Screening to Detect Precursor Lesions of Pancreatic Adenocarcinoma in High-risk Individuals: A Single-center Experience

Jesse Lachter, Carly Rosenberg, Tomer Hananiya, Iyad Khamaysi, Amir Klein, Kamel Yassin, Elizabeth Half, Jesse Lachter, Carly Rosenberg, Tomer Hananiya, Iyad Khamaysi, Amir Klein, Kamel Yassin, Elizabeth Half

Abstract

Objective of the work: Pancreatic cancer (PC) is a deadly disease that is most commonly diagnosed at an incurable stage. Early diagnosis is the most important factor for improving prognosis. Evidence is beginning to accumulate that screening and surveillance may lead to the early detection of precursor lesions and/or pancreatic cancer in asymptomatic individuals. Proper screening methods and identification of such precursor lesions may enable effective pre-emptive interventions to prevent further fatalities. The primary objective of this project was to examine the feasibility of identifying precursor or early cancerous lesions in high-risk individuals by endoscopic ultrasound (EUS) screening to prevent the deaths from pancreatic cancer.

Research aim: Pancreatic cancer screening guidelines, based on consensus opinions, have been applied in various tertiary centers around the world; however, evidence for effectiveness is lacking. At Rambam Health Care Campus, we have established a cohort of high-risk individuals, and we report our local 10-year experience results of screening for pancreatic cancer.

Methods: Between 2008 and 2018, a cohort of 123 asymptomatic high-risk individuals came for annual/biannual EUS screening for pancreatic cancer. Retrospective and prospectively collected data were obtained, analyzed, and compared on the basis of several variables. These variables include age at beginning of screening, gender, smoking, obesity, diabetes, and presence of tumor markers, as well as the patients' personal and family history of cancers. Findings on each EUS are described.

Results: Three patients out of 123 underwent potentially life-saving surgery as a result of this screening program. All of these three had only one first-degree relative (FDR) with pancreatic cancer at the time of their first screenings, but two eventually had a second FDR with PC. Findings from 296 EUS exams regarding smoking, obesity, and other risk factors are presented. Minor, possibly trivial, EUS findings are found to be common. Detection of precursor pancreatic lesions is feasible with EUS screenings.

Conclusions: Adherence was an important limiting factor in screening. Better stratification of patients according to specific risk factors, including thorough genetics and family history, may direct when and how to initiate screening. International collaborations, such as the International Cancer of Pancreas Screening (CAPS) Consortium, of which Rambam is a collaborating partner, are needed to collate evidence for impact of screening to prevent pancreatic cancer morbidity and mortality, and are essential to achieve proof of concept. Different countries with varying health-care systems and budgets can find variance of appropriateness of screening procedures.

Conflict of interest statement

Conflict of interest: No potential conflict of interest relevant to this article was reported.

