One simple claudication question as first step in Peripheral Arterial Disease (PAD) screening: A meta-analysis of the association with reduced Ankle Brachial Index (ABI) in 27,945 subjects

Arne Georg Kieback, Christine Espinola-Klein, Claudia Lamina, Susanne Moebus, Daniel Tiller, Roberto Lorbeer, Andreas Schulz, Christa Meisinger, Daniel Medenwald, Raimund Erbel, Alexander Kluttig, Philipp S Wild, Florian Kronenberg, Knut Kröger, Till Ittermann, Marcus Dörr, Arne Georg Kieback, Christine Espinola-Klein, Claudia Lamina, Susanne Moebus, Daniel Tiller, Roberto Lorbeer, Andreas Schulz, Christa Meisinger, Daniel Medenwald, Raimund Erbel, Alexander Kluttig, Philipp S Wild, Florian Kronenberg, Knut Kröger, Till Ittermann, Marcus Dörr

Abstract

Purpose and methods: A meta-analysis using data from seven German population-based cohorts was performed by the German Epidemiological consortium of Peripheral Arterial Disease (GEPArD) to investigate whether one question about claudication is more efficient for PAD screening than established questionnaires. Claudication was defined on the basis of the answer to one question asking for pain in the leg during normal walking. This simple question was compared with established questionnaires, including the Edinburgh questionnaire. The associations of claudication with continuous ABI values and decreased ABI were analyzed by linear and logistic regression analysis, respectively. The results of the studies were pooled in a random effect meta-analysis, which included data from 27,945 individuals (14,052 women, age range 20-84 years).

Results: Meta-analysis revealed a significant negative association between claudication and ABI, which was stronger in men (β = -0.07; 95%CI -0.10, -0.04) than in women (β = -0.02; 95%CI -0.02, -0.01). Likewise, the presence of claudication symptoms was related to an increased odds of a decreased ABI in both men (Odds ratio = 5.40; 95%CI 4.20, 6.96) and women (Odds ratio = 1.99; 95%CI 1.58, 2.51).

Conclusions: Asking only one question about claudication was able to identify many individuals with a high likelihood of a reduced ABI with markedly higher sensitivity and only slightly reduced specificity compared to more complex questionnaires. At least in men, this question should be established as first screening step.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Association between claudication (definition 1)…
Fig 1. Association between claudication (definition 1) and ABI in men.
Fig 2. Association between claudication (definition 1)…
Fig 2. Association between claudication (definition 1) and ABI in women.
Fig 3. Association between claudication (definition 1)…
Fig 3. Association between claudication (definition 1) and low ABI in men.
Fig 4. Association between claudication (definition 1)…
Fig 4. Association between claudication (definition 1) and low ABI in women.

