Extra-Pulmonary Complications in SARS-CoV-2 Infection: A Comprehensive Multi Organ-System Review

Taylor J Louis, Ahmad Qasem, Latifa S Abdelli, Saleh A Naser, Taylor J Louis, Ahmad Qasem, Latifa S Abdelli, Saleh A Naser

Abstract

Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is typically presented with acute symptoms affecting upper and lower respiratory systems. As the current pandemic progresses, COVID-19 patients are experiencing a series of nonspecific or atypical extra-pulmonary complications such as systemic inflammation, hypercoagulability state, and dysregulation of the renin-angiotensin-aldosterone system (RAAS). These manifestations often delay testing, diagnosis, and the urge to seek effective treatment. Although the pathophysiology of these complications is not clearly understood, the incidence of COVID-19 increases with age and the presence of pre-existing conditions. This review article outlines the pathophysiology and clinical impact of SARS-CoV-2 infection on extra-pulmonary systems. Understanding the broad spectrum of atypical extra-pulmonary manifestations of COVID-19 should increase disease surveillance, restrict transmission, and most importantly prevent multiple organ-system complications.

Keywords: ACE2; COVID-19; RAAS; SARS-CoV-2; infection; viruses.

Conflict of interest statement

Authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The immunological Impact of SARS-CoV-2 Infection [35,36,37,38,39,40,41]. Graphical contents were created with BioRender.com.
Figure 2
Figure 2
The potential extra-pulmonary complications of COVID-19 affecting multiple organ-systems [14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176]. Graphical contents were created with BioRender.com.

References

    1. SARS Working Group A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 2003;348:1953–1966. doi: 10.1056/NEJMoa030781.
    1. Killerby M.E., Biggs H.M., Midgley C.M., Gerber S.I., Watson J.T. Middle East respiratory syndrome coronavirus transmission. Emerg. Infect. Dis. 2020;26:191. doi: 10.3201/eid2602.190697.
    1. Bai Y., Yao L., Wei T., Tian F., Jin D.Y., Chen L., Wang M. Presumed asymptomatic carrier transmission of COVID-19. JAMA. 2020;323:1406–1407. doi: 10.1001/jama.2020.2565.
    1. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Shi Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7.
    1. Qasem A., Shaw A.M., Elkamel E., Naser S.A. Coronavirus Disease 2019 (COVID-19) Diagnostic Tools: A Focus on Detection Technologies and Limitations. Curr. Issues Mol. Biol. 2021;43:728–748. doi: 10.3390/cimb43020053.
    1. Coronavirus Cases: Worldometer. (n.d.) [(accessed on 24 August 2021)]. Available online:
    1. Cao M., Zhang D., Wang Y., Lu Y., Zhu X., Li Y., Lu H. Clinical features of patients infected with the 2019 novel coronavirus (COVID-19) in Shanghai, China. MedRxiv. 2020
    1. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72,314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323:1239–1242. doi: 10.1001/jama.2020.2648.
    1. Zhou F., Yu T., Du R. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020;395:1054–1062. doi: 10.1016/S0140-6736(20)30566-3.
    1. Guan W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X., Zhong N.S. Clinical characteristics of 2019 novel coronavirus infection in China. MedRxiv. 2020
    1. Jung Y.J., Yoon J.L., Kim H.S., Lee A.Y., Kim M.Y., Cho J.J. Atypical clinical presentation of geriatric syndrome in elderly patients with pneumonia or coronary artery disease. Ann. Geriatr. Med. Res. 2017;21:158–163. doi: 10.4235/agmr.2017.21.4.158.
    1. Albini A., Di Guardo G., Noonan D.M., Lombardo M. The SARS-CoV-2 receptor, ACE-2, is expressed on many different cell types: Implications for ACE-inhibitor-and angiotensin II receptor blocker-based cardiovascular therapies. Intern. Emerg. Med. 2020;15:759–766. doi: 10.1007/s11739-020-02364-6.
    1. Gupta A., Madhavan M.V., Sehgal K., Nair N., Mahajan S., Sehrawat T.S., Landry D.W. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020;26:1017–1032. doi: 10.1038/s41591-020-0968-3.
