Left Bundle Branch Pacing Versus Biventricular Pacing for Acute Cardiac Resynchronization in Patients With Heart Failure

Yixiu Liang, Jingfeng Wang, Xue Gong, Hongyang Lu, Ziqing Yu, Lei Zhang, Minghui Li, Lei Pan, Xueying Chen, Jie Cui, Weiwei Zhang, Ruogu Li, Xiaohong Zhou, Weijian Huang, Yangang Su, Junbo Ge, Yixiu Liang, Jingfeng Wang, Xue Gong, Hongyang Lu, Ziqing Yu, Lei Zhang, Minghui Li, Lei Pan, Xueying Chen, Jie Cui, Weiwei Zhang, Ruogu Li, Xiaohong Zhou, Weijian Huang, Yangang Su, Junbo Ge

Abstract

Background: Left bundle branch pacing (LBBP) has emerged as an alternative to biventricular pacing (BVP) for delivering cardiac resynchronization therapy. We sought to compare the acute improvement of electrical and mechanical synchrony, and hemodynamics between LBBP and BVP in patients with heart failure and left bundle branch block.

Methods: LBBP and BVP were performed and compared in a crossover fashion in patients with heart failure and left bundle branch block undergoing cardiac resynchronization therapy implantation. Electrical synchrony was assessed by QRS duration and area, mechanical synchrony by the SD of time to peak velocity of 12 left ventricular segments (Ts-SD) and interventricular mechanical delay, and hemodynamics by the maximum rate of left ventricular pressure rise (dP/dtmax).

Results: Twenty-one patient with heart failure and left bundle branch block (mean age 67±10 years, 48% male, and 90% nonischemic cause) were included. Both LBBP and BVP provided significant improvements in electrical and mechanical synchrony, and hemodynamics compared to the baseline. Compared with BVP, LBBP achieved a larger reduction in QRS duration (-11 ms [95% CI, -17 to -4 ms]; P=0.003) and QRS area (-85 µVs [95% CI, -113 to -56 µVs]; P<0.001); LBBP achieved a greater decrease in Ts-SD (-14 ms [95% CI, -21 to -7 ms]; P=0.001), with no significant difference in interventricular mechanical delay (-2 ms [95% CI, -13 to 8 ms]; P=0.63). The increase in dP/dtmax from LBBP was significantly higher than that from BVP (6% [95% CI, 2%-9%]; P=0.002).

Conclusions: LBBP delivers greater acute electrical and mechanical resynchronization and hemodynamic improvement than BVP in predominantly nonischemic heart failure patients with left bundle branch block.

Registration: URL: https://www.

Clinicaltrials: gov; Unique identifier: NCT04505384.

Keywords: biventricular pacing; cardiac resynchronization therapy; heart failure; hemodynamics; left bundle branch pacing.

Figures

Figure 1.
Figure 1.
Representative electrocardiograms and fluoroscopy during implantation. A, Intrinsic QRS with His potential mapped (His-ventricular interval of 56 ms). B, Left bundle branch (LBB) pacing (LBBP) at the threshold output of 1.0V@0.48 ms with stimulus to peak left ventricular (LV) activation time of 75 ms, demonstrating selective LBBP. C, LBBP at an output of 3.0V@0.48 ms with stimulus to peak LV activation time of 75 ms, demonstrating non-selective LBBP. D, LBBP at a high output of 10.0V@0.48 ms with stimulus to peak LV activation time of 75 ms, demonstrating non-selective LBBP. E, An LBB potential recorded during an escape beat with a potential-ventricular interval of 18 ms (red arrow). F, Fluoroscopy during cardiac resynchronization therapy (CRT)-defibrillator implantation with LBBP lead in place. G, Fluoroscopy during CRT-pacemaker implantation with LBBP lead in place. A right ventricular (RV) pacing lead was temporarily placed at the RV apex to implement biventricular pacing (BVP) and would be extracted after hemodynamic data acquisition.
Figure 2.
Figure 2.
Paced QRS complex and increase in dP/dtmax during atrioventricular (AV) delay programming. A, An example of baseline, paced QRS complex by biventricular pacing (BVP), and paced QRS complex by left bundle branch pacing (LBBP) during AV delay programming. B, The mean and 95% CI are calculated for each atrioventricular (AV) delay for BVP and LBBP. A quadratic curve was fitted from the mean value of each AV delay for estimation of the increase in dP/dtmax during AV delay programming for BVP and LBBP, respectively.
Figure 3.
Figure 3.
Assessment of electrical synchrony. A, An example of ECGs and vectorcardiograms (VCGs) during baseline, biventricular pacing (BVP), and left bundle branch pacing (LBBP) with corresponding QRS duration and QRS area. B, Comparison of QRS duration among baseline, BVP, and LBBP. C, Comparison of QRS area among baseline, BVP, and LBBP. *P<0.05 versus baseline; †P<0.05 LBBP versus BVP.
Figure 4.
Figure 4.
Echocardiographic assessment of intra-ventricular and interventricular mechanical synchrony. A, (left) An example of Ts-SD as calculated with longitudinal velocity from apical 4-chamber, 2-chamber, and long-axis views of tissue Doppler images with time to peak velocity from basal and midventricular sites, of baseline, biventricular pacing (BVP) and left bundle branch pacing (LBBP). (right) Comparison of Ts-SD among baseline, BVP, and LBBP. B, (left) An example of interventricular mechanical delay (IVMD) as calculated as the difference between RV ejection (left) and LV ejection (right; white arrow), of baseline, BVP and LBBP. (right) Comparison of IVMD among baseline, BVP, and LBBP. *P<0.05 versus baseline; †P<0.05 LBBP versus BVP.
Figure 5.
Figure 5.
Assessment of hemodynamics. A, An example of increase in dP/dtmax over baseline during biventricular pacing (BVP; top) and left bundle branch pacing (LBBP; bottom), with the first 2 of the total 8 transitions demonstrated. B, Comparison of increase in dP/dtmax between BVP and LBBP. * the increase of dP/ dtmax was 27% during BVP, and 46% during LBBP. †P<0.05 LBBP versus BVP.

