Comparative Review of SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza A Respiratory Viruses

Zeinab Abdelrahman, Mengyuan Li, Xiaosheng Wang, Zeinab Abdelrahman, Mengyuan Li, Xiaosheng Wang

Abstract

The 2019 novel coronavirus (SARS-CoV-2) pandemic has caused a global health emergency. The outbreak of this virus has raised a number of questions: What is SARS-CoV-2? How transmissible is SARS-CoV-2? How severely affected are patients infected with SARS-CoV-2? What are the risk factors for viral infection? What are the differences between this novel coronavirus and other coronaviruses? To answer these questions, we performed a comparative study of four pathogenic viruses that primarily attack the respiratory system and may cause death, namely, SARS-CoV-2, severe acute respiratory syndrome (SARS-CoV), Middle East respiratory syndrome (MERS-CoV), and influenza A viruses (H1N1 and H3N2 strains). This comparative study provides a critical evaluation of the origin, genomic features, transmission, and pathogenicity of these viruses. Because the coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 is ongoing, this evaluation may inform public health administrators and medical experts to aid in curbing the pandemic's progression.

Keywords: COVID-19; MERS-CoV; SARS-CoV; SARS-CoV-2; influenza A virus.

Copyright © 2020 Abdelrahman, Li and Wang.

Figures

Figure 1
Figure 1
General characteristics of SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza A viruses. (A) Epidemics of SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza A viruses. The timeline, natural reservoirs, total number of deaths, and symptoms of the patients infected with these viruses. (B) Cumulative numbers of cases and deaths caused by SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza A (during the last seasonal flu 2019–2020) viruses. Influenza A virus infected the most people, while SARS-CoV-2 caused the most deaths. (C) Case-fatality rate (CFR) of patients infected with SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza A (the last seasonal flu 2019–2020) viruses stratified by age.
Figure 2
Figure 2
Influenza A evolution. (A) Triple reassortment influenza A viruses of the H1N1 subtype containing avian, swine, and human gene segments. The colored solid genes represent the gene segments as follows: yellow, classical swine A (H1N1) virus; green, North American avian virus; blue, human A (H3N2) virus; gray, Eurasian avian-like swine A(H1N1). (B) Reservoirs and interspecies transmission events of the pathogenic influenza A viruses. Wild birds, domestic birds, pigs, horses, and humans maintain their influenza A viruses. Spillover events occasionally occur, most frequently from wild birds (arrows in green).

References

    1. Jordan D. The Deadliest Flu: The Complete Story of the Discovery and Reconstruction of the 1918 Pandemic Virus. Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases (NCIRD), December 17 (2019). Available online at: (accessed March 19, 2020).
    1. Glezen WP. Emerging infections: pandemic influenza. Epidemiol Rev. (1996) 18:64–76. 10.1093/oxfordjournals.epirev.a017917
    1. Viboud C, Grais RF, Lafont BA, Miller MA, Simonsen L. Multinational impact of the 1968 Hong Kong influenza pandemic: evidence for a smoldering pandemic. J Infect Dis. (2005) 192:233–48. 10.1086/431150
    1. Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, et al. . Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science. (2009) 325:197–201. 10.1126/science.1176225
    1. Shieh WJ, Blau DM, Denison AM, Deleon-Carnes M, Adem P, Bhatnagar J, et al. . 2009 pandemic influenza A (H1N1): pathology and pathogenesis of 100 fatal cases in the United States. Am J Pathol. (2010) 177:166–75. 10.2353/ajpath.2010.100115
    1. Peiris JSM, Yuen KY, Osterhaus ADME, Stöhr K. The severe acute respiratory syndrome. N Engl J Med. (2003) 349:2431–41. 10.1056/NEJMra032498
    1. Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet. (2015) 386:995–1007. 10.1016/S0140-6736(15)60454-8
    1. The Lancet . Emerging understandings of 2019-nCoV. Lancet. (2020) 395:311. 10.1016/S0140-6736(20)30186-0
    1. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. . Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. (2020) 395:565–74. 10.1016/S0140-6736(20)30251-8
    1. Xiao K, Zhai J, Feng Y, Zhou N, Zhang X, Zou JJ, et al. . Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature. (2020) 583:286–9. 10.1038/s41586-020-2313-x
    1. Wang H, Yang P, Liu K, Guo F, Zhang Y, Zhang G, et al. . SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res. (2008) 18:290–301. 10.1038/cr.2008.15
    1. Millet JK, Whittaker GR. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad Sci USA. (2014) 111:15214–9. 10.1073/pnas.1407087111
    1. Lakadamyali M, Rust MJ, Zhuang X. Endocytosis of influenza viruses. Microbes Infect. (2004) 6:929–36. 10.1016/j.micinf.2004.05.002
    1. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. . Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. (2020) 8:420–2. 10.1016/S2213-2600(20)30076-X
    1. Yang M, Hon KL, Li K, Fok TF, Li CK. The effect of SARS coronavirus on blood system: its clinical findings and the pathophysiologic hypothesis. Zhongguo shi Yan Xue Ye Xue Za Zhi. (2003) 11:217–21.