    1. Chowdhury M.A., Hossain N., Kashem M.A., Shahid M.A., Alam A. Immune response in COVID-19: A review. J. Infect. Public Health. 2020;13:1619–1629. doi: 10.1016/j.jiph.2020.07.001.
    1. Bestle D., Heindl M.R., Limburg H., Pilgram O., Moulton H., Stein D.A., Böttcher-Friebertshäuser E. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci. Alliance. 2020;3:786. doi: 10.26508/lsa.202000786.
    1. Brodin P. Immune determinants of COVID-19 disease presentation and severity. Nat. Med. 2021;27:28–33. doi: 10.1038/s41591-020-01202-8.
    1. Padmanabhan P., Desikan R., Dixit N.M. Targeting TMPRSS2 and Cathepsin B/L together may be synergistic against SARS-CoV-2 infection. PLoS Comput. Biol. 2020;16:e1008461. doi: 10.1371/journal.pcbi.1008461.
    1. Khamsi R. Rogue antibodies could be driving severe COVID-19. Nature. 2021;590:29–31. doi: 10.1038/d41586-021-00149-1.
    1. Benedetti C., Waldman M., Zaza G., Riella L.V., Cravedi P. COVID-19 and the kidneys: An update. Front. Med. 2020;7:423. doi: 10.3389/fmed.2020.00423.
    1. Hamilton P., Hanumapura P., Castelino L., Henney R., Parker K., Kumar M., Ebah L. Characteristics and outcomes of hospitalised patients with acute kidney injury and COVID-19. PLoS ONE. 2020;15:e0241544. doi: 10.1371/journal.pone.0241544.
    1. Beltrame M.H., Catarino S.J., Goeldner I., Boldt A.B.W., de Messias-Reason I.J. The lectin pathway of complement and rheumatic heart disease. Front. Pediatrics. 2015;2:148. doi: 10.3389/fped.2014.00148.
    1. Reading P.C., Hartley C.A., Ezekowitz R.A.B., Anders E.M. A serum mannose-binding lectin mediates complement-dependent lysis of influenza virus-infected cells. Biochem. Biophys. Res. Commun. 1995;217:1128–1136. doi: 10.1006/bbrc.1995.2886.
    1. Ricklin D., Reis E.S., Lambris J.D. Complement in disease: A defence system turning offensive. Nat. Rev. Nephrol. 2016;12:383–401. doi: 10.1038/nrneph.2016.70.
    1. Lesher A.M., SONG W.C. Complement and its regulatory proteins in kidney diseases. Nephrology. 2010;15:663–675. doi: 10.1111/j.1440-1797.2010.01373.x.
    1. Pfister F., Vonbrunn E., Ries T., Jäck H.M., Überla K., Lochnit G., Daniel C. Complement activation in kidneys of patients with COVID-19. Front. Immunol. 2020;11:3833. doi: 10.3389/fimmu.2020.594849.
    1. Carvelli J., Demaria O., Vély F., Batista L., Benmansour N.C., Fares J., Vivier E. Association of COVID-19 inflammation with activation of the C5a–C5aR1 axis. Nature. 2020;588:146–150. doi: 10.1038/s41586-020-2600-6.
    1. Kumar B., Cashman S.M., Kumar-Singh R. Complement-mediated activation of the NLRP3 inflammasome and its inhibition by AAV-mediated delivery of CD59 in a model of uveitis. Mol. Ther. 2018;26:1568–1580. doi: 10.1016/j.ymthe.2018.03.012.
    1. Triantafilou M., Hughes T.R., Morgan B.P., Triantafilou K. Complementing the inflammasome. Immunology. 2016;147:152–164. doi: 10.1111/imm.12556.
    1. Rodrigues T.S., de Sá K.S., Ishimoto A.Y., Becerra A., Oliveira S., Almeida L., Zamboni D.S. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J. Exp. Med. 2020;218:e20201707. doi: 10.1084/jem.20201707.
    1. Peng Y., Mentzer A.J., Liu G., Yao X., Yin Z., Dong D., Dong T. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat. Immunol. 2020;21:1336–1345. doi: 10.1038/s41590-020-0782-6.