References

    1. Zhang S, Zhou X, Gold MR. Left bundle branch pacing: JACC review topic of the week. J Am Coll Cardiol. 2019;74:3039–3049. doi: 10.1016/j.jacc.2019.10.039
    1. Zhang W, Huang J, Qi Y, Wang F, Guo L, Shi X, Wu W, Zhou X, Li R. Cardiac resynchronization therapy by left bundle branch area pacing in patients with heart failure and left bundle branch block. Heart Rhythm. 2019;16:1783–1790. doi: 10.1016/j.hrthm.2019.09.006
    1. Huang W, Wu S, Vijayaraman P, Su L, Chen X, Cai B, Zou J, Lan R, Fu G, Mao G, et al. . Cardiac resynchronization therapy in patients with nonischemic cardiomyopathy using left bundle branch pacing. JACC Clin Electrophysiol. 2020;6:849–858. doi: 10.1016/j.jacep.2020.04.011
    1. Herweg B, Welter-Frost A, Vijayaraman P. The evolution of cardiac resynchronization therapy and an introduction to conduction system pacing: a conceptual review. Europace. 2021;23:496–510. doi: 10.1093/europace/euaa264
    1. Wu S, Su L, Vijayaraman P, Zheng R, Cai M, Xu L, Shi R, Huang Z, Whinnett ZI, Huang W. Left bundle branch pacing for cardiac resynchronization therapy: nonrandomized on-treatment comparison with his bundle pacing and biventricular pacing. Can J Cardiol. 2021;37:319–328. doi: 10.1016/j.cjca.2020.04.037
    1. Li X, Qiu C, Xie R, Ma W, Wang Z, Li H, Wang H, Hua W, Zhang S, Yao Y, et al. . Left bundle branch area pacing delivery of cardiac resynchronization therapy and comparison with biventricular pacing. ESC Heart Fail. 2020;7:1711–1722. doi: 10.1002/ehf2.12731
    1. Wang Y, Gu K, Qian Z, Hou X, Chen X, Qiu Y, Jiang Z, Zhang X, Wu H, Chen M, et al. . The efficacy of left bundle branch area pacing compared with biventricular pacing in patients with heart failure: a matched case-control study. J Cardiovasc Electrophysiol. 2020;31:2068–2077. doi: 10.1111/jce.14628
    1. Mullens W, Verga T, Grimm RA, Starling RC, Wilkoff BL, Tang WHW. Persistent hemodynamic benefits of cardiac resynchronization therapy with disease progression in advanced heart failure. J Am Coll Cardiol. 2009;53:600–607. doi: 10.1016/j.jacc.2008.08.079
    1. Salden FCWM, Luermans JGLM, Westra SW, Weijs B, Engels EB, Heckman LIB, Lamerichs LJM, Janssen MHG, Clerx KJH, Cornelussen R, et al. . Short-Term Hemodynamic and electrophysiological effects of cardiac resynchronization by left ventricular septal pacing. J Am Coll Cardiol. 2020;75:347–359. doi: 10.1016/j.jacc.2019.11.040
    1. Zareba W, Klein H, Cygankiewicz I, Hall WJ, McNitt S, Brown M, Cannom D, Daubert JP, Eldar M, Gold MR, et al. ; MADIT-CRT Investigators. Effectiveness of cardiac resynchronization therapy by qrs morphology in the Multicenter Automatic Defibrillator Implantation Trial-Cardiac Resynchronization Therapy (MADIT-CRT). Circulation. 2011;123:1061–1072. doi: 10.1161/CIRCULATIONAHA.110.960898
    1. Huang W, Chen X, Su L, Wu S, Xia X, Vijayaraman P. A beginner’s guide to permanent left bundle branch pacing. Heart Rhythm. 2019;16:1791–1796. doi: 10.1016/j.hrthm.2019.06.016
    1. Sohaib SM, Kyriacou A, Jones S, Manisty CH, Mayet J, Kanagaratnam P, Peters NS, Hughes AD, Whinnett ZI, Francis DP. Evidence that conflict regarding size of haemodynamic response to interventricular delay optimization of cardiac resynchronization therapy may arise from differences in how atrioventricular delay is kept constant. Europace. 2015;17:1823–1833. doi: 10.1093/europace/euu374