    1. Park GE, Kang CI, Ko JH, Cho SY, Ha YE, Kim YJ, et al. . Differential cell count and CRP level in blood as predictors for middle east respiratory syndrome coronavirus infection in acute febrile patients during nosocomial outbreak. J Korean Med Sci. (2017) 32:151–4. 10.3346/jkms.2017.32.1.151
    1. Perera RA, Wang P, Gomaa MR, El-Shesheny R, Kandeil A, Bagato O, et al. . Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013. Euro Surveill. (2013) 18:20574. 10.2807/1560-7917.ES2013.18.36.20574
    1. Lee N, Le Sage V, Nanni AV, Snyder DJ, Cooper VS, Lakdawala SS. Genome-wide analysis of influenza viral RNA and nucleoprotein association. Nucleic Acids Res. (2017) 45:8968–77. 10.1093/nar/gkx584
    1. Influenza A Model Receives A Face-Lift. (2020). Available online at:
    1. Vincent A, Awada L, Brown I, Chen H, Claes F, Dauphin G, et al. . Review of influenza A virus in swine worldwide: a call for increased surveillance and research. Zoonoses Public Health. (2014) 61:4–17. 10.1111/zph.12049
    1. Tian J, Zhang C, Qi W, Xu C, Huang L, Li H, et al. . Genome sequence of a novel reassortant H3N2 avian influenza virus in southern China. J Virol. (2012) 86:9553–4. 10.1128/JVI.01523-12
    1. Bouvier NM, Palese P. The biology of influenza viruses. Vaccine. (2008) 26(Suppl. 4):D49–53. 10.1016/j.vaccine.2008.07.039
    1. Ahn I, Jeong BJ, Bae SE, Jung J, Son HS. Genomic analysis of influenza A viruses, including avian flu (H5N1) strains. Eur J Epidemiol. (2006) 21:511–9. 10.1007/s10654-006-9031-z
    1. Yoon SW, Webby RJ, Webster RG. Evolution and ecology of influenza A viruses. Curr Top Microbiol Immunol. (2014) 385:359–75. 10.1007/82_2014_396
    1. Reperant LA, Kuiken T, Osterhaus ADME. Influenza viruses. Hum Vaccines Immunother. (2012) 8:7–16. 10.4161/hv.8.1.18672
    1. Anderson TK, Macken CA, Lewis NS, Scheuermann RH, Van Reeth K, Brown IH, et al. . A phylogeny-based global nomenclature system and automated annotation tool for H1 hemagglutinin genes from swine influenza A viruses. mSphere. (2016) 1:e00275-16. 10.1128/mSphere.00275-16
    1. Guarnaccia T, Carolan LA, Maurer-Stroh S, Lee RT, Job E, Reading PC, et al. . Antigenic drift of the pandemic 2009 A(H1N1) influenza virus in A ferret model. PLoS Pathog. (2013) 9:e1003354. 10.1371/journal.ppat.1003354
    1. Tewawong N, Prachayangprecha S, Vichiwattana P, Korkong S, Klinfueng S, Vongpunsawad S, et al. . Assessing antigenic drift of seasonal influenza A(H3N2) and A(H1N1)pdm09 viruses. PloS ONE. (2015) 10:e0139958. 10.1371/journal.pone.0139958
    1. Pellett PE, Mitra S, Holland TC. Chapter 2 - basics of virology. In: Tselis AC, Booss J, editors. Handbook of Clinical Neurology. 123: Michigan City, IN: Elsevier; (2014). p. 45–66.