    1. Hegde N.R., Chevalier M.S., Johnson D.C. Viral inhibition of MHC class II antigen presentation. Trends Immunol. 2003;24:278–285. doi: 10.1016/S1471-4906(03)00099-1.
    1. Forthal D.N. Functions of antibodies. Microbiol. Spectr. 2014;2:2–4. doi: 10.1128/microbiolspec.AID-0019-2014.
    1. Reynolds S. Lasting immunity found after recovery from COVID-19. NIH Res. Matters. 2021;11:6523.
    1. Dan J.M., Mateus J., Kato Y., Hastie K.M., Yu E.D., Faliti C.E., Crotty S. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021;371:1546. doi: 10.1126/science.abf4063.
    1. Kapsenberg M.L. Dendritic-cell control of pathogen-driven T-cell polarization. Nat. Rev. Immunol. 2003;3:984–993. doi: 10.1038/nri1246.
    1. Cypryk W., Nyman T.A., Matikainen S. From inflammasome to exosome—does extracellular vesicle secretion constitute an inflammasome-dependent immune response? Front. Immunol. 2018;9:2188. doi: 10.3389/fimmu.2018.02188.
    1. Nakagawa K., Lokugamage K.G., Makino S. Viral and cellular mRNA translation in coronavirus-infected cells. Adv. Virus Res. 2016;96:165–192.
    1. Schubert K., Karousis E.D., Jomaa A., Scaiola A., Echeverria B., Gurzeler L.A., Ban N. SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nat. Struct. Mol. Biol. 2020;27:959–966. doi: 10.1038/s41594-020-0511-8.
    1. Sontheimer R.D., Racila E., Racila D.M. C1q: Its functions within the innate and adaptive immune responses and its role in lupus autoimmunity. J. Investig. Dermatol. 2005;125:14–23. doi: 10.1111/j.0022-202X.2005.23673.x.
    1. Jeong G.U., Song H., Yoon G.Y., Kim D., Kwon Y.C. Therapeutic strategies against COVID-19 and structural characterization of SARS-CoV-2: A review. Front. Microbiol. 2020;11:1723. doi: 10.3389/fmicb.2020.01723.
    1. Harrison A.G., Lin T., Wang P. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol. 2020;41:1110–1115. doi: 10.1016/j.it.2020.10.004.
    1. Taylor D.K., Neujahr D., Turka L.A. Heterologous immunity and homeostatic proliferation as barriers to tolerance. Curr. Opin. Immunol. 2004;16:558–564. doi: 10.1016/j.coi.2004.07.007.
    1. Balz K., Kaushik A., Chen M., Cemic F., Heger V., Renz H., Skevaki C. Homologies between SARS-CoV-2 and allergen proteins may direct T cell-mediated heterologous immune responses. Sci. Rep. 2021;11:1–7.
    1. Tracking SARS-CoV-2 Variants—World Health Organization. [(accessed on 8 December 2021)]. Available online: .
    1. Zeng W., Liu G., Ma H., Zhao D., Yang Y., Liu M., Jin T. Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem. Biophys. Res. Commun. 2020;527:618–623. doi: 10.1016/j.bbrc.2020.04.136.
    1. Dai L., Gao G.F. Viral targets for vaccines against COVID-19. Nat. Rev. Immunol. 2021;21:73–82. doi: 10.1038/s41577-020-00480-0.
    1. Chagla Z. The BNT162b2 (BioNTech/Pfizer) vaccine had 95% efficacy against COVID-19 ≥7 days after the 2nd dose. Ann. Intern. Med. 2021;174:JC15. doi: 10.7326/ACPJ202102160-015.
    1. Mahase E. COVID-19: Moderna vaccine is nearly 95% effective, trial involving high risk and elderly people shows. BMJ Br. Med. J. 2020;371:m4471. doi: 10.1136/bmj.m4471.
    1. Meo S.A., Bukhari I.A., Akram J., Meo A.S., Klonoff D.C. COVID-19 vaccines: Comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna Vaccines. Eur. Rev. Med. Pharmacol. Sci. 2021;25:1663–1669.
