Levels of filaggrin degradation products are influenced by both filaggrin genotype and atopic dermatitis severity

S Kezic, G M O'Regan, N Yau, A Sandilands, H Chen, L E Campbell, K Kroboth, R Watson, M Rowland, W H Irwin McLean, A D Irvine, S Kezic, G M O'Regan, N Yau, A Sandilands, H Chen, L E Campbell, K Kroboth, R Watson, M Rowland, W H Irwin McLean, A D Irvine

Abstract

Background: Filaggrin, coded by FLG, is the main source of several major components of natural moisturizing factor (NMF) in the stratum corneum (SC), including pyrrolidone carboxylic acid (PCA) and urocanic acid (UCA). Loss-offunction mutations in FLG lead to reduced levels of filaggrin degradation products in the SC. It has recently been suggested that expression of filaggrin may additionally be influenced by the atopic inflammatory response. In this study, we investigated the levels of several breakdown products of filaggrin in the SC in healthy controls (CTRL) and patients with atopic dermatitis (AD) in relation to FLG null allele status. We examined the relationship between NMF (defined here as the sum of PCA and UCA) and AD severity.

Methods: The SC levels of filaggrin degradation products including PCA, UCA, histidine (HIS) and tyrosine were determined in 24 CTRL and 96 patients with moderate-to-severe AD. All subjects were screened for 11 FLG mutations relevant for the study population.

Results: The levels of PCA, UCA and HIS correlated with FLG genotype. Furthermore, these levels were higher in the CTRL when compared to AD patients with no FLG mutations. Multiple regression analysis showed that NMF levels were independently associated with FLG genotype and severity of disease.

Conclusion: Decreased NMF is a global feature of moderate-to-severe AD; within AD, FLG genotype is the major determinant of NMF, with disease severity as a secondary modifier. NMF components are reliably determined by a noninvasive and relatively inexpensive tape stripping technique.

© 2011 John Wiley & Sons A/S.

Figures

Figure 1
Figure 1
Filaggrin degradation products (geometric mean and 95% CI) in healthy controls (CTRL) and patients with atopic dermatitis (AD) in relation to FLG genotype. For statistic analysis, all data were log-transformed. Within AD patient subgroups, anova analysis with a post hoc Tukey multiple correction has been applied. To test differences between CTRL and ADNON-FLG (FLG+/+), the one-tailed Student’s t-test was used. *P < 0.05, **P < 0.01; ***P < 0.001.
Figure 2
Figure 2
Levels of tyrosine (geometric mean and 95% CI) in relation to FLG genotype.
3
3
Correlation between the levels of tyrosine and pyrrolidone carboxylic acid + urocanic acid + histidine in (A) healthy controls and FLG+/+ and in (B) FLG+/− and FLG−/−. The outlier in (B) was excluded in the linear regression analysis. r, Pearson’s correlation coefficient.

