism of tumor necrosis factor-α production in 1→ 3-β-glucan (zymosan)-activated macrophages. J Biol Chem. 2001;276(23):20781–20787. doi: 10.1074/jbc.M101111200.
    1. Adachi Y, Okazaki M, Ohno N, Yadomae T. Enhancement of cytokine production by macrophages stimulated with (1→ 3)-β-D-glucan, grifolan (GRN), isolated from Grifola frondosa. Biol Pharm Bull. 1994;17(12):1554–1560. doi: 10.1248/bpb.17.1554.
    1. Brown GD, Herre J, Williams DL, Willment JA, Marshall AS, Gordon S. Dectin-1 mediates the biological effects of β-glucans. J Exp Med. 2003;197(9):1119–1124. doi: 10.1084/jem.20021890.
    1. Engstad CS, Engstad RE, Olsen J-O, Østerud B. The effect of soluble β-1, 3-glucan and lipopolysaccharide on cytokine production and coagulation activation in whole blood. Int Immunopharmacol. 2002;2(11):1585–1597. doi: 10.1016/S1567-5769(02)00134-0.
    1. Estrada A, Yun C-H, Kessel AV, Li B, Hauta S, Laarveld B. Immunomodulatory activities of oat β-glucan in vitro and in vivo. Microbiol Immunol. 1997;41(12):991–998. doi: 10.1111/j.1348-0421.1997.tb01959.x.
    1. Wakshull E, Brunke-Reese D, Lindermuth J, Fisette L, Nathans RS, Crowley JJ, Tufts JC, Zimmerman J, Mackin W, Adams DS. PGG-Glucan, a soluble β-(1, 3)-glucan, enhances the oxidative burst response, microbicidal activity, and activates an NF-κB-like factor in human PMN: evidence for a glycosphingolipid β-(1, 3)-glucan receptor. Immunopharmacology. 1999;41(2):89–107. doi: 10.1016/S0162-3109(98)00059-9.
    1. Lin Y-L, Lee S-S, Hou S-M, Chiang B-L. Polysaccharide purified from Ganoderma lucidum induces gene expression changes in human dendritic cells and promotes T helper 1 immune response in BALB/c mice. Mol Pharmacol. 2006;70(2):637–644. doi: 10.1124/mol.106.022327.
    1. Hahn PY, Evans SE, Kottom TJ, Standing JE, Pagano RE, Limper AH. Pneumocystis carinii cell wall β-glucan induces release of macrophage inflammatory protein-2 from alveolar epithelial cells via a lactosylceramide-mediated mechanism. J Biol Chem. 2003;278(3):2043–2050. doi: 10.1074/jbc.M209715200.
    1. Tian J, Ma J, Ma K, Guo H, Baidoo SE, Zhang Y, Yan J, Lu L, Xu H, Wang S. β-Glucan enhances antitumor immune responses by regulating differentiation and function of monocytic myeloid-derived suppressor cells. Eur J Immunol. 2013;43(5):1220–1230. doi: 10.1002/eji.201242841.
    1. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162. doi: 10.1038/nri2506.
    1. Abel G, CzoP JK. Stimulation of human monocyte β-glucan receptors by glucan particles induces production of TNF-α and IL-1β. Int J Immunopharmacol. 1992;14(8):1363–1373. doi: 10.1016/0192-0561(92)90007-8.
    1. Błaszczyk Katarzyna, Wilczak Jacek, Harasym Joanna, Gudej Sylwia, Suchecka Dominika, Królikowski Tomasz, Lange Ewa, Gromadzka-Ostrowska Joanna. Impact of low and high molecular weight oat beta-glucan on oxidative stress and antioxidant defense in spleen of rats with LPS induced enteritis. Food Hydrocolloids. 2015;51:272–280. doi: 10.1016/j.foodhyd.2015.05.025.
    1. LeBlanc BW, Albina JE, Reichner JS. The effect of PGG-β-glucan on neutrophil chemotaxis in vivo. J Leukoc Biol. 2006;79(4):667–675. doi: 10.1189/jlb.0305150.