    1. Pavord S., Scully M., Hunt B.J., Lester W., Bagot C., Craven B., Makris M. Clinical features of vaccine-induced immune thrombocytopenia and thrombosis. N. Engl. J. Med. 2021;385:1680–1689. doi: 10.1056/NEJMoa2109908.
    1. Greinacher A., Thiele T., Warkentin T.E., Weisser K., Kyrle P.A., Eichinger S. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N. Engl. J. Med. 2021;384:2092–2101. doi: 10.1056/NEJMoa2104840.
    1. Livingston E.H., Malani P.N., Creech C.B. The Johnson & Johnson Vaccine for COVID-19. JAMA. 2021;325:1575.
    1. Shay D.K. Safety Monitoring of the Janssen (Johnson & Johnson) COVID-19 Vaccine—United States, March–April 2021. MMWR Morb. Mortal. Wkly. Rep. 2021;70:680–684.
    1. Tecklenborg J., Clayton D., Siebert S., Coley S.M. The role of the immune system in kidney disease. Clin. Exp. Immunol. 2018;192:142–150. doi: 10.1111/cei.13119.
    1. Nahhal S., Halawi A., Basma H., Jibai A., Ajami Z. Anti-glomerular basement membrane disease as a potential complication of COVID-19: A case report and review of literature. Cureus. 2020;12:1452. doi: 10.7759/cureus.12089.
    1. Lammerts R.G., Eisenga M.F., Alyami M., Daha M.R., Seelen M.A., Pol R.A., Berger S.P. Urinary properdin and sc5b-9 are independently associated with increased risk for graft failure in renal transplant recipients. Front. Immunol. 2019;10:2511. doi: 10.3389/fimmu.2019.02511.
    1. Khoshdel-Rad N., Zahmatkesh E., Shpichka A., Timashev P., Vosough M. Outbreak of chronic renal failure: Will this be a delayed heritage of COVID-19? J. Nephrol. 2021;34:3–5. doi: 10.1007/s40620-020-00851-9.
    1. Izzedine H., Jhaveri K.D. Acute kidney injury in patients with COVID-19: An update on the pathophysiology. Nephrol. Dial. Transplant. 2021;36:224–226. doi: 10.1093/ndt/gfaa184.
    1. Knight P.P., Deep A. Save the kidneys in COVID-19. Pediatric Res. 2020;14:113. doi: 10.1038/s41390-020-01280-x.
    1. Nishiga M., Wang D.W., Han Y., Lewis D.B., Wu J.C. COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nat. Rev. Cardiol. 2020;17:543–558. doi: 10.1038/s41569-020-0413-9.
    1. Unudurthi S.D., Luthra P., Bose R.J., McCarthy J., Kontaridis M.I. Cardiac inflammation in COVID-19: Lessons from heart failure. Life Sci. 2020;15:118482. doi: 10.1016/j.lfs.2020.118482.
    1. Yang J.K., Zhao M.M., Yang W.L., Yang F.Y., Zhang L., Huang W., Wang Y. Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Medrxiv. 2020;6:12.
    1. Azevedo R.B., Botelho B.G., de Hollanda J.V.G., Ferreira L.V.L., de Andrade L.Z.J., Oei S.S.M.L., Muxfeldt E.S. COVID-19 and the cardiovascular system: A comprehensive review. J. Hum. Hypertens. 2020;18:4521. doi: 10.1038/s41371-020-0387-4.
    1. Soumya R.S., Unni T.G., Raghu K.G. Impact of COVID-19 on the Cardiovascular System: A Review of Available Reports. Cardiovasc. Drugs Ther. 2021;35:411–425. doi: 10.1007/s10557-020-07073-y.
    1. Słomka A., Kowalewski M., Żekanowska E. Hemostasis in Coronavirus Disease 2019—Lesson from Viscoelastic Methods: A Systematic Review. Thromb. Haemost. 2021;121:1181–1192. doi: 10.1055/a-1346-3178.
    1. Benes J., Zatloukal J., Kletecka J. Viscoelastic methods of blood clotting assessment—A multidisciplinary review. Front. Med. 2015;2:62. doi: 10.3389/fmed.2015.00062.