References

    1. Sandilands A, Sutherland C, Irvine AD, McLean WH. Filaggrin in the frontline: role in skin barrier function and disease. J Cell Sci. 2009;122:1285–1294.
    1. Kezic S, Kemperman PM, Koster ES, de Jongh CM, Thio HB, Campbell LE, et al. Loss-of-function mutations in the filaggrin gene lead to reduced level of natural moisturizing factor in the stratum corneum. J Invest Dermatol. 2008;128:2117–2119.
    1. O’Regan GM, Kemperman PM, Sandilands A, Chen H, Campbell LE, Kroboth K, et al. Raman profiles of the stratum corneum define 3 filaggrin genotype-determined atopic dermatitis endophenotypes. J Allergy Clin Immunol. 2010;126:574–580.
    1. Korge BP, Gan SQ, McBride OW, Mischke D, Steinert PM. Extensive size polymorphism of the human keratin 10 chain resides in the C-terminal V2 subdomain due to variable numbers and sizes of glycine loops. Proc Natl Acad Sci USA. 1992;89:910–914.
    1. Gan SQ, McBride OW, Idler WW, Markova N, Steinert PM. Organization, structure, and polymorphisms of the human profilaggrin gene. Biochemistry. 1990;29:9432–9440.
    1. Presland RB, Haydock PV, Fleckman P, Nirunsuksiri W, Dale BA. Characterization of the human epidermal profilaggrin gene. Genomic organization and identification of an S-100-like calcium binding domain at the amino terminus. J Biol Chem. 1992;267:23772–23781.
    1. Resing KA, Walsh KA, Haugen-Scofield J, Dale BA. Identification of proteolytic cleavage sites in the conversion of profilaggrin to filaggrin in mammalian epidermis. J Biol Chem. 1989;264:1837–1845.
    1. Scott IR, Harding CR, Barrett JG. Histidine-rich protein of the keratohyalin granules. Source of the free amino acids, urocanic acid and pyrrolidone carboxylic acid in the stratum corneum. Biochim Biophys Acta. 1982;719:110–117.
    1. Scott IR, Harding CR. Filaggrin breakdown to water binding compounds during development of the rat stratum corneum is controlled by the water activity of the environment. Dev Biol. 1986;115:84–92.
    1. Rawlings AV, Scott IR, Harding CR, Bowser PA. Stratum corneum moisturization at the molecular level. J Invest Dermatol. 1994;103:731–741.
    1. Barrett JG, Scott IR. Pyrrolidone carboxylic acid synthesis in guinea pig epidermis. J Invest Dermatol. 1983;81:122–124.
    1. Baden HP, Pathak MA. The metabolism and function of urocanic acid in skin. J Invest Dermatol. 1967;48:11–17.
    1. Gibbs NK, Tye J, Norval M. Recent advances in urocanic acid photochemistry, photobiology and photoimmunology. Photochem Photobiol Sci. 2008;7:655–667.
    1. Elias PM, Steinhoff M. “Outside-to-inside” (and now back to “outside”) pathogenic mechanisms in atopic dermatitis. J Invest Dermatol. 2008;128:1067–1070.
    1. Miajlovic H, Fallon PG, Irvine AD, Foster TJ. Effect of filaggrin breakdown products on growth of and protein expression by Staphylococcus aureus. J Allergy Clin Immunol. 2010;126:1184–90.e3.
    1. Jungersted JM, Scheer H, Mempel M, Baurecht H, Cifuentes L, Høgh JK, et al. Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema. Allergy. 2010;65:911–918.
    1. Sergeant A, Campbell LE, Hull PR, Porter M, Palmer CNA, Smith FJD, et al. Heterozygous null alleles in filaggrin contribute to clinical dry skin in young adults and the elderly. J Invest Dermatol. 2009;129:1042–1045.
    1. Howell MD, Kim BE, Gao P, Grant AV, Boguniewicz M, Debenedetto A, et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol. 2007;120:150–155.
    1. Williams HC, Burney PG, Hay RJ, Archer CB, Shipley MJ, Hunter JJ, et al. The U.K. Working Party’s Diagnostic Criteria for Atopic Dermatitis. I. Derivation of a minimum set of discriminators for atopic dermatitis. Br J Dermatol. 1994;131:383–396.
    1. Emerson RM, Charman CR, Williams HC. The Nottingham Eczema Severity Score: preliminary refinement of the Rajka and Langeland grading. Br J Dermatol. 2000;142:288–297.
    1. Kezic S, Kammeyer A, Calkoen F, Fluhr JW, Bos JD. Natural moisturizing factor components in the stratum corneum as biomarkers of filaggrin genotype: evaluation of minimally invasive methods. Br J Dermatol. 2009;161:1098–1104.
    1. Safer D, Brenes M, Dunipace S, Schad G. Urocanic acid is a major chemoattractant for the skin-penetrating parasitic nematode Strongyloides stercoralis. Proc Natl Acad Sci USA. 2007;104:1627–1630.
    1. Sandilands A, Terron-Kwiatkowski A, Hull PR, O’Regan GM, Clayton TH, Watson RM, et al. Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema. Nat Genet. 2007;39:650–654.

Source: PubMed

3
구독하다