References

    1. Lami G, Biagini MR, Galli A. Endoscopic ultrasonography for surveillance of individuals at high risk for pancreatic cancer. World J Gastrointest Endosc. 2014;6:272–85. doi: 10.4253/wjge.v6.i7.272.
    1. Canto MI, Goggins M, Yeo CJ, et al. Screening for pancreatic neoplasia in high-risk individuals: an EUS-based approach. Clin Gastroenterol Hepatol. 2004;2:606–21.
    1. Lynch HT, Smyrk T, Kern SE, et al. Familial pancreatic cancer: a review. Semin Oncol. 1996;23:251–75.
    1. Schneider R, Slater EP, Sina M, et al. German national case collection for familial pancreatic cancer (FaPaCa): ten years experience. Fam Cancer. 2011;10:323–30. doi: 10.1007/s10689-010-9414-x.
    1. Kluijt I, Cats A, Fockens P, Nio Y, Gouma DJ, Bruno MJ. Atypical familial presentation of FAMMM syndrome with a high incidence of pancreatic cancer: Case finding of asymptomatic individuals by EUS surveillance. J Clin Gastroenterol. 2009;43:853–7. doi: 10.1097/MCG.0b013e3181981123.
    1. Olson SH, Kurtz RC. Epidemiology of pancreatic cancer and the role of family history. J Surg Oncol. 2013;107:1–7. doi: 10.1002/jso.23149.
    1. Iqbal J, Ragone A, Lubinski J, et al. The incidence of pancreatic cancer in BRCA1 and BRCA2 mutation carriers. Br J Cancer. 2012;107:2005–9. doi: 10.1038/bjc.2012.483.
    1. Jones S, Hruban RH, Kamiyama M, et al. Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science. 2009;324:217. .
    1. Kastrinos F, Mukherjee B, Tayob N, et al. Risk of pancreatic cancer in families with Lynch syndrome. JAMA. 2009;302:1790–5. doi: 10.1001/jama.2009.1529.
    1. de Snoo FA, Bishop DT, Bergman W, et al. Increased risk of cancer other than melanoma in CDKN2A founder mutation (p16-Leiden)-positive melanoma families. Clin Cancer Res. 2008;14:7151–7. doi: 10.1158/1078-0432.CCR-08-0403.
    1. Korsse SE, Harinck F, van Lier MG, et al. Pancreatic cancer risk in Peutz-Jeghers syndrome patients: a large cohort study and implications for surveillance. J Med Genet. 2013;50:59–64. doi: 10.1136/jmedgenet-2012-101277.
    1. Giardiello FM, Offerhaus GJ, Lee DH, et al. Increased of thyroid and pancreatic carcinoma in familial adenomatous polyposis. Gut. 1993;34:1394–6. doi: 10.1136/gut.34.10.1394.
    1. Rebours V, Boutron-Ruault MC, Schnee M, et al. Risk of pancreatic adenocarcinoma in patients with hereditary pancreatitis: a national exhaustive series. Am J Gastroenterol. 2008;103:111–19. doi: 10.1111/j.1572-0241.2007.01597.x.
    1. Ruijs MW, Verhoef S, Rookus MA, et al. TP53 germline mutation testing in 180 families suspected of Li-Fraumeni syndrome: mutation detection rate and relative frequency of cancers in different familial phenotypes. J Med Genet. 2010;47:421–8. doi: 10.1136/jmg.2009.073429.
    1. Canto MI, Harinck F, Hruban RH, et al. International Cancer of the Pancreas Screening (CAPS) Consortium summit on the management of patients with increased risk for familial pancreatic cancer. Gut. 2013;62:339–47. doi: 10.1136/gutjnl-2012-303108.
    1. Klein AP, Brune KA, Petersen GM, et al. Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res. 2004;64:2634–8. doi: 10.1158/0008-5472.CAN-03-3823.
    1. Maitra A, Fukushima N, Takaori K, Hruban RH. Precursors to invasive pancreatic cancer. Adv Anat Pathol. 2005;12:81–91. doi: 10.1097/01.pap.0000155055.14238.25.
    1. Shi C, Klein AP, Goggins M, et al. Increased prevalence of precursor lesions in familial pancreatic cancer patients. Clin Cancer Res. 2009;15:7737–43. doi: 10.1158/1078-0432.CCR-09-0004.
    1. Yachida S, Iacobuzio-Donahue CA. Evolution and dynamics of pancreatic cancer progression. Oncogene. 2013;32:5253–60. doi: 10.1038/onc.2013.29.
    1. Bartsch DK, Slater EP, Carrato A, et al. Refinement of screening for familial pancreatic cancer. Gut. 2016;65:1314–21. doi: 10.1136/gutjnl-2015-311098.
    1. Canto MI, Hruban RH, Fishman EK, et al. Frequent detection of pancreatic lesions in asymptomatic high-risk individuals. Gastroenterology. 2012;142:796–804. doi: 10.1053/j.gastro.2012.01.005. quiz e14–15.
    1. Lachter J. Mortality from EUS. Gastrointest Endosc. 2005;61:AB118. doi: 10.1016/S0016-5107(05)00723-6.
    1. Wang KX, Ben QW, Jin ZD, et al. Assessment of morbidity and mortality associated with EUS-guided FNA: a systematic review. Gastrointest Endosc. 2011;73:283–90. doi: 10.1016/j.gie.2010.10.045.
    1. Canto MI, Almario JA, Schulick RD, et al. Risk of neoplastic progression in individuals at high risk for pancreatic cancer undergoing long-term surveillance. Gastroenterology. 2018;155:740–51.e2. doi: 10.1053/j.gastro.2018.05.035.

Source: PubMed

3
구독하다