    1. Zheng K.I., Feng G., Liu W.Y., Targher G., Byrne C.D., Zheng M.H. Extrapulmonary complications of COVID-19: A multisystem disease? J. Med. Virol. 2021;93:323–335. doi: 10.1002/jmv.26294.
    1. Arachchillage D.R., Laffan M. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020;18:1233. doi: 10.1111/jth.14820.
    1. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020;18:844–847. doi: 10.1111/jth.14768.
    1. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Peng Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020;323:1061–1069. doi: 10.1001/jama.2020.1585.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Sultanian P., Lundgren P., Strömsöe A., Aune S., Bergström G., Hagberg E., Rawshani A. Cardiac arrest in COVID-19: Characteristics and outcomes of in-and out-of-hospital cardiac arrest. A report from the Swedish Registry for Cardiopulmonary Resuscitation. Eur. Heart J. 2021;42:1094–1106. doi: 10.1093/eurheartj/ehaa1067.
    1. Ciulla M.M. SARS-CoV-2 downregulation of ACE2 and pleiotropic effects of ACEIs/ARBs. Hypertens. Res. 2020;43:985–986. doi: 10.1038/s41440-020-0488-z.
    1. Ghasemiyeh P., Mohammadi-Samani S. COVID-19 outbreak: Challenges in pharmacotherapy based on pharmacokinetic and pharmacodynamic aspects of drug therapy in patients with moderate to severe infection. Heart Lung. 2020;49:763–773. doi: 10.1016/j.hrtlng.2020.08.025.
    1. Kothandaraman N., Rengaraj A., Xue B., Yew W.S., Velan S.S., Karnani N., Leow M.K.S. COVID-19 endocrinopathy with hindsight from SARS. Am. J. Physiol. Endocrinol. Metab. 2021;320:E139–E150. doi: 10.1152/ajpendo.00480.2020.
    1. Naran J. Lymphocytic Hypophysitis. StatPearls [Internet] [(accessed on 8 December 2021)];2021 August 14; Available online: .
    1. StatPearls Bromocriptine. StatPearls. Jan 11, 2022. [(accessed on 8 December 2021)]. Available online: .
    1. Ramamoorthy S., Cidlowski J.A. Corticosteroids: Mechanisms of action in health and disease. Rheum. Dis. Clin. 2016;42:15–31. doi: 10.1016/j.rdc.2015.08.002.
    1. Yasir M., Amandeep Goyal M., Bansal P., Sonthalia S. Stat Pearls [Internet] Stat Pearls Publishing; Treasure Island, FL, USA: 2020. Corticosteroid Adverse Effects. [Updated 2020 Mar 1]
    1. Lundholm M.D., Poku C., Emanuele N., Emanuele M.A., Lopez N. SARS-CoV-2 (COVID-19) and the endocrine system. J. Endocr. Soc. 2020;4:bvaa144. doi: 10.1210/jendso/bvaa144.
    1. Malavazos A.E., Romanelli M.M.C., Bandera F., Iacobellis G. Targeting the adipose tissue in COVID-19. Obesity. 2020;14:7854. doi: 10.1002/oby.22844.
    1. Grifoni A., Sidney J., Zhang Y., Scheuermann R.H., Peters B., Sette A. A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS-CoV-2. Cell Host Microbe. 2020;27:671–680. doi: 10.1016/j.chom.2020.03.002.
    1. Thyroiditis: Types, Causes, Symptoms, Diagnosis & Treatment. Cleveland Clinic. [(accessed on 8 December 2021)]. Available online: .
    1. Gupta V., Lee M. Central hypothyroidism. Indian J. Endocrinol. Metab. 2011;15((Suppl. 2)):S99. doi: 10.4103/2230-8210.83337.
    1. Ganesan K. Euthyroid Sick Syndrome. StatPearls [Internet] [(accessed on 8 December 2021)];2020 November 2; Available online: .
    1. Khundmiri S.J., Murray R.D., Lederer E. PTH and vitamin D. Compr. Physiol. 2011;6:561–601.
    1. Cantuti-Castelvetri L., Ojha R., Pedro L.D., Djannatian M., Franz J., Kuivanen S., Simons M. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020;370:856–860. doi: 10.1126/science.abd2985.