    1. Torres J, Maheswari U, Parthasarathy K, Ng L, Liu DX, Gong X. Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein. Prot Sci. (2007) 16:2065–71. 10.1110/ps.062730007
    1. Tan Y-J, Lim SG, Hong W. Understanding the accessory viral proteins unique to the severe acute respiratory syndrome (SARS) coronavirus. Antiviral Res. (2006) 72:78–88. 10.1016/j.antiviral.2006.05.010
    1. Chung YS, Kim JM, Man Kim H, Park KR, Lee A, Lee NJ, et al. . Genetic characterization of middle east respiratory syndrome coronavirus, South Korea, (2018) Emerg Infect Dis. (2019) 25:958–62. 10.3201/eid2505.181534
    1. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. . Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19disease and unexposed individuals. Cell. (2020) 181:1489–501.e15. 10.1016/j.cell.2020.05.015
    1. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. (2020) 181:281–92.e6. 10.1016/j.cell.2020.02.058
    1. Chen J, Liu D, Liu L, Liu P, Xu Q, Xia L, et al. . A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19). J Zhejiang Univ Med Sci. (2020) 49:215–19. 10.3785/j.issn.1008-9292.2020.03.03
    1. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. (2020) 26:450–2. 10.1038/s41591-020-0820-9
    1. Brown IH. History and epidemiology of Swine influenza in Europe. Curr Top Microbiol Immunol. (2013) 370:133–46. 10.1007/82_2011_194
    1. Castelán-Vega JA, Magaña-Hernández A, Jiménez-Alberto A, Ribas-Aparicio RM. The hemagglutinin of the influenza A(H1N1)pdm09 is mutating towards stability. Adv Appl Bioinform Chem. (2014) 7:37–44. 10.2147/AABC.S68934
    1. Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, et al. . Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. (2003) 302:276–8. 10.1126/science.1087139
    1. Tu C, Crameri G, Kong X, Chen J, Sun Y, Yu M, et al. . Antibodies to SARS coronavirus in civets. Emerg Infect Dis. (2004) 10:2244–8. 10.3201/eid1012.040520
    1. Wang M, Xu HF, Zhang ZB, Zou XZ, Gao Y, Liu XN, et al. . [Analysis on the risk factors of severe acute respiratory syndromes coronavirus infection in workers from animal markets]. Zhonghua Liu Xing Bing Xue Za Zhi. (2004) 25:503–5.
