Differences in gut microbiota profile between women with active lifestyle and sedentary women

Carlo Bressa, María Bailén-Andrino, Jennifer Pérez-Santiago, Rocío González-Soltero, Margarita Pérez, Maria Gregoria Montalvo-Lominchar, Jose Luis Maté-Muñoz, Raúl Domínguez, Diego Moreno, Mar Larrosa, Carlo Bressa, María Bailén-Andrino, Jennifer Pérez-Santiago, Rocío González-Soltero, Margarita Pérez, Maria Gregoria Montalvo-Lominchar, Jose Luis Maté-Muñoz, Raúl Domínguez, Diego Moreno, Mar Larrosa

Abstract

Physical exercise is a tool to prevent and treat some of the chronic diseases affecting the world's population. A mechanism through which exercise could exert beneficial effects in the body is by provoking alterations to the gut microbiota, an environmental factor that in recent years has been associated with numerous chronic diseases. Here we show that physical exercise performed by women to at least the degree recommended by the World Health Organization can modify the composition of gut microbiota. Using high-throughput sequencing of the 16s rRNA gene, eleven genera were found to be significantly different between active and sedentary women. Quantitative PCR analysis revealed higher abundance of health-promoting bacterial species in active women, including Faecalibacterium prausnitzii, Roseburia hominis and Akkermansia muciniphila. Moreover, body fat percentage, muscular mass and physical activity significantly correlated with several bacterial populations. In summary, we provide the first demonstration of interdependence between some bacterial genera and sedentary behavior parameters, and show that not only does the dose and type of exercise influence the composition of gut microbiota, but also the breaking of sedentary behavior.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1
Principal Coordinates Analysis (PcoA) plots of unweighted (A) and weighted (B) Unifrac distance metrics obtained from sequencing the 16s rRNA gene in fecal samples. Axes represent percentage of data explained by each coordinate dimension.
Fig 2. Abundance of different bacterial genera…
Fig 2. Abundance of different bacterial genera in fecal microbiota of active and sedentary women.
Only statistical significant genera with an adjusted value p

Fig 3. Changes induced in relative abundance…

Fig 3. Changes induced in relative abundance of gut bacteria species by lifestyle in women.

Fig 3. Changes induced in relative abundance of gut bacteria species by lifestyle in women.
(A) Bifidobacterium longum, (B) Faecalibacterium prausnitzii, (C) Roseburia hominis, (D) Akkermansia muciniphila. Data were log transformed and analyzed by t-test * p<0.05 **p<0.01.

Fig 4

Enterotype classification A) k refers…

Fig 4

Enterotype classification A) k refers to clustering using the Calinski-Harabasz index B) PcoA…
Fig 4
Enterotype classification A) k refers to clustering using the Calinski-Harabasz index B) PcoA plots using the Jensen-Shannon distance.

Fig 5. Spearman correlation of microbiota genera,…

Fig 5. Spearman correlation of microbiota genera, body composition and physical activity parameters.

Fig 5. Spearman correlation of microbiota genera, body composition and physical activity parameters.
Fig 3. Changes induced in relative abundance…
Fig 3. Changes induced in relative abundance of gut bacteria species by lifestyle in women.
(A) Bifidobacterium longum, (B) Faecalibacterium prausnitzii, (C) Roseburia hominis, (D) Akkermansia muciniphila. Data were log transformed and analyzed by t-test * p<0.05 **p<0.01.
Fig 4
Fig 4
Enterotype classification A) k refers to clustering using the Calinski-Harabasz index B) PcoA plots using the Jensen-Shannon distance.
Fig 5. Spearman correlation of microbiota genera,…
Fig 5. Spearman correlation of microbiota genera, body composition and physical activity parameters.