    1. Kyrou I., Randeva H.S., Spandidos D.A., Karteris E. Not only ACE2—the quest for additional host cell mediators of SARS-CoV-2 infection: Neuropilin-1 (NRP1) as a novel SARS-CoV-2 host cell entry mediator implicated in COVID-19. Signal. Transduct. Target. Ther. 2021;6:13. doi: 10.1038/s41392-020-00460-9.
    1. Ma C., Cong Y., Zhang H. COVID-19 and the Digestive System. Am. J. Gastroenterol. 2020;14:4765. doi: 10.14309/ajg.0000000000000691.
    1. Wong S.H., Lui R.N., Sung J.J. COVID-19 and the digestive system. J. Gastroenterol. Hepatol. 2020;35:744–748. doi: 10.1111/jgh.15047.
    1. Xiao F., Tang M., Zheng X., Liu Y., Li X., Shan H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020;158:1831–1833. doi: 10.1053/j.gastro.2020.02.055.
    1. Xu Y., Li X., Zhu B., Liang H., Fang C., Gong Y., Gong S. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med. 2020;26:502–505. doi: 10.1038/s41591-020-0817-4.
    1. Chan K.H., Poon L.L., Cheng V.C.C., Guan Y., Hung I.F.N., Kong J., Peiris J.S.M. Detection of SARS coronavirus in patients with suspected SARS. Emerg. Infect. Dis. 2004;10:294. doi: 10.3201/eid1002.030610.
    1. Segura P.S., Lázaro Y.A., Tapia S.M., Chaves T.C., Domingo J.J.S. Involvement of the digestive system in COVID-19. A review. Gastroenterol. Hepatol. 2020;14:543. doi: 10.1016/j.gastre.2020.06.004.
    1. Redd W.D., Zhou J.C., Hathorn K.E., McCarty T.R., Bazarbashi A.N., Thompson C.C., Chan W.W. Prevalence and Characteristics of Gastrointestinal Symptoms in Patients with SARS-CoV-2 Infection in the United States: A Multicenter Cohort Study. Gastroenterology. 2020;85:4568.
    1. Villapol S. Gastrointestinal symptoms associated with COVID-19: Impact on the gut microbiome. Transl. Res. 2020;45:476. doi: 10.1016/j.trsl.2020.08.004.
    1. Gou W., Fu Y., Yue L., Chen G.D., Cai X., Shuai M., Zheng J.S. Gut microbiota may underlie the predisposition of healthy individuals to COVID-19. MedRxiv. 2020;45:5321.
    1. Zuo T., Zhan H., Zhang F., Liu Q., Tso E.Y., Lui G.C., Ng S.C. Alterations in fecal fungal microbiome of patients with COVID-19 during time of hospitalization until discharge. Gastroenterology. 2020;159:1302–1310. doi: 10.1053/j.gastro.2020.06.048.
    1. Hills R.D., Pontefract B.A., Mishcon H.R., Black C.A., Sutton S.C., Theberge C.R. Gut microbiome: Profound implications for diet and disease. Nutrients. 2019;11:1613. doi: 10.3390/nu11071613.
    1. Hashem N.M., Abdelnour S.A., Alhimaidi A.R., Swelum A.A. Potential impacts of COVID-19 on reproductive health: Scientific findings and social dimension. Saudi J. Biol. Sci. 2021;47:9654. doi: 10.1016/j.sjbs.2020.12.012.
    1. Al-Kuraishy H.M., Al-Gareeb A.I., Faidah H., Al-Maiahy T.J., Cruz-Martins N., Batiha G.E.S. The looming effects of estrogen in COVID-19: A Rocky Rollout. Front. Nutr. 2021;8:5431. doi: 10.3389/fnut.2021.649128.
    1. Dutta S., Sengupta P. SARS-CoV-2 and male infertility: Possible multifaceted pathology. Reprod. Sci. 2021;28:23–26. doi: 10.1007/s43032-020-00261-z.