    1. Kors JA, van Herpen G, Sittig AC, van Bemmel JH. Reconstruction of the Frank vectorcardiogram from standard electrocardiographic leads: diagnostic comparison of different methods. Eur Heart J. 1990;11:1083–1092. doi: 10.1093/oxfordjournals.eurheartj.a059647
    1. Shun-Shin MJ, Miyazawa AA, Keene D, Sterliński M, Sokal A, Van Heuverswyn F, Rinaldi CA, Cornelussen R, Stegemann B, Francis DP, et al. . How to deliver personalized cardiac resynchronization therapy through the precise measurement of the acute hemodynamic response: Insights from the iSpot trial. J Cardiovasc Electrophysiol. 2019;30:1610–1619. doi: 10.1111/jce.14001
    1. Heckman LIB, Luermans JGLM, Curila K, Van Stipdonk AMW, Westra S, Smisek R, Prinzen FW, Vernooy K. Comparing Ventricular Synchrony in Left Bundle Branch and Left Ventricular Septal Pacing in Pacemaker Patients. J Clin Med. 2021;10:822. doi: 10.3390/jcm10040822
    1. Curila K, Jurak P, Jastrzebski M, Prinzen F, Waldauf P, Halamek J, Vernooy K, Smisek R, Karch J, Plesinger F, et al. . Left bundle branch pacing compared to left ventricular septal myocardial pacing increases interventricular dyssynchrony but accelerates left ventricular lateral wall depolarization. Heart Rhythm. 2021;18:1281–1289. doi: 10.1016/j.hrthm.2021.04.025
    1. Starling RC, Krum H, Bril S, Tsintzos SI, Rogers T, Hudnall JH, Martin DO. Impact of a Novel adaptive optimization algorithm on 30-day readmissions: evidence from the adaptive CRT trial. JACC Heart Fail. 2015;3:565–572. doi: 10.1016/j.jchf.2015.03.001
    1. Huang W, Zhou X, Ellenbogen KA. Pursue physiological pacing therapy: A better understanding of left bundle branch pacing and left ventricular septal myocardial pacing. Heart Rhythm. 2021;18:1290–1291. doi: 10.1016/j.hrthm.2021.05.013
    1. Ghossein MA, van Stipdonk AMW, Plesinger F, Kloosterman M, Wouters PC, Salden OAE, Meine M, Maass AH, Prinzen FW, Vernooy K. Reduction in the QRS area after cardiac resynchronization therapy is associated with survival and echocardiographic response. J Cardiovasc Electrophysiol. 2021;32:813–822. doi: 10.1111/jce.14910
    1. Ploux S, Eschalier R, Whinnett ZI, Lumens J, Derval N, Sacher F, Hocini M, Jaïs P, Dubois R, Ritter P, et al. . Electrical dyssynchrony induced by biventricular pacing: implications for patient selection and therapy improvement. Heart Rhythm. 2015;12:782–791. doi: 10.1016/j.hrthm.2014.12.031
    1. Gorcsan J, 3rd, Oyenuga O, Habib PJ, Tanaka H, Adelstein EC, Hara H, McNamara DM, Saba S. Relationship of echocardiographic dyssynchrony to long-term survival after cardiac resynchronization therapy. Circulation. 2010;122:1910–1918. doi: 10.1161/CIRCULATIONAHA.110.954768
    1. Zweerink A, Salden OAE, van Everdingen WM, de Roest GJ, van de Ven PM, Cramer MJ, Doevendans PA, van Rossum AC, Vernooy K, Prinzen FW, et al. . Hemodynamic optimization in cardiac resynchronization therapy: should we aim for dp/dt or stroke work?. JACC Clin Electrophysiol. 2019;5:1013–1025. doi: 10.1016/j.jacep.2019.05.020
    1. Jones S, Lumens J, Sohaib SMA, Finegold JA, Kanagaratnam P, Tanner M, Duncan E, Moore P, Leyva F, Frenneaux M, et al. ; BRAVO Investigators. Cardiac resynchronization therapy: mechanisms of action and scope for further improvement in cardiac function. Europace. 2017;19:1178–1186. doi: 10.1093/europace/euw136
    1. Duckett SG, Ginks M, Shetty AK, Bostock J, Gill JS, Hamid S, Kapetanakis S, Cunliffe E, Razavi R, Carr-White G, et al. . Invasive acute hemodynamic response to guide left ventricular lead implantation predicts chronic remodeling in patients undergoing cardiac resynchronization therapy. J Am Coll Cardiol. 2011;58:1128–1136. doi: 10.1016/j.jacc.2011.04.042
