Effects of Brazilian green propolis on proteinuria and renal function in patients with chronic kidney disease: a randomized, double-blind, placebo-controlled trial

Marcelo Augusto Duarte Silveira, Flávio Teles, Andressa A Berretta, Talita R Sanches, Camila Eleutério Rodrigues, Antonio Carlos Seguro, Lúcia Andrade, Marcelo Augusto Duarte Silveira, Flávio Teles, Andressa A Berretta, Talita R Sanches, Camila Eleutério Rodrigues, Antonio Carlos Seguro, Lúcia Andrade

Abstract

Background: Chronic kidney disease (CKD) is a public health problem worldwide, and proteinuria is a well-established marker of disease progression in CKD patients. Propolis, a natural resin produced by bees from plant materials, has anti-inflammatory, immunomodulatory, and anti-oxidant properties, as well as having been shown to have an antiproteinuric effect in experimental CKD. The aim of this study was to evaluate the impact of Brazilian green propolis extract on proteinuria reduction and the changes in the estimated glomerular filtration rate (eGFR).

Methods: This was a randomized, double-blind, placebo-controlled study including patients with CKD caused by diabetes or of another etiology, 18-90 years of age, with an eGFR of 25-70 ml/min per 1.73 m2 and proteinuria (urinary protein excretion > 300 mg/day) or micro- or macro-albuminuria (urinary albumin-to-creatinine ratio > 30 mg/g or > 300 mg/g, respectively). We screened 148 patients and selected 32, randomly assigning them to receive 12 months of Brazilian green propolis extract at a dose of 500 mg/day (n = 18) or 12 months of a placebo (n = 14).

Results: At the end of treatment, proteinuria was significantly lower in the propolis group than in the placebo group-695 mg/24 h (95% CI, 483 to 999) vs. 1403 mg/24 h (95% CI, 1031 to 1909); P = 0.004-independent of variations in eGFR and blood pressure, which did not differ between the groups during follow-up. Urinary monocyte chemoattractant protein-1 was also significantly lower in the propolis group than in the placebo group-58 pg/mg creatinine (95% CI, 36 to 95) vs. 98 pg/mg creatinine (95% CI, 62 to 155); P = 0.038.

Conclusions: Brazilian green propolis extract was found to be safe and well tolerated, as well as to reduce proteinuria significantly in patients with diabetic and non-diabetic CKD.

Trial registration: ( ClinicalTrials.gov number NCT02766036. Registered: May 9, 2016).

Conflict of interest statement

Ethics approval and consent to participate

Study protocol and consent was approved by the University of São Paulo School of Medicine Hospital das Clínicas Ethics Committee. Study participants provided written informed consent to participate.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Consolidated Standards of Reporting Trials diagram showing the recruitment and follow-up of patients
Fig. 2
Fig. 2
Changes in proteinuria (mg/day) during follow up. Values presented as mean and 95% CI for each time point according to the mixed-effect linear regression model. *P = 0.023 vs. placebo; †P = 0.006 vs. placebo; ‡P = 0.004 vs. placebo
Fig. 3
Fig. 3
Changes in estimated glomerular filtration rate (eGFR, ml/min per 1.73 m2) during follow up. Values presented as mean and 95% CI for each time point. *P = 0.40 vs. placebo
Fig. 4
Fig. 4
Changes in urinary monocyte chemoattractant protein-1 (MCP-1, pg/mg urinary creatinine) during follow up. Values presented as mean and 95% CI for each time point. *P = 0.038 vs. placebo
Fig. 5
Fig. 5
Urinary albumin-to-creatinine ratio (UACR) in the subgroups of patients with type 2 diabetes, at baseline and 12 months (12 m). Propolis (n = 6) and Placebo (n = 5). Values presented as mean and 95% CI
Fig. 6
Fig. 6
Changes in systolic and diastolic blood pressure, in mmHg. Values presented as mean and 95% CI for each time point. *P = 0.93 vs. placebo; #P = 0.089 vs. placebo