    1. Matsumoto T., Shiina H., Kawano H., Sato T., Kato S. Androgen receptor functions in male and female physiology. J. Steroid Biochem. Mol. Biol. 2008;109:236–241. doi: 10.1016/j.jsbmb.2008.03.023.
    1. Gagliano Taliun S.A., Evans D.M. Ten simple rules for conducting a mendelian randomization study. PLoS Comput. Biol. 2021;17:101. doi: 10.1371/journal.pcbi.1009238.
    1. Swerdloff R.S., Wang C. Androgen deficiency and aging in men. West. J. Med. 1993;159:579.
    1. Gray K.J., Bordt E.A., Atyeo C., Deriso E., Akinwunmi B., Young N., Edlow A.G. Coronavirus disease 2019 vaccine response in pregnant and lactating women: A cohort study. Am. J. Obstet. Gynecol. 2021;2019:4125. doi: 10.1016/j.ajog.2021.03.023.
    1. Li R., Yin T., Fang F., Li Q., Chen J., Wang Y., Qiao J. Potential risks of SARS-CoV-2 infection on reproductive health. Reprod. Biomed. Online. 2020;41:89–95. doi: 10.1016/j.rbmo.2020.04.018.
    1. U.S. National Library of Medicine Estrogen Levels Test: Medlineplus Medical Test. MedlinePlus. [(accessed on 8 December 2021)];2021 August 25; Available online: .
    1. Madjunkov M., Dviri M., Librach C. A comprehensive review of the impact of COVID-19 on human reproductive biology, assisted reproduction care and pregnancy: A Canadian perspective. J. Ovarian Res. 2020;13:1–18. doi: 10.1186/s13048-020-00737-1.
    1. Khalil A., Kalafat E., Benlioglu C., O’Brien P., Morris E., Draycott T., Magee L.A. SARS-CoV-2 infection in pregnancy: A systematic review and meta-analysis of clinical features and pregnancy outcomes. Clinical. Med. 2020;25:100446. doi: 10.1016/j.eclinm.2020.100446.
    1. Tur-Kaspa I., Tur-Kaspa T., Hildebrand G., Cohen D. COVID-19 may affect male fertility but is not sexually transmitted: A systematic review. Syst. Rev. 2021;14:562. doi: 10.1016/j.xfnr.2021.01.002.
    1. Flaherty A.J., Sharma A., Crosby D.L., Nuara M.J. Should gender-affirming surgery be prioritized during the COVID-19 pandemic? Otolaryngol.–Head Neck Surg. 2020;11:0194599820939072. doi: 10.1177/0194599820939072.
    1. Cristiane Ueno M.D. The Impact of COVID-19 on Gender Dysphoria Patients. American Society of Plastic Surgeons. May 5, 2020. [(accessed on 8 December 2021)]. Available online: .
    1. Deshmukh V., Motwani R., Kumar A., Kumari C., Raza K. Histopathological observations in COVID-19: A systematic review. J. Clin. Pathol. 2021;74:76–83. doi: 10.1136/jclinpath-2020-206995.
    1. Mawhirt A. Cutaneous Manifestations in Adult Patients with COVID-19 and Dermatologic Conditions Related to the COVID-19 Pandemic in Health Care Workers. Curr. Allergy Asthma Rep. 2020;20:75. doi: 10.1007/s11882-020-00974-w.
    1. Schwartzberg L.N., Advani S., Clancy D.C., Lin A., Jorizzo J.L. A systematic review of dermatologic manifestations among adult patients with COVID-19 diagnosis. Ski. Health Dis. 2021;1:e20. doi: 10.1002/ski2.20.
    1. Genovese G., Moltrasio C., Berti E., Marzano A.V. Skin manifestations associated with COVID-19: Current knowledge and future perspectives. Dermatology. 2021;12:1452. doi: 10.1159/000512932.
    1. Young S., Fernandez A.P. Skin manifestations of COVID-19. Clevel. Clin. J. Med. 2020;45:861. doi: 10.3949/ccjm.87a.ccc031.
    1. Darlenski R., Tsankov N. COVID-19 pandemic and the skin: What should dermatologists know? Clin. Dermatol. 2020;38:785–787. doi: 10.1016/j.clindermatol.2020.03.012.