References

    1. Aboyans V, Ricco JB, Bartelink MEL, Bjorck M, Brodmann M, Cohnert T, et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesEndorsed by: the European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J. 2017. 10.1093/eurheartj/ehx095 .
    1. Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, et al. 2016 AHA/ACC Guideline on the Management of Patients With Lower Extremity Peripheral Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017;69(11):e71–e126. 10.1016/j.jacc.2016.11.007 .
    1. Fowkes FG, Rudan D, Rudan I, Aboyans V, Denenberg JO, McDermott MM, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 2013;382(9901):1329–40. 10.1016/S0140-6736(13)61249-0 .
    1. Hiatt WR, Fowkes FG, Heizer G, Berger JS, Baumgartner I, Held P, et al. Ticagrelor versus Clopidogrel in Symptomatic Peripheral Artery Disease. N Engl J Med. 2017;376(1):32–40. 10.1056/NEJMoa1611688 .
    1. Kumbhani DJ, Steg PG, Cannon CP, Eagle KA, Smith SC Jr., Goto S, et al. Statin therapy and long-term adverse limb outcomes in patients with peripheral artery disease: insights from the REACH registry. Eur Heart J. 2014;35(41):2864–72. 10.1093/eurheartj/ehu080
    1. Bonaca MP, Nault P, Giugliano RP, Keech AC, Pineda AL, Kanevsky E, et al. Low-Density Lipoprotein Cholesterol Lowering With Evolocumab and Outcomes in Patients With Peripheral Artery Disease: Insights From the FOURIER Trial (Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk). Circulation. 2017. 10.1161/CIRCULATIONAHA.117.032235 .
    1. Charasson M, Mahe G, Le Brun C, Jaquinandi V, Rossignol E, Le Faucheur A, et al. Atherosclerosis knowledge—diagnosis and management in primary care. Vasa. 2018;47(6):465–70. 10.1024/0301-1526/a000727 .
    1. Alahdab F, Wang AT, Elraiyah TA, Malgor RD, Rizvi AZ, Lane MA, et al. A systematic review for the screening for peripheral arterial disease in asymptomatic patients. J Vasc Surg. 2015;61(3 Suppl):42S–53S. 10.1016/j.jvs.2014.12.008 .
    1. Lindholt JS, Sogaard R. Population screening and intervention for vascular disease in Danish men (VIVA): a randomised controlled trial. Lancet. 2017;390(10109):2256–65. 10.1016/S0140-6736(17)32250-X .
    1. Diehm C, Lange S, Darius H, Pittrow D, von Stritzky B, Tepohl G, et al. Association of low ankle brachial index with high mortality in primary care. Eur Heart J. 2006;27(14):1743–9. 10.1093/eurheartj/ehl092 .
    1. European Stroke O, Tendera M, Aboyans V, Bartelink ML, Baumgartner I, Clement D, et al. ESC Guidelines on the diagnosis and treatment of peripheral artery diseases: Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries: the Task Force on the Diagnosis and Treatment of Peripheral Artery Diseases of the European Society of Cardiology (ESC). Eur Heart J. 2011;32(22):2851–906. 10.1093/eurheartj/ehr211 .
    1. Kieback AG, Lorbeer R, Wallaschofski H, Ittermann T, Volzke H, Felix S, et al. Claudication, in contrast to angina pectoris, independently predicts mortality risk in the general population. Vasa. 2012;41(2):105–13. 10.1024/0301-1526/a000172 .
    1. Bowlin SJ, Medalie JH, Flocke SA, Zyzanski SJ, Yaari S, Goldbourt U. Intermittent claudication in 8343 men and 21-year specific mortality follow-up. Ann Epidemiol. 1997;7(3):180–7. 10.1016/s1047-2797(96)00148-2 .
    1. Kollerits B, Heinrich J, Pichler M, Rantner B, Klein-Weigel P, Wolke G, et al. Intermittent claudication in the Erfurt Male Cohort (ERFORT) Study: its determinants and the impact on mortality. A population-based prospective cohort study with 30 years of follow-up. Atherosclerosis. 2008;198(1):214–22. 10.1016/j.atherosclerosis.2007.09.012 .
    1. Reunanen A, Takkunen H, Aromaa A. Prevalence of intermittent claudication and its effect on mortality. Acta Med Scand. 1982;211(4):249–56. 10.1111/j.0954-6820.1982.tb01939.x .
    1. Simonsick EM, Guralnik JM, Hennekens CH, Wallace RB, Ostfeld AM. Intermittent claudication and subsequent cardiovascular disease in the elderly. J Gerontol A Biol Sci Med Sci. 1995;50A(1):M17–22. 10.1093/gerona/50a.1.m17 .
    1. Smith GD, Shipley MJ, Rose G. Intermittent claudication, heart disease risk factors, and mortality. The Whitehall Study. Circulation. 1990;82(6):1925–31. 10.1161/01.cir.82.6.1925 .
    1. Laschkolnig A, Kollerits B, Lamina C, Meisinger C, Rantner B, Stadler M, et al. Lipoprotein (a) concentrations, apolipoprotein (a) phenotypes, and peripheral arterial disease in three independent cohorts. Cardiovasc Res. 2014;103(1):28–36. 10.1093/cvr/cvu107