References

    1. Huang CJ, Zourdos MC, Jo E, Ormsbee MJ (2013) Influence of physical activity and nutrition on obesity-related immune function. ScientificWorldJournal 2013: 752071 10.1155/2013/752071
    1. Wu HJ, Wu E (2012) The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 3: 4–14. 10.4161/gmic.19320
    1. Flint HJ, Duncan SH, Scott KP, Louis P (2015) Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc 74: 13–22. 10.1017/S0029665114001463
    1. Tamboli CP, Neut C, Desreumaux P, Colombel JF (2004) Dysbiosis in inflammatory bowel disease. Gut 53: 1–4.
    1. Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, et al. (2011) Microbial dysbiosis in colorectal cancer (CRC) patients. PloS one 6: e16393 10.1371/journal.pone.0016393
    1. Delzenne NM, Neyrinck AM, Bäckhed F, Cani PD (2011) Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nature Reviews Endocrinology 7: 639–646. 10.1038/nrendo.2011.126
    1. Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL, Casella G, et al. (2011) Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 5: 82–91. 10.1038/ismej.2010.92
    1. Larsen N, Vogensen FK, van den Berg FWJ, Nielsen DS, Andreasen AS, Pedersen BK, et al. (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PloS one 5: e9085 10.1371/journal.pone.0009085
    1. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472: 57–63. 10.1038/nature09922
    1. Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiological Reviews 90: 859–904. 10.1152/physrev.00045.2009
    1. Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, et al. (2016) The gut microbiota and host health: a new clinical frontier. Gut 65: 330–339. 10.1136/gutjnl-2015-309990
    1. Brahe LK, Astrup A, Larsen LH (2016) Can We Prevent Obesity-Related Metabolic Diseases by Dietary Modulation of the Gut Microbiota? Advances in nutrition (Bethesda, Md) 7: 90–101.
    1. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, et al.(2016) Population-level analysis of gut microbiome variation. Science (New York, NY) 352: 560–564.
    1. Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, et al. (2016) Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science (New York, NY) 352: 565–569.
    1. Backhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 104: 979–984. 10.1073/pnas.0605374104
    1. Petriz BA, Castro AP, Almeida JA, Gomes CP, Fernandes GR, Kruger RH, et al. (2014) Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC Genomics 15: 511 10.1186/1471-2164-15-511
    1. Evans CC, LePard KJ, Kwak JW, Stancukas MC, Laskowski S, Dougherty J, et al. (2014) Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS One 9: e92193 10.1371/journal.pone.0092193
    1. Choi JJ, Eum SY, Rampersaud E, Daunert S, Abreu MT, Toborek M. (2013) Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environmental health perspectives 121: 725–730. 10.1289/ehp.1306534
    1. Queipo-Ortuño MI, Seoane LM, Murri M, Pardo M, Gomez-Zumaquero JM, Cardona F, et al. (2013) Gut microbiota composition in male Rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PloS one 8: e65465 10.1371/journal.pone.0065465
    1. Kang SS, Jeraldo PR, Kurti A, Miller ME, Cook MD, Whitlock K, et al. (2014) Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. Mol Neurodegener 9: 36 10.1186/1750-1326-9-36
    1. Lambert JE, Myslicki JP, Bomhof MR, Belke DD, Shearer J, Reimer RA (2015) Exercise training modifies gut microbiota in normal and diabetic mice. Appl Physiol Nutr Metab: 1–4.
    1. Mika A, Van Treuren W, González A, Herrera JJ, Knight R, Fleshner M (2015) Exercise is more effective at altering gut microbial composition and producing stable changes in lean mass in juvenile versus adult male F344 rats. PloS one 10: e0125889 10.1371/journal.pone.0125889
    1. Ott SJ, Schreiber S (2006) Reduced microbial diversity in inflammatory bowel diseases. Gut 55: 1207.
    1. Chang JY, Antonopoulos DA, Kalra A, Tonelli A, Khalife WT, Schmidt TM, et al. (2008) Decreased diversity of the fecal Microbiome in recurrent Clostridium difficile-associated diarrhea. The Journal of infectious diseases 197: 435–438. 10.1086/525047
    1. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, et al. (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488: 178–184. 10.1038/nature11319
    1. World Health O (2010) Global recommendations on physical activity for health. Geneva: WHO Library Cataloguing-in-Publication Data.