    1. Babineau TJ, Hackford A, Kenler A, Bistrian B, Forse RA, Fairchild PG, Heard S, Keroack M, Caushaj P, Benotti P. A phase II multicenter, double-blind, randomized, placebo-controlled study of three dosages of an immunomodulator (PGG-glucan) in high-risk surgical patients. Arch Surg. 1994;129(11):1204–1210. doi: 10.1001/archsurg.1994.01420350102014.
    1. Babineau TJ, Marcello P, Swails W, Kenler A, Bistrian B, Forse RA. Randomized phase I/II trial of a macrophage-specific immunomodulator (PGG-glucan) in high-risk surgical patients. Ann Surg. 1994;220(5):601. doi: 10.1097/00000658-199411000-00002.
    1. Nisini R, Torosantucci A, Romagnoli G, Chiani P, Donati S, Gagliardi MC, Teloni R, Sargentini V, Mariotti S, Iorio E. β-Glucan of Candida albicans cell wall causes the subversion of human monocyte differentiation into dendritic cells. J Leukoc Biol. 2007;82(5):1136–1142. doi: 10.1189/jlb.0307160.
    1. Liu JK. The history of monoclonal antibody development - Progress, remaining challenges and future innovations. Ann Med Surg (Lond) 2014;3(4):113–116. doi: 10.1016/j.amsu.2014.09.001.
    1. Gelderman KA, Tomlinson S, Ross GD, Gorter A. Complement function in mAb-mediated cancer immunotherapy. Trends Immunol. 2004;25(3):158–164. doi: 10.1016/j.it.2004.01.008.
    1. Cheung N-KV, Ross GD, Hansen RD, Ostroff GR, Xing PX, Hong F, Yan J, Baran JT, Allendorf DJ. Mechanism by which orally administered. J Immunol. 2004;173:797–806. doi: 10.4049/jimmunol.173.2.797.
    1. Hong F, Hansen RD, Yan J, Allendorf DJ, Baran JT, Ostroff GR, Ross GD. β-Glucan functions as an adjuvant for monoclonal antibody immunotherapy by recruiting tumoricidal granulocytes as killer cells. Cancer Res. 2003;63(24):9023–9031.
    1. Gabrilovich DI. Myeloid-Derived Suppressor Cells. Cancer Immunol Res. 2017;5(1):3–8. doi: 10.1158/2326-6066.CIR-16-0297.
    1. Sica A, Massarotti M. Myeloid suppressor cells in cancer and autoimmunity. J Autoimmun. 2017;85:117–125. doi: 10.1016/j.jaut.2017.07.010.
    1. Albeituni SH, Ding C, Liu M, Hu X, Luo F, Kloecker G, Bousamra M, 2nd, Zhang HG, Yan J. Yeast-derived particulate beta-Glucan treatment subverts the suppression of myeloid-derived suppressor cells (MDSC) by inducing Polymorphonuclear MDSC apoptosis and Monocytic MDSC differentiation to APC in cancer. J Immunol. 2016;196(5):2167–2180. doi: 10.4049/jimmunol.1501853.
    1. Anani W, Shurin MR. Targeting myeloid-derived suppressor cells in Cancer. Adv Exp Med Biol. 2017;1036:105–128. doi: 10.1007/978-3-319-67577-0_8.
    1. Tian J, Ma J, Ma K, Guo H, Baidoo SE, Zhang Y, Yan J, Lu L, Xu H, Wang S. Beta-Glucan enhances antitumor immune responses by regulating differentiation and function of monocytic myeloid-derived suppressor cells. Eur J Immunol. 2013;43(5):1220–1230. doi: 10.1002/eji.201242841.
    1. Rui K, Tian J, Tang X, Ma J, Xu P, Tian X, Wang Y, Xu H, Lu L, Wang S. Curdlan blocks the immune suppression by myeloid-derived suppressor cells and reduces tumor burden. Immunol Res. 2016;64(4):931–939. doi: 10.1007/s12026-016-8789-7.
    1. Ning Y, Xu D, Zhang X, Bai Y, Ding J, Feng T, Wang S, Xu N, Qian K, Wang Y, et al. beta-glucan restores tumor-educated dendritic cell maturation to enhance antitumor immune responses. Int J Cancer. 2016;138(11):2713–2723. doi: 10.1002/ijc.30002.