    1. Kannel WB, Evans JC, Piper S, Murabito JM. Angina pectoris is a stronger indicator of diffuse vascular atherosclerosis than intermittent claudication: Framingham study. J Clin Epidemiol. 2008;61(9):951–7. 10.1016/j.jclinepi.2007.10.025
    1. Kannel WB, McGee DL. Update on some epidemiologic features of intermittent claudication: the Framingham Study. J Am Geriatr Soc. 1985;33(1):13–8. 10.1111/j.1532-5415.1985.tb02853.x .
    1. Murabito JM, D'Agostino RB, Silbershatz H, Wilson WF. Intermittent claudication. A risk profile from The Framingham Heart Study. Circulation. 1997;96(1):44–9. 10.1161/01.cir.96.1.44 .
    1. Rose GA. The diagnosis of ischaemic heart pain and intermittent claudication in field surveys. Bull World Health Organ. 1962;27:645–58.
    1. Leng GC, Fowkes FG. The Edinburgh Claudication Questionnaire: an improved version of the WHO/Rose Questionnaire for use in epidemiological surveys. J Clin Epidemiol. 1992;45(10):1101–9. 10.1016/0895-4356(92)90150-l .
    1. Greiser KH, Kluttig A, Schumann B, Kors JA, Swenne CA, Kuss O, et al. Cardiovascular disease, risk factors and heart rate variability in the elderly general population: design and objectives of the CARdiovascular disease, Living and Ageing in Halle (CARLA) Study. BMC Cardiovasc Disord. 2005;5:33 10.1186/1471-2261-5-33
    1. Wild PS, Zeller T, Beutel M, Blettner M, Dugi KA, Lackner KJ, et al. [The Gutenberg Health Study]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2012;55(6–7):824–9. 10.1007/s00103-012-1502-7 .
    1. Sinning C, Wild PS, Echevarria FM, Wilde S, Schnabel R, Lubos E, et al. Sex differences in early carotid atherosclerosis (from the community-based Gutenberg-Heart Study). Am J Cardiol. 2011;107(12):1841–7. 10.1016/j.amjcard.2011.02.318 .
    1. Stang A, Moebus S, Dragano N, Beck EM, Mohlenkamp S, Schmermund A, et al. Baseline recruitment and analyses of nonresponse of the Heinz Nixdorf Recall Study: identifiability of phone numbers as the major determinant of response. Eur J Epidemiol. 2005;20(6):489–96. 10.1007/s10654-005-5529-z .
    1. Schmermund A, Mohlenkamp S, Stang A, Gronemeyer D, Seibel R, Hirche H, et al. Assessment of clinically silent atherosclerotic disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middle-aged subjects: rationale and design of the Heinz Nixdorf RECALL Study. Risk Factors, Evaluation of Coronary Calcium and Lifestyle. Am Heart J. 2002;144(2):212–8. 10.1067/mhj.2002.123579 .
    1. Holle R, Happich M, Lowel H, Wichmann HE, Group MKS. KORA—a research platform for population based health research. Gesundheitswesen. 2005;67 Suppl 1:S19–25. 10.1055/s-2005-858235 .
    1. Meisinger C, Thorand B, Schneider A, Stieber J, Doring A, Lowel H. Sex differences in risk factors for incident type 2 diabetes mellitus: the MONICA Augsburg cohort study. Arch Intern Med. 2002;162(1):82–9. 10.1001/archinte.162.1.82 .
    1. Volzke H, Alte D, Schmidt CO, Radke D, Lorbeer R, Friedrich N, et al. Cohort profile: the study of health in Pomerania. Int J Epidemiol. 2011;40(2):294–307. 10.1093/ije/dyp394 .
    1. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. 10.1136/bmj.327.7414.557
    1. Anand SS, Bosch J, Eikelboom JW, Connolly SJ, Diaz R, Widimsky P, et al. Rivaroxaban with or without aspirin in patients with stable peripheral or carotid artery disease: an international, randomised, double-blind, placebo-controlled trial. Lancet. 2017. 10.1016/S0140-6736(17)32409-1. .
    1. Matsushita K, Ballew SH, Coresh J, Arima H, Arnlov J, Cirillo M, et al. Measures of chronic kidney disease and risk of incident peripheral artery disease: a collaborative meta-analysis of individual participant data. Lancet Diabetes Endocrinol. 2017;5(9):718–28. 10.1016/S2213-8587(17)30183-3
    1. Criqui MH, Aboyans V. Epidemiology of peripheral artery disease. Circ Res. 2015;116(9):1509–26. 10.1161/CIRCRESAHA.116.303849 .
    1. Zhan Y, Zhuang J, Dong Y, Xu H, Hu D, Yu J. Predicting the prevalence of peripheral arterial diseases: modelling and validation in different cohorts. Vasa. 2016;45(1):31–6. 10.1024/0301-1526/a000492 .
    1. Espinola-Klein C, Rupprecht HJ, Bickel C, Lackner K, Savvidis S, Messow CM, et al. Different calculations of ankle-brachial index and their impact on cardiovascular risk prediction. Circulation. 2008;118(9):961–7. 10.1161/CIRCULATIONAHA.107.763227 .
    1. Tsai JC, Chan P, Wang CH, Jeng C, Hsieh MH, Kao PF, et al. The effects of exercise training on walking function and perception of health status in elderly patients with peripheral arterial occlusive disease. J Intern Med. 2002;252(5):448–55. 10.1046/j.1365-2796.2002.01055.x .

Source: PubMed

3
구독하다