    1. Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, Wong BH, et al. . Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci USA. (2005) 102:14040–5. 10.1073/pnas.0506735102
    1. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. . Bats are natural reservoirs of SARS-like coronaviruses. Science. (2005) 310:676–9. 10.1126/science.1118391
    1. Hu B, Zeng LP, Yang XL, Ge XY, Zhang W, Li B, et al. . Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. (2017) 13:e1006698. 10.1371/journal.ppat.1006698
    1. Wang MN, Zhang W, Gao YT, Hu B, Ge XY, Yang XL, et al. . Longitudinal surveillance of SARS-like coronaviruses in bats by quantitative real-time PCR. Virol Sin. (2016) 31:78–80. 10.1007/s12250-015-3703-3
    1. Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. (2019) 17:181–92. 10.1038/s41579-018-0118-9
    1. Raj VS, Farag EA, Reusken CB, Lamers MM, Pas SD, Voermans J, et al. . Isolation of MERS coronavirus from a dromedary camel, Qatar, (2014) Emerg Infect Dis. (2014) 20:1339–42. 10.3201/eid2008.140663
    1. Chu DKW, Hui KPY, Perera R, Miguel E, Niemeyer D, Zhao J, et al. . MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity. Proc Natl Acad Sci USA. (2018) 115:3144–9. 10.1073/pnas.1718769115
    1. Alagaili AN, Briese T, Mishra N, Kapoor V, Sameroff SC, Burbelo PD, et al. . Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia. mBio. (2014) 5:e00884-14. 10.1128/mBio.01002-14
    1. Harcourt JL, Rudoler N, Tamin A, Leshem E, Rasis M, Giladi M, et al. . The prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) antibodies in dromedary camels in Israel. Zoonoses Public Health. (2018) 65:749–54. 10.1111/zph.12482
    1. Lau SK, Li KS, Tsang AK, Lam CS, Ahmed S, Chen H, et al. . Genetic characterization of Betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: implications for the origin of the novel Middle East respiratory syndrome coronavirus. J Virol. (2013) 87:8638–50. 10.1128/JVI.01055-13
    1. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. . A new coronavirus associated with human respiratory disease in China. Nature. (2020) 579:265–9. 10.1038/s41586-020-2008-3
    1. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. . Author correction: a new coronavirus associated with human respiratory disease in China. Nature. (2020) 580:E7. 10.1038/s41586-020-2202-3
    1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. . A novel coronavirus from patients with pneumonia in China, (2019) N Engl J Med. (2020) 382:727–33. 10.1056/NEJMoa2001017
    1. Zhang YZ, Holmes EC. A genomic perspective on the origin and emergence of SARS-CoV-2. Cell. (2020) 181:223–7. 10.1016/j.cell.2020.03.035
    1. Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. (2020) 176:104742. 10.1016/j.antiviral.2020.104742
    1. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. . Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. (2020) 367:1260–3. 10.1126/science.abb2507
    1. Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol. (2020) 30:1346–51.e2. 10.1016/j.cub.2020.03.022
    1. Kasibhatla SM, Kinikar M, Limaye S, Kale MM, Kulkarni-Kale U. Understanding evolution of SARS-CoV-2: a perspective from analysis of genetic diversity of RdRp gene. J Med Virol. (2020). [Epub ahead of print]. 10.1002/jmv.25909
    1. Minskaia E, Hertzig T, Gorbalenya AE, Campanacci V, Cambillau C, Canard B, et al. . Discovery of an RNA virus 3'->5' exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc Natl Acad Sci USA. (2006) 103:5108–13. 10.1073/pnas.0508200103
    1. Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, et al. . Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio. (2018) 9e00221–18. 10.1128/mBio.00221-18
    1. Xiong X, Martin SR, Haire LF, Wharton SA, Daniels RS, Bennett MS, et al. . Receptor binding by an H7N9 influenza virus from humans. Nature. (2013) 499:496–9. 10.1038/nature12372
    1. Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Ann Rev Biochem. (2000) 69:531–69. 10.1146/annurev.biochem.69.1.531
    1. Mair CM, Ludwig K, Herrmann A, Sieben C. Receptor binding and pH stability - how influenza A virus hemagglutinin affects host-specific virus infection. Biochim Biophys Acta. (2014) 1838:1153–68. 10.1016/j.bbamem.2013.10.004
    1. Baldo V, Bertoncello C, Cocchio S, Fonzo M, Pillon P, Buja A, et al. . The new pandemic influenza A/(H1N1)pdm09 virus: is it really “new” J Prev Med Hyg. (2016) 57:E19–22.