    1. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Munoz N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12–19. doi: 10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>;2-F.
    1. Münger K, Baldwin A, Edwards KM, Hayakawa H, Nguyen CL, Owens M, Grace M, Huh K. Mechanisms of human papillomavirus-induced oncogenesis. J Virol. 2004;78(21):11451–11460. doi: 10.1128/JVI.78.21.11451-11460.2004.
    1. Longworth MS, Laimins LA. Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev. 2004;68(2):362–372. doi: 10.1128/MMBR.68.2.362-372.2004.
    1. Thomas M, Pim D, Banks L. The role of the E6-p53 interaction in the molecular pathogenesis of HPV. Oncogene. 1999;18(53):7690. doi: 10.1038/sj.onc.1202953.
    1. Bernard H-U. Gene expression of genital human papillomaviruses and considerations on potential antiviral approaches. Antivir Ther. 2002;7(4):219–237.
    1. Duensing S, Münger K. Mechanisms of genomic instability in human cancer: insights from studies with human papillomavirus oncoproteins. Int J Cancer. 2004;109(2):157–162. doi: 10.1002/ijc.11691.
    1. Roopngam PE. Increased response of human T-lymphocytes by dendritic cells pulsed with HPV16E7 and Pleurotus sajor-caju-beta-glucan (PBG) Iran J Immunol. 2018;15(4):246–255.
    1. Lanzavecchia A. Receptor-mediated antigen uptake and its effect on antigen presentation to class II-restricted T lymphocytes. Annu Rev Immunol. 1990;8(1):773–793. doi: 10.1146/annurev.iy.08.040190.004013.
    1. Sekiguchi I, Suzuki M, Izumi A, Aida I, Tamada T. The study on the immunological effect of sizofilan combined with radiotherapy in patients with uterine cervical cancer. Nihon Gan Chiryo Gakkai Shi. 1990;25(11):2659–2664.
    1. Okamura K, Hamazaki Y, Yajima A, Noda K. Adjuvant immunotherapy: two randomized controlled studies of patients with cervical cancer. Biomed Pharmacother. 1989;43(3):177–181. doi: 10.1016/0753-3322(89)90212-6.
    1. Miyazaki K, Mizutani H, Katabuchi H, Fukuma K, Fujisaki S, Okamura H. Activated (HLA-DR+) T-lymphocyte subsets in cervical carcinoma and effects of radiotherapy and immunotherapy with sizofiran on cell-mediated immunity and survival. Gynecol Oncol. 1995;56(3):412–420. doi: 10.1006/gyno.1995.1073.
    1. Okamura K, Suzuki M, Chihara T, Fujiwara A, Fukuda T, Goto S, Ichinohe K, Jimi S, Kasamatsu T, Kawai N, et al. Clinical evaluation of schizophyllan combined with irradiation in patients with cervical cancer. A randomized controlled study. Cancer. 1986;58(4):865–872. doi: 10.1002/1097-0142(19860815)58:4<865::AID-CNCR2820580411>;2-S.
    1. Chen JT, Teshima H, Shimizu Y, Hasumi K, Masubuchi K, Suzuki M. Sizofiran and recombinant interferon gamma stimulate peritoneal macrophages obtained from patients with gynecologic malignancies--increased secretion of tumor necrosis factor, IL-1 and interferon-gamma. Gan To Kagaku Ryoho. 1990;17(7):1365–1369.
    1. Shimizu Y, Teshima H, Chen JT, Fujimoto I, Hasumi K, Masubuchi K. Augmentative effect of sizofiran on the immune functions of regional lymph nodes in patients with cervical cancer. Nihon Sanka Fujinka Gakkai Zasshi. 1991;43(6):581–588.
    1. Shimizu Y, Hasumi K, Masubuchi K. Augmenting effect of sizofiran on the immunofunction of regional lymph nodes in cervical cancer. Cancer. 1992;69(5):1184–1194.
    1. Nakano T, Oka K, Sugita T, Tsunemoto H. Antitumor activity of Langerhans cells in radiation therapy for cervical cancer and its modulation with SPG administration. In Vivo. 1993;7(3):257–263.