    1. Arnold AD, Shun-Shin MJ, Keene D, Howard JP, Sohaib SMA, Wright IJ, Cole GD, Qureshi NA, Lefroy DC, Koa-Wing M, et al. . His resynchronization versus biventricular pacing in patients with heart failure and left bundle branch block. J Am Coll Cardiol. 2018;72:3112–3122. doi: 10.1016/j.jacc.2018.09.073
    1. Chung ES, Leon AR, Tavazzi L, Sun JP, Nihoyannopoulos P, Merlino J, Abraham WT, Ghio S, Leclercq C, Bax JJ, et al. . Results of the predictors of response to CRT (PROSPECT) trial. Circulation. 2008;117:2608–2616. doi: 10.1161/CIRCULATIONAHA.107.743120
    1. Bogaard MD, Houthuizen P, Bracke FA, Doevendans PA, Prinzen FW, Meine M, van Gelder BM. Baseline left ventricular dP/dtmax rather than the acute improvement in dP/dtmax predicts clinical outcome in patients with cardiac resynchronization therapy. Eur J Heart Fail. 2011;13:1126–1132. doi: 10.1093/eurjhf/hfr094
    1. Zanon F, Baracca E, Pastore G, Marcantoni L, Fraccaro C, Lanza D, Picariello C, Aggio S, Roncon L, Dell’Avvocata F, et al. . Multipoint pacing by a left ventricular quadripolar lead improves the acute hemodynamic response to CRT compared with conventional biventricular pacing at any site. Heart Rhythm. 2015;12:975–981. doi: 10.1016/j.hrthm.2015.01.034
    1. Sohal M, Hamid S, Perego G, Della Bella P, Adhya S, Paisey J, Betts T, Kamdar R, Lambiase P, Leyva F, et al. . A multicenter prospective randomized controlled trial of cardiac resynchronization therapy guided by invasive dP/dt. Heart Rhythm O2. 2021;2:19–27. doi: 10.1016/j.hroo.2021.01.005
    1. Derval N, Steendijk P, Gula LJ, Deplagne A, Laborderie J, Sacher F, Knecht S, Wright M, Nault I, Ploux S, et al. . Optimizing hemodynamics in heart failure patients by systematic screening of left ventricular pacing sites: the lateral left ventricular wall and the coronary sinus are rarely the best sites. J Am Coll Cardiol. 2010;55:566–575. doi: 10.1016/j.jacc.2009.08.045
    1. Duckett SG, Ginks M, Shetty AK, Bostock J, Gill JS, Hamid S, Kapetanakis S, Cunliffe E, Razavi R, Carr-White G, et al. . Invasive acute hemodynamic response to guide left ventricular lead implantation predicts chronic remodeling in patients undergoing cardiac resynchronization therapy. J Am Coll Cardiol. 2011;58:1128–1136. doi: 10.1016/j.jacc.2011.04.042
    1. Schau T, Koglek W, Brandl J, Seifert M, Meyhöfer J, Neuss M, Grimm G, Bitschnau R, Butter C. Baseline vectorcardiography as a predictor of invasively determined acute hemodynamic response to cardiac resynchronization therapy. Clin Res Cardiol. 2013;102:129–138. doi: 10.1007/s00392-012-0506-5
    1. Umar F, Taylor RJ, Stegemann B, Marshall H, Flannigan S, Lencioni M, De Bono J, Griffith M, Leyva F. Haemodynamic effects of cardiac resynchronization therapy using single-vein, three-pole, multipoint left ventricular pacing in patients with ischaemic cardiomyopathy and a left ventricular free wall scar: the MAESTRO study. Europace. 2016;18:1227–1234. doi: 10.1093/europace/euv396
    1. Okafor O, Umar F, Zegard A, van Dam P, Walton J, Stegemann B, Marshall H, Leyva F. Effect of QRS area reduction and myocardial scar on the hemodynamic response to cardiac resynchronization therapy. Heart Rhythm. 2020;17:2046–2055. doi: 10.1016/j.hrthm.2020.07.025

Source: PubMed

3
구독하다