    1. Yang J, Li M, Shen X, Liu S. Influenza A virus entry inhibitors targeting the hemagglutinin. Viruses. (2013) 5:352–73. 10.3390/v5010352
    1. Reiter-Scherer V, Cuellar-Camacho JL, Bhatia S, Haag R, Herrmann A, Lauster D, et al. . force spectroscopy shows dynamic binding of influenza hemagglutinin and neuraminidase to sialic acid. Biophys J. (2019) 116:1577. 10.1016/j.bpj.2019.03.032
    1. Lai JCC, Karunarathna H, Wong HH, Peiris JSM, Nicholls JM. Neuraminidase activity and specificity of influenza A virus are influenced by haemagglutinin-receptor binding. Emerg Microbes Infect. (2019) 8:327–38. 10.1080/22221751.2019.1581034
    1. Byrd-Leotis L, Cummings RD, Steinhauer DA. The interplay between the host receptor and influenza virus hemagglutinin and neuraminidase. Int J Mol Sci. (2017) 18:1541. 10.3390/ijms18071541
    1. Li F, Berardi M, Li W, Farzan M, Dormitzer PR, Harrison SC. Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain. J Virol. (2006) 80:6794–800. 10.1128/JVI.02744-05
    1. Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. (2005) 309:1864–8. 10.1126/science.1116480
    1. Liu Y, Childs RA, Matrosovich T, Wharton S, Palma AS, Chai W, et al. . Altered receptor specificity and cell tropism of D222G hemagglutinin mutants isolated from fatal cases of pandemic A(H1N1) 2009 influenza virus. J Virol. (2010) 84:12069–74. 10.1128/JVI.01639-10
    1. Wang N, Shi X, Jiang L, Zhang S, Wang D, Tong P, et al. . Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. (2013) 23:986–93. 10.1038/cr.2013.92
    1. Cao Y, Li L, Feng Z, Wan S, Huang P, Sun X, et al. . Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. (2020) 6:11. 10.1038/s41421-020-0147-1
    1. Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, et al. . The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. (2020) 5:536–44. 10.1038/s41564-020-0695-z
    1. Huang Q, Herrmann A. Fast assessment of human receptor-binding capability of 2019 novel coronavirus (2019-nCoV). bioRxiv. (2020) 2020:202002.01.930537. 10.1101/2020.02.01.930537
    1. Li M, Li L, Zhang Y, Wang X. An Investigation of the Expression of 2019 Novel Coronavirus Cell Receptor Gene ACE2 in a Wide Variety of Human Tissues. Research Square; (2020).
    1. Gounder AP, Boon ACM. Influenza pathogenesis: the effect of host factors on severity of disease. J Immunol. (2019) 202:341–50. 10.4049/jimmunol.1801010
    1. Chen IY, Moriyama M, Chang MF, Ichinohe T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front Microbiol. (2019) 10:50. 10.3389/fmicb.2019.00050
    1. Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM, Oude Munnink BB, et al. . Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science. (2020) 2020:eabb7314. 10.1126/science.abb7314
    1. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. . First case of 2019 novel coronavirus in the United States. N Engl J Med. (2020) 382:929–36. 10.1056/NEJMoa2001191
    1. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. (2017) 39:529–39. 10.1007/s00281-017-0629-x
    1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. . Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. (2020) 395:497–506. 10.1016/S0140-6736(20)30183-5
    1. Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z, et al. . The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): the perspectives of clinical immunologists from China. Clin Immunol. (2020) 214:108393. 10.1016/j.clim.2020.108393
    1. Tufan A, Avanoglu Guler A, Matucci-Cerinic M. COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. Turkish J Med Sci. (2020) 50:620–32. 10.3906/sag-2004-168
    1. Xu R, Ekiert DC, Krause JC, Hai R, Crowe JE, Jr, et al. . Structural basis of preexisting immunity to the 2009 H1N1 pandemic influenza virus. Science. (2010) 328:357–60. 10.1126/science.1186430