    1. Gorai I, Yanagibashi T, Minaguchi H. Immunological modulation of lymphocyte subpopulation in cervical cancer tissue by Sizofiran and OK-432. Gynecol Oncol. 1992;44(2):137–146. doi: 10.1016/0090-8258(92)90029-I.
    1. Nakano T, Oka K, Hanba K, Morita S. Intratumoral administration of sizofiran activates Langerhans cell and T-cell infiltration in cervical cancer. Clin Immunol Immunopathol. 1996;79(1):79–86. doi: 10.1006/clin.1996.0053.
    1. Li L, Gao F-p, Tang H-b, Bai Y-g, Li R-f, Li X-m, Liu L-r, Wang Y-s, Zhang Q-q. Self-assembled nanoparticles of cholesterol-conjugated carboxymethyl curdlan as a novel carrier of epirubicin. Nanotechnology. 2010;21(26):265601. doi: 10.1088/0957-4484/21/26/265601.
    1. Ghosh SK, Sanyal T. Anti-cancer property of Lenzites betulina (L) Fr. on cervical cancer cell lines and its anti-tumor effect on HeLa-implanted mice. BioRxiv. 2019:540567. 10.1101/540567.
    1. Harada T, Miura N, Adachi Y, Nakajima M, Yadomae T, Ohno N. Effect of SCG, 1, 3-β-D-glucan from Sparassis crispa on the hematopoietic response in cyclophosphamide induced leukopenic mice. Biol Pharm Bull. 2002;25(7):931–939. doi: 10.1248/bpb.25.931.
    1. Jin M, Jeon H, Jung HJ, Kim B, Shin SS, Choi JJ, Lee JK, Kang CY, Kim S. Enhancement of repopulation and hematopoiesis of bone marrow cells in irradiated mice by oral administration of PG101, a water-soluble extract from Lentinus lepideus. Exp Biol Med (Maywood) 2003;228(6):759–766. doi: 10.1177/153537020322800616.
    1. Nikulina LB. Effect of actinomycin D, carminomycin and bleomycin and their joint use with serotonin and zymosan on the functional state of the peritoneal macrophages. Antibiotiki. 1978;23(6):543–548.
    1. Roopngam PE. Increased response of human T-lymphocytes by dendritic cells pulsed with HPV16E7 and Pleurotus sajor-caju-β-glucan (PBG) Iran J Immunol. 2018;15(4):246–255.
    1. Xiang D, Luo R. Effect of lentinan on the efficacy of docetaxel combined with cisplatin in stage IV cervical cancer. Oncol Prog. 2016;14(8):808–810.
    1. Stentella P, Biamonti A, Carraro C, Inghirami P, Mancino P, Pietrangeli D, Votano S, Lazzari P, Medici C DE. Efficacy of carboxymethyl beta-glucan in cervical intraepithelial neoplasia: a retrospective, case-control study. Minerva Ginecol. 2017;69(5):425–430.
    1. Pietrantoni E, Signore F, Berardi G, Donadio F, Donadio C. Role of beta-glucan in the treatment of recurrent candidiasis and HPV-correlated lesions and reparative process of epidermis. Minerva Ginecol. 2010;62(1):1–5.
    1. Scardamaglia P, Carraro C, Mancino P, Stentella P. Effectiveness of the treatment with beta-glucan in the HPV-CIN 1 lesions. Minerva Ginecol. 2010;62(5):389–393.
    1. Sugawara I, Lee KC, Wong M. Schizophyllan (SPG)-treated macrophages and anti-tumor activities against syngeneic and allogeneic tumor cells. Cancer Immunol Immunother. 1984;16(3):137–144. doi: 10.1007/BF00205419.
    1. Mizuhira V, Ono M, Yokofujita J, Kinoshita M, Asano T, Hase T, Amemiya K. Histological and cytochemical studies on the distribution of Schizophyllan Glucan (SPG) in cancer-inoculated animals. Acta Histochem Cytochem. 1985;18(2):221–254. doi: 10.1267/ahc.18.221.
    1. Komatsu N, OKuBo S, Kikumoto S, Kimura K, Saito G, Sakai S. Host-mediated antitumor action of schizophyllan, a glucan produced by Schizophyllum commune. GANN Jpn J Cancer Res. 1969;60(2):137–144.