References

    1. Neuen BL, Chadban SJ, Demaio AR, Johnson DW, Perkovic V: Chronic kidney disease and the global NCDs agenda. BMJ Glob Heal [Internet] 2: e000380, 2017 Available from:
    1. Zhong J, Yang H-C, Fogo AB. A perspective on chronic kidney disease progression. Am J Physiol - Ren Physiol [Internet] 2017;312:F375–F384. doi: 10.1152/ajprenal.00266.2016.
    1. Richard J. Evolving importance of kidney disease : fro m subspecialty to global health burden. Lancet. [Internet] 382: 158–169, 2013 Available from: .
    1. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, Saran R, Wang AY-M, Yang C-W. Chronic kidney disease: global dimension and perspectives. Lancet (London, England) [Internet] 2013;382:260–272. doi: 10.1016/S0140-6736(13)60687-X.
    1. Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, Van Lente F, Levey AS. Prevalence of chronic kidney disease in the United States. Jama [Internet] 298: 2038. 2007; Available from: .
    1. Antlanger M, Bernhofer S, Kovarik JJ, Kopecky C, Kaltenecker CC, Domenig O, Poglitsch M, Säemann MD. Effects of direct renin inhibition versus angiotensin II receptor blockade on angiotensin profiles in non-diabetic chronic kidney disease. Ann Med [Internet] 2017;49:525–533. doi: 10.1080/07853890.2017.1313447.
    1. Uzu T, Araki S, Kashiwagi A, Haneda M, Koya D, Yokoyama H, Kida Y, Ikebuchi M, Nakamura T, Nishimura M, Takahara N, Obata T, Omichi N, Sakamoto K, Shingu R, Taki H, Nagai Y, Tokuda H, Kitada M, Misawa M, Nishiyama A, Kobori H, Maegawa H. Comparative effects of direct renin inhibitor and angiotensin receptor blocker on albuminuria in hypertensive patients with type 2 diabetes. A randomized controlled trial. PLoS One [Internet] 2016;11:e0164936. doi: 10.1371/journal.pone.0164936.
    1. Bakris GL, Agarwal R, Chan JC, Cooper ME, Gansevoort RT, Haller H, Remuzzi G, Rossing P, Schmieder RE, Nowack C, Kolkhof P, Joseph A, Pieper A, Kimmeskamp-Kirschbaum N, Ruilope LM. Effect of finerenone on albuminuria in patients with diabetic nephropathy a randomized clinical trial. JAMA - J Am Med Assoc. 2015;314:884–894. doi: 10.1001/jama.2015.10081.
    1. Parving H-H, Persson F, Lewis JB, Lewis EJ, Hollenberg NK: Aliskiren combined with losartan in type 2 diabetes and nephropathy. N Engl J Med [Internet] 358: 2433–2446, 2008 Available from: .
    1. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving H-H, Remuzzi G, Snapinn SM, Zhang Z, Shahinfar S: Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med [Internet] 345: 861–869, 2001 Available from:
    1. Kanno Y, Takenaka T, Nakamura T, Suzuki H. Add-on angiotensin receptor blocker in patients who have proteinuric chronic kidney diseases and are treated with angiotensin-converting enzyme inhibitors. Clin J Am Soc Nephrol. 2006;1:730–737. doi: 10.2215/CJN.01110905.
    1. Iimori S, Naito S, Noda Y, Sato H, Nomura N, Sohara E, Okado T, Sasaki S, Uchida S, Rai T. Prognosis of chronic kidney disease with normal-range proteinuria: the CKD-ROUTE study. PLoS One. 2018;13:1–13. doi: 10.1371/journal.pone.0190493.
    1. Iseki K, Ikemiya Y, Iseki C, Takishita S. Proteinuria and the risk of developing end-stage renal disease. Kidney Int. 2003;63:1468–1474. doi: 10.1046/j.1523-1755.2003.00868.x.