    1. Itoh Y, Shinya K, Kiso M, Watanabe T, Sakoda Y, Hatta M, et al. . In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature. (2009) 460:1021–5. 10.1038/nature08260
    1. Schrauwen EJ, de Graaf M, Herfst S, Rimmelzwaan GF, Osterhaus AD, Fouchier RA. Determinants of virulence of influenza A virus. Eur J Clin Microbiol Infect Dis. (2014) 33:479–90. 10.1007/s10096-013-1984-8
    1. Chen W, Calvo PA, Malide D, Gibbs J, Schubert U, Bacik I, et al. . A novel influenza A virus mitochondrial protein that induces cell death. Nat Med. (2001) 7:1306–12. 10.1038/nm1201-1306
    1. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev. (1992) 56:152–79. 10.1128/MMBR.56.1.152-179.1992
    1. Moser MR, Bender TR, Margolis HS, Noble GR, Kendal AP, Ritter DG. An outbreak of influenza aboard a commercial airliner. Am J Epidemiol. (1979) 110:1–6. 10.1093/oxfordjournals.aje.a112781
    1. Verreault D, Moineau S, Duchaine C. Methods for sampling of airborne viruses. Microbiol Mol Biol Rev. (2008) 72:413–44. 10.1128/MMBR.00002-08
    1. Nicas M, Nazaroff WW, Hubbard A. Toward understanding the risk of secondary airborne infection: emission of respirable pathogens. J Occup Environ Hyg. (2005) 2:143–54. 10.1080/15459620590918466
    1. Lowen A, Palese P. Transmission of influenza virus in temperate zones is predominantly by aerosol, in the tropics by contact: a hypothesis. PLoS Curr. (2009) 1:Rrn1002. 10.1371/currents.RRN1002
    1. Polozov IV, Bezrukov L, Gawrisch K, Zimmerberg J. Progressive ordering with decreasing temperature of the phospholipids of influenza virus. Nat Chem Biol. (2008) 4:248–55. 10.1038/nchembio.77
    1. Otter JA, Yezli S, French GL. The role played by contaminated surfaces in the transmission of nosocomial pathogens. Infect Control Hosp Epidemiol. (2011) 32:687–99. 10.1086/660363
    1. Bean B, Moore BM, Sterner B, Peterson LR, Gerding DN, Balfour HH, Jr. Survival of influenza viruses on environmental surfaces. J Infect Dis. (1982) 146:47–51. 10.1093/infdis/146.1.47
    1. van Doremalen N, Bushmaker T, Munster VJ. Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Euro Surveill. (2013) 18:20590. 10.2807/1560-7917.ES2013.18.38.20590
    1. Duan SM, Zhao XS, Wen RF, Huang JJ, Pi GH, Zhang SX, et al. . Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. Biomed Environ Sci. (2003) 16:246–55.
    1. Chan KH, Peiris JS, Lam SY, Poon LL, Yuen KY, Seto WH. The effects of temperature and relative humidity on the viability of the SARS coronavirus. Adv Virol. (2011) 2011:734690. 10.1155/2011/734690
    1. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. . Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. (2020) 382:1564–7. 10.1056/NEJMc2004973
    1. Wearing HJ, Rohani P, Keeling MJ. Appropriate models for the management of infectious diseases. PLoS Med. (2005) 2:e174. 10.1371/journal.pmed.0020174
    1. Heffernan JM, Smith RJ, Wahl LM. Perspectives on the basic reproductive ratio. J R Soc Interface. (2005) 2:281–93. 10.1098/rsif.2005.0042
    1. Biggerstaff M, Cauchemez S, Reed C, Gambhir M, Finelli L. Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature. BMC Infect Dis. (2014) 14:480. 10.1186/1471-2334-14-480
    1. Chowell G, Castillo-Chavez C, Fenimore PW, Kribs-Zaleta CM, Arriola L, Hyman JM. Model parameters and outbreak control for SARS. Emerg Infect Dis. (2004) 10:1258–63. 10.3201/eid1007.030647
    1. Breban R, Riou J, Fontanet A. Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk. Lancet. (2013) 382:694–9. 10.1016/S0140-6736(13)61492-0
    1. D'Arienzo M, Coniglio A. Assessment of the SARS-CoV-2 basic reproduction number, R0, based on the early phase of COVID-19 outbreak in Italy. Biosaf Health. (2020) 2:57–9. 10.1016/j.bsheal.2020.03.004