    1. Mashiba H, Matsunaga K. In vitro activation of human adherent cells by a glucan, Schizophyllan. Jpn J Exp Med. 1983;53(4):195–198.
    1. Katz SI, Cooper KD, Iijima M, Tsuchida T. The role of Langerhans cells in antigen presentation. J Investig Dermatol. 1985;85(1):S96–S98. doi: 10.1111/1523-1747.ep12275562.
    1. Hasegawa K, Nishimura R, Kinugasa M, Okamura M, Kimura A, Ohtsu F, Takeuchi K, Mizuhira V. Electron microscopic and immunological studies concerning the effect on the antitumor activity of sizofiran (SPG) combined with radiotherapy for cervical cancer. Nihon Gan Chiryo Gakkai Shi. 1990;25(10):2549–2561.
    1. Harada T, Misaki A, Saito H. Curdlan: a bacterial gel-forming β-1, 3-glucan. Arch Biochem Biophys. 1968;124:292–298. doi: 10.1016/0003-9861(68)90330-5.
    1. McIntosh M, Stone BA, Stanisich VA. Curdlan and other bacterial (1-->3)-beta-D-glucans. Appl Microbiol Biotechnol. 2005;68(2):163–173. doi: 10.1007/s00253-005-1959-5.
    1. Yoshida T, Yasuda Y, Uryu T, Nakashima H, Yamamoto N, Mimura T, Kaneko Y. Synthesis and in vitro inhibitory effect of L-glycosyl-branched curdlan sulfates on AIDS virus infection. Macromolecules. 1994;27(22):6272–6276. doi: 10.1021/ma00100a007.
    1. Katsuraya K, Nakashima H, Yamamoto N, Uryu T. Synthesis of sulfated oligosaccharide glycosides having high anti-HIV activity and the relationship between activity and chemical structure. Carbohydr Res. 1999;315(3–4):234–242. doi: 10.1016/S0008-6215(98)00315-2.
    1. Sasaki T, Abiko N, Sugino Y, Nitta K. Dependence on chain length of antitumor activity of (1→ 3)-β-D-glucan from Alcaligenes faecalis var. myxogenes, IFO 13140, and its acid-degraded products. Cancer Res. 1978;38(2):379–383.
    1. Saito H, Yoshioka Y, Uehara N, Aketagawa J, Tanaka S, Shibata Y. Relationship between conformation and biological response for (1→ 3)-β-d-glucans in the activation of coagulation factor G from limulus amebocyte lysate and host-mediated antitumor activity. Demonstration of single-helix conformation as a stimulant. Carbohydr Res. 1991;217:181–190. doi: 10.1016/0008-6215(91)84128-2.
    1. Sasaki T, Abiko N, Nitta K, Takasuka N, Sugino Y. Antitumor activity of carboxymethylglucans obtained by carboxymethylation of (1 leads to 3)-beta-D-glucan from Alcaligenes faecalis var. myxogenes IFO 13140. Eur J Cancer. 1979;15(2):211–215. doi: 10.1016/0014-2964(79)90062-8.
    1. Zhang M, Zhang Y, Zhang L, Tian Q. Mushroom polysaccharide lentinan for treating different types of cancers: a review of 12 years clinical studies in China. Prog Mol Biol Transl Sci. 2019;163:297–328. doi: 10.1016/bs.pmbts.2019.02.013.
    1. Cramer DE, Allendorf DJ, Baran JT, Hansen R, Marroquin J, Li B, Ratajczak J, Ratajczak MZ, Yan J. β-Glucan enhances complement-mediated hematopoietic recovery after bone marrow injury. Blood. 2006;107(2):835–840. doi: 10.1182/blood-2005-07-2705.
    1. Brindzova L, Certik M, Rapta P, Zalibera M, Mikulajova A, Takacsova M. Antioxidant activity, beta-glucan and lipid contents of oat varieties. Czech J Food Sci-UZPI (Czech Republic). 2009; 26(3):163–73.
    1. Akramienė D, Kondrotas A, Didžiapetrienė J, Kėvelaitis E. Effects of ß-glucans on the immune system. Medicina. 2007;43(8):597. doi: 10.3390/medicina43080076.

Source: PubMed

3
구독하다