    1. Culleton BF, Larson MG, Parfrey PS, Kannel WB, Levy D. Proteinuria as a risk factor for cardiovascular disease and mortality in older people: a prospective study. Am J Med [Internet]. 2000;109:1–8 Available from: .
    1. Roscioni SS, Lambers Heerspink HJ, de Zeeuw D: Microalbuminuria: target for renoprotective therapy PRO. Kidney Int [Internet] 86: 40–49, 2014 Available from:
    1. Sforcin JM, Bankova V. Propolis: is there a potential for the development of new drugs? J Ethnopharmacol. 2011;133:253–260. doi: 10.1016/j.jep.2010.10.032.
    1. Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79:629–661. doi: 10.1021/acs.jnatprod.5b01055.
    1. Zaccaria V, Curti V, Di Lorenzo A, Baldi A, Maccario C, Sommatis S, Mocchi R, Daglia M. Effect of green and brown propolis extracts on the expression levels of microRNAs, mRNAs and proteins, related to oxidative stress and inflammation. Nutrients. 2017;9:1–17. doi: 10.3390/nu9101090.
    1. Berretta AA, Nascimento AP, Bueno PCP, de OL LVMM, Marchetti JM. Propolis standardized extract (EPP-AF ®), an innovative chemically and biologically reproducible pharmaceutical compound for treating wounds. Int J Biol Sci. 2012;8:512–521. doi: 10.7150/ijbs.3641.
    1. MacHado JL, Assunção AKM, Da Silva MCP, Reis AS Dos, Costa GC, Arruda DDS, Rocha BA, Vaz MMDOLL, Paes AMDA, Guerra RNM, Berretta AA, Nascimento FRF do: Brazilian green propolis: anti-inflammatory property by an immunomodulatory activity. Evidence-based Complement Altern Med 2012: 2012.
    1. Orsatti CL, Missima F, Pagliarone AC, Bachiega TF, Búfalo MC, Araújo JP, Jr, Sforcin JM. Propolis immunomodulatory action in vivo on toll-like receptors 2 and 4 expression and on pro-inflammatory cytokines production in mice. Phyther. Res. N/a-n/a. 2009.
    1. Patel S. Emerging adjuvant therapy for Cancer: Propolis and its constituents. J Diet Suppl. 2016;13:245–268. doi: 10.3109/19390211.2015.1008614.
    1. Teles F, Da Silva TM, Da Cruz FP, Honorato VH, De Oliveira Costa H, Barbosa APF, De Oliveira SG, Porfírio Z, Libório AB, Borges RL, Fanelli C. Brazilian red propolis attenuates hypertension and renal damage in 5/6 renal ablation model. PLoS One. 2015;10:1–15. doi: 10.1371/journal.pone.0116535.
    1. Brätter C, Tregel M, Liebenthal C, Volk HD. Prophylactic effectiveness of propolis for immunostimulation: a clinical pilot study. Forsch Komplementarmed. 1999;6:256–260.
    1. Samet N, Laurent C, Susarla SM, Samet-Rubinsteen N. The effect of bee propolis on recurrent aphthous stomatitis: a pilot study. Clin Oral Investig. 2007;11:143–147. doi: 10.1007/s00784-006-0090-z.
    1. Yilmaz MI, Sonmez A, Saglam M, Kurt YG, Unal HU, Karaman M, Gok M, Cetinkaya H, Eyileten T, Oguz Y, Vural A, Mallamaci F, Zoccali C. Ramipril lowers plasma FGF-23 in patients with diabetic nephropathy. Am J Nephrol. 2014;40:208–214. doi: 10.1159/000366169.
    1. Kang M-K, Park S-H, Kim Y-H, Lee E-J, Antika LD, Kim DY, Choi Y-J, Kang Y-H. Chrysin ameliorates podocyte injury and slit diaphragm protein loss via inhibition of the PERK-eIF2α-ATF-CHOP pathway in diabetic mice. Acta Pharmacol Sin. 2017;38:1129–1140. doi: 10.1038/aps.2017.30.