    1. Healy GN, Wijndaele K, Dunstan DW, Shaw JE, Salmon J, Zimmet PZ, et al. (2008) Objectively measured sedentary time, physical activity, and metabolic risk: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diabetes Care 31: 369–371. 10.2337/dc07-1795
    1. Freedson PS, Melanson E, Sirard J (1998) Calibration of the Computer Science and Applications, Inc. accelerometer. Medicine and science in sports and exercise 30: 777–781.
    1. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41: e1 10.1093/nar/gks808
    1. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. (2010) QIIME allows analysis of high-throughput community sequencing data. Nature methods 7: 335–336. 10.1038/nmeth.f.303
    1. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology 71: 8228–8235. 10.1128/AEM.71.12.8228-8235.2005
    1. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. (2011) Enterotypes of the human gut microbiome. Nature 473: 174–180. 10.1038/nature09944
    1. Charrad M, Ghazzali N, Boiteau V, Niknafs A, Charrad MM (2014) Package ‘NbClust’. J Stat Soft 61: 1–36.
    1. Caliński T, Harabasz J (1974) A dendrite method for cluster analysis. Communications in Statistics-theory and Methods 3: 1–27.
    1. Brankatschk R, Bodenhausen N, Zeyer J, Burgmann H (2012) Simple absolute quantification method correcting for quantitative PCR efficiency variations for microbial community samples. Applied and Environmental Microbiology 78: 4481–4489. 10.1128/AEM.07878-11
    1. Qu W, Zhou Y, Zhang Y, Lu Y, Wang X, Zhao D, et al. (2012) MFEprimer-2.0: a fast thermodynamics-based program for checking PCR primer specificity. Nucleic Acids Res 40: W205–208. 10.1093/nar/gks552
    1. Delgado S, Ruas-Madiedo P, Suárez A, Mayo B (2006) Interindividual differences in microbial counts and biochemical-associated variables in the feces of healthy Spanish adults. Digestive diseases and sciences 51: 737–743. 10.1007/s10620-006-3200-5
    1. Martínez Álvarez JR, Villarino Marín A, Iglesias Rosado C, de Arpe Muñoz C, Gómez Candela C (2010) Recomendaciones de alimentación para la población española. Nutrición Clínica y Dietética Hospitalaria 30: 4–14.
    1. Welly RJ, Liu TW, Zidon TM, Rowles JL 3rd, Park YM, Smith TN, et al. (2016) Comparison of Diet vs. Exercise on Metabolic Function & Gut Microbiota in Obese Rats. Medicine and science in sports and exercise.
    1. Clarke SF, Murphy EF, O'Sullivan O, Lucey AJ, Humphreys M, Hogan A, et al. (2014) Exercise and associated dietary extremes impact on gut microbial diversity. Gut: gutjnl-2013-306541.
    1. Denou E, Marcinko K, Surette MG, Steinberg GR, Schertzer JD (2016) High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. American journal of physiologyEndocrinology and metabolism 310: E982–993.
    1. Allen JM, Berg Miller ME, Pence BD, Whitlock K, Nehra V, Gaskins HR, et al. (2015) Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice. Journal of applied physiology (Bethesda, Md: 1985) 118: 1059–1066.
    1. Knip M, Siljander H (2016) The role of the intestinal microbiota in type 1 diabetes mellitus. Nature Reviews Endocrinology.
    1. Huttenhower C, Kostic AD, Xavier RJ (2014) Inflammatory bowel disease as a model for translating the microbiome. Immunity 40: 843–854. 10.1016/j.immuni.2014.05.013
    1. Ahn J, Sinha R, Pei Z, Dominianni C, Wu J, Shi J, et al. (2013) Human gut microbiome and risk for colorectal cancer. Journal of the National Cancer Institute 105: 1907–1911. 10.1093/jnci/djt300
    1. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102: 11070–11075. 10.1073/pnas.0504978102
    1. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334: 105–108. 10.1126/science.1208344
    1. Gorvitovskaia A, Holmes SP, Huse SM (2016) Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome 4: 15 10.1186/s40168-016-0160-7
    1. Knights D, Ward TL, McKinlay CE, Miller H, Gonzalez A, McDonald D, et al. (2014) Rethinking "enterotypes". Cell Host Microbe 16: 433–437. 10.1016/j.chom.2014.09.013
    1. Endoh K, Kuriki K, Kasezawa N, Tohyama K, Goda T (2016) Impact of Interactions Between Self-Reported Psychological Stress and Habitual Exercise on the Dietary Intake of Japanese Men and Women: a Large-Scale Cross-Sectional Study. Asian Pac J Cancer Prev 17: 2007–2017.
    1. Baumann S, Toft U, Aadahl M, Jorgensen T, Pisinger C (2015) The long-term effect of screening and lifestyle counseling on changes in physical activity and diet: the Inter99 Study—a randomized controlled trial. Int J Behav Nutr Phys Act 12: 33 10.1186/s12966-015-0195-3