    1. Fineberg HV. Pandemic preparedness and response — lessons from the H1N1 influenza of 2009. N Engl J Med. (2014) 370:1335–42. 10.1056/NEJMra1208802
    1. Russell CA, Kasson PM, Donis RO, Riley S, Dunbar J, Rambaut A, et al. . Science Forum: improving pandemic influenza risk assessment. eLife. (2014) 3:e03883. 10.7554/eLife.03883
    1. WHO Pandemic Influenza Risk Management (PIRM). (2017). Available online at:
    1. Prem K, Liu Y, Russell TW, Kucharski AJ, Eggo RM, Davies N, et al. . The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. Lancet Public Health. (2020) 5:e261–70. 10.1101/2020.03.09.20033050
    1. McDonald LC, Simor AE, Su IJ, Maloney S, Ofner M, Chen KT, et al. . SARS in healthcare facilities, Toronto and Taiwan. Emerg Infect Dis. (2004) 10:777–81. 10.3201/eid1005.030791
    1. Suwantarat N, Apisarnthanarak A. Risks to healthcare workers with emerging diseases: lessons from MERS-CoV, Ebola, SARS, and avian flu. Curr Opin Infect Dis. (2015) 28:349–61. 10.1097/QCO.0000000000000183
    1. WHO Emergencies Preparedness, Response. (2004). Available online at:
    1. Memish ZA, Cotten M, Meyer B, Watson SJ, Alsahafi AJ, Al Rabeeah AA, et al. . Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013. Emerg Infect Dis. (2014) 20:1012. 10.3201/eid2006.140402
    1. Peeri NC, Shrestha N, Rahman MS, Zaki R, Tan Z, Bibi S, et al. . The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned? Int J Epidemiol. (2020) 49:717–26. 10.1093/ije/dyaa033
    1. Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents. (2020) 2020:105938. 10.1016/j.ijantimicag.2020.105938
    1. Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care. (2020) 57:279–83. 10.1016/j.jcrc.2020.03.005
    1. Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: an old drug against today's diseases? Lancet Infect Dis. (2003) 3:722–7. 10.1016/S1473-3099(03)00806-5
    1. Huang Z, Liu H, Zhang X, Wen G, Zhu C, Zhao Y, et al. . Transcriptomic analysis of lung tissues after hUC-MSCs and FTY720 treatment of lipopolysaccharide-induced acute lung injury in mouse models. Int Immunopharmacol. (2018) 63:26–34. 10.1016/j.intimp.2018.06.036
    1. Zhang Z, Li W, Heng Z, Zheng J, Li P, Yuan X, et al. . Combination therapy of human umbilical cord mesenchymal stem cells and FTY720 attenuates acute lung injury induced by lipopolysaccharide in a murine model. Oncotarget. (2017) 8:77407–14. 10.18632/oncotarget.20491
    1. Wu W, Wang JF, Liu PM, Chen WX, Yin SM, Jiang SP, et al. . [Clinical features of 96 patients with severe acute respiratory syndrome from a hospital outbreak]. Zhonghua Nei Ke Za Zhi. (2003) 42:453–7.
    1. Stockman LJ, Bellamy R, Garner PJ. SARS: systematic review of treatment effects. PLoS Med. (2006) 3:e343. 10.1371/journal.pmed.0030343
    1. Sharif-Yakan A, Kanj SS. Emergence of MERS-CoV in the Middle East: origins, transmission, treatment, and perspectives. PLoS Pathog. (2014) 10:e1004457. 10.1371/journal.ppat.1004457
    1. Jefferson T, Jones M, Doshi P, Spencer EA, Onakpoya I, Heneghan CJ. Oseltamivir for influenza in adults and children: systematic review of clinical study reports and summary of regulatory comments. BMJ. (2014) 348:g2545. 10.1136/bmj.g2545
    1. Peramivir for influenza. Aust Prescr. (2019) 42:143 10.18773/austprescr.2019.047
    1. Cheng VC, Wong S-C, To KK, Ho P, Yuen K-Y. Preparedness and proactive infection control measures against the emerging novel coronavirus in China. J Hosp Infect. (2020) 104:254–5. 10.1016/j.jhin.2020.01.010
    1. Chartier Y, Pessoa-Silva C. Natural Ventilation for Infection Control in Health-Care Settings. World Health Organization; (2009).

Source: PubMed

3
구독하다