    1. Kubota Y, Umegaki K, Kobayashi K, Tanaka N, Kagota S, Nakamura K, Kunitomo M, Shinozuka K. ANTI-HYPERTENSIVE EFFECTS OF BRAZILIAN PROPOLIS IN SPONTANEOUSLY HYPERTENSIVE RATS. Clin Exp Pharmacol Physiol. 2004;31:S29–S30. doi: 10.1111/j.1440-1681.2004.04113.x.
    1. Mishima S, Yoshida C, Akino S, Sakamoto T. Antihypertensive effects of Brazilian propolis: identification of caffeoylquinic acids as constituents involved in the hypotension in spontaneously hypertensive rats. Biol Pharm Bull. 2005;28:1909–1914. doi: 10.1248/bpb.28.1909.
    1. Maruyama H, Sumitou Y, Sakamoto T, Araki Y, Hara H. Antihypertensive effects of flavonoids isolated from brazilian green propolis in spontaneously hypertensive rats. Biol Pharm Bull. 2009;32:1244–1250. doi: 10.1248/bpb.32.1244.
    1. Nadkarni GN, Rao V, Ismail-Beigi F, Fonseca VA, Shah SV, Simonson MS, Cantley L, Devarajan P, Parikh CR, Coca SG. Association of urinary biomarkers of inflammation, injury, and fibrosis with renal function decline: the ACCORD trial. Clin J Am Soc Nephrol. 2016;11:1343–1352. doi: 10.2215/CJN.12051115.
    1. Kanamori H, Matsubara T, Mima A, Sumi E, Nagai K, Takahashi T, Abe H, Iehara N, Fukatsu A, Okamoto H, Kita T, Doi T, Arai H. Inhibition of MCP-1/CCR2 pathway ameliorates the development of diabetic nephropathy. Biochem Biophys Res Commun. 2007;360:772–777. doi: 10.1016/j.bbrc.2007.06.148.
    1. Banba N, Nakamura T, Matsumura M, Kuroda H, Hattori Y, Kasai K. Possible relationship of monocyte chemoattractant protein-1 with diabetic nephropathy. Kidney Int. 2000;58:684–690. doi: 10.1046/j.1523-1755.2000.00214.x.
    1. Matsui T, Yamagishi S, Ueda S, Nakamura K, Imaizumi T, Takeuchi M, Inoue H. Telmisartan, an angiotensin II type 1 receptor blocker, inhibits advanced glycation end-product (AGE)-induced monocyte chemoattractant protein-1 expression in mesangial cells through downregulation of receptor for AGEs via peroxisome proliferator-activate. J Int Med Res. 2007;35:482–489. doi: 10.1177/147323000703500407.
    1. Tumlin JA, Galphin CM, Rovin BH. Advanced diabetic nephropathy with nephrotic range proteinuria: a pilot study of the long-term efficacy of subcutaneous ACTH gel on proteinuria, progression of CKD, and urinary levels of VEGF and MCP-1. J Diabetes Res. 2013;2013.
    1. Lin SL, Chen YM, Chiang WC, Wu KD, Tsai TJ. Effect of Pentoxifylline in addition to losartan on proteinuria and GFR in CKD: a 12-month randomized trial. Am J Kidney Dis. 2008;52:464–474. doi: 10.1053/j.ajkd.2008.05.012.
    1. Ble A, Mosca M, Di Loreto G, Guglielmotti A, Biondi G, Bombardieri S, Remuzzi G, Ruggenenti P. Antiproteinuric effect of chemokine C-C motif ligand 2 inhibition in subjects with acute proliferative lupus nephritis. Am J Nephrol. 2011;34:367–372. doi: 10.1159/000330685.
    1. Li YJ, Lin JL, Yang CW, Yu CC. Acute renal failure induced by a Brazilian variety of propolis. Am J Kidney Dis. 2005;46:125–129. doi: 10.1053/j.ajkd.2005.08.028.
    1. Naramoto K, Kato M, Ichihara K. Effects of an ethanol extract of brazilian green propolis on human cytochrome P450 enzyme activities in vitro. J Agric Food Chem. 2014;62:11296–11302. doi: 10.1021/jf504034u.

Source: PubMed

3
구독하다