    1. Viitasalo A, Eloranta AM, Lintu N, Vaisto J, Venalainen T, Kiiskinen S, et al. (2016) The effects of a 2-year individualized and family-based lifestyle intervention on physical activity, sedentary behavior and diet in children. Prev Med 87: 81–88. 10.1016/j.ypmed.2016.02.027
    1. Zhong Y, Nyman M, Fåk F (2015) Modulation of gut microbiota in rats fed high‐fat diets by processing whole‐grain barley to barley malt. Molecular nutrition & food research 59: 2066–2076.
    1. Chen J, Chia N, Kalari KR, Yao JZ, Novotna M, Soldan MM, et al. (2016) Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Scientific reports 6: 28484 10.1038/srep28484
    1. Kasai C, Sugimoto K, Moritani I, Tanaka J, Oya Y, Inoue H, et al. (2016) Comparison of human gut microbiota in control subjects and patients with colorectal carcinoma in adenoma: terminal restriction fragment length polymorphism and next-generation sequencing analyses. Oncology reports 35: 325–333. 10.3892/or.2015.4398
    1. Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, et al. (2013) Human gut microbiota changes reveal the progression of glucose intolerance. PloS one 8: e71108 10.1371/journal.pone.0071108
    1. Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, et al. (2015) The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nature medicine.
    1. Morotomi M, Nagai F, Sakon H, Tanaka R (2009) Paraprevotella clara gen. nov., sp. nov. and Paraprevotella xylaniphila sp. nov., members of the family ‘Prevotellaceae’isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology 59: 1895–1900. 10.1099/ijs.0.008169-0
    1. Shaw KA, Bertha M, Hofmekler T, Chopra P, Vatanen T, Srivatsa A, et al. (2016) Dysbiosis, inflammation, and response to treatment: a longitudinal study of pediatric subjects with newly diagnosed inflammatory bowel disease. Genome Medicine 8: 1.
    1. Kampmann C, Dicksved J, Engstrand L, Rautelin H (2016) Composition of human faecal microbiota in resistance to Campylobacter infection. Clinical Microbiology and Infection 22: 61. e61–61. e68.
    1. Nylund L, Nermes M, Isolauri E, Salminen S, Vos WM, Satokari R (2015) Severity of atopic disease inversely correlates with intestinal microbiota diversity and butyrate‐producing bacteria. Allergy 70: 241–244. 10.1111/all.12549
    1. Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ (2002) The microbiology of butyrate formation in the human colon. FEMS microbiology letters 217: 133–139.
    1. Leonel AJ, Alvarez-Leite JI (2012) Butyrate: implications for intestinal function. Current opinion in clinical nutrition and metabolic care 15: 474–479. 10.1097/MCO.0b013e32835665fa
    1. Derrien M, Belzer C, de Vos WM (2016) Akkermansia muciniphila and its role in regulating host functions. Microbial pathogenesis.
    1. Org E, Parks BW, Joo JW, Emert B, Schwartzman W, Kang EY, et al. (2015) Genetic and environmental control of host-gut microbiota interactions. Genome research 25: 1558–1569. 10.1101/gr.194118.115
    1. Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A, (2011) Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 17: 1519–1528. 10.3748/wjg.v17.i12
    1. Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, et al. (2014) A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63: 1275–1283. 10.1136/gutjnl-2013-304833
    1. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ, et al. (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proceedings of the National Academy of Sciences of the United States of America 105: 16731–16736. 10.1073/pnas.0804812105
    1. Hamilton MT, Hamilton DG, Zderic TW (2007) Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes 56: 2655–2667. 10.2337/db07-0882
    1. Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ, et al. (2008) Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes care 31: 661–666. 10.2337/dc07-2046
    1. Gonzales T, Robert-Baudouy J (1996) Bacterial aminopeptidases: properties and functions. FEMS Microbiol Rev 18: 319–344.
    1. Bernalier-Donadille A (2010) [Fermentative metabolism by the human gut microbiota]. Gastroenterol Clin Biol 34 Suppl 1: S16–22.
    1. Christensen JE, Dudley EG, Pederson JA, Steele JL (1999) Peptidases and amino acid catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 76: 217–246.

Source: PubMed

3
구독하다