    1. Leung T.W., Wong K.S., Hui A.C., To K.F., Lai S.T., Ng W.F., Ng H.K. Myopathic changes associated with severe acute respiratory syndrome: A postmortem case series. Arch. Neurol. 2005;62:1113–1117. doi: 10.1001/archneur.62.7.1113.
    1. Tsai L., Hsieh S., Chang Y. Neurological manifestations in severe acute respiratory syndrome. Acta Neurol. Taiwanica. 2005;14:113.
    1. Hasan L.K., Deadwiler B., Haratian A., Bolia I.K., Weber A.E., Petrigliano F.A. Effects of COVID-19 on the Musculoskeletal System: Clinician’s Guide. Orthop. Res. Rev. 2021;13:141.
    1. Ramani S.L., Samet J., Franz C.K., Hsieh C., Nguyen C.V., Horbinski C., Deshmukh S. Musculoskeletal involvement of COVID-19: Review of imaging. Skelet. Radiol. 2021;50:1763–1773. doi: 10.1007/s00256-021-03734-7.
    1. Orford N.R., Pasco J.A., Kotowicz M.A. Osteoporosis and the critically ill patient. Crit. Care Clin. 2019;35:301–313. doi: 10.1016/j.ccc.2018.11.006.
    1. Kizilarslanoglu M.C., Kuyumcu M.E., Yesil Y., Halil M. Sarcopenia in critically ill patients. J. Anesth. 2016;30:884–890. doi: 10.1007/s00540-016-2211-4.
    1. Wiersinga W.J., Rhodes A., Cheng A.C., Peacock S.J., Prescott H.C. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A review. JAMA. 2020;324:782–793. doi: 10.1001/jama.2020.12839.
    1. Shah S., Danda D., Kavadichanda C., Das S., Adarsh M.B., Negi V.S. Autoimmune and rheumatic musculoskeletal diseases as a consequence of SARS-CoV-2 infection and its treatment. Rheumatol. Int. 2020;40:1539–1554. doi: 10.1007/s00296-020-04639-9.
    1. Paliwal V.K., Garg R.K., Gupta A., Tejan N. Neuromuscular presentations in patients with COVID-19. Neurol. Sci. 2020;18:145. doi: 10.1007/s10072-020-04708-8.
    1. Revzin M.V., Raza S., Warshawsky R., D’agostino C., Srivastava N.C., Bader A.S., Pellerito J.S. Multisystem imaging manifestations of COVID-19, part 1: Viral pathogenesis and pulmonary and vascular system complications. Radiographics. 2020;40:1574–1599. doi: 10.1148/rg.2020200149.
    1. Zhou L., Zhang M., Wang J., Gao J. SARS-CoV-2: Underestimated damage to nervous system. Travel Med. Infect. Dis. 2020:101642. doi: 10.1016/j.tmaid.2020.101642.
    1. Lau H.M.C., Lee E.W.C., Wong C.N.C., Ng G.Y.F., Jones A.Y.M., Hui D.S.C. The impact of severe acute respiratory syndrome on the physical profile and quality of life. Arch. Phys. Med. Rehabil. 2005;86:1134–1140. doi: 10.1016/j.apmr.2004.09.025.
    1. Ding Y., Wang H., Shen H., Li Z., Geng J., Han H., Yao K. The clinical pathology of severe acute respiratory syndrome (SARS): A report from China. J. Pathol. A J. Pathol. Soc. Great Br. Irel. 2003;200:282–289. doi: 10.1002/path.1440.
    1. Fajnzylber J., Regan J., Coxen K., Corry H., Wong C., Rosenthal A., Li J.Z. SARS-CoV-2 viral load is associated with increased disease severity and mortality. Nat. Commun. 2020;11:19. doi: 10.1038/s41467-020-19057-5.
    1. Xu P., Sun G.D., Li Z.Z. Clinical Characteristics of Two Human to Human Transmitted Coronaviruses: Corona Virus Disease 2019 versus Middle East Respiratory Syndrome Coronavirus. MedRxiv. 2020;11:57.
    1. Zhang X., Cai H., Hu J., Lian J., Gu J., Zhang S., Yang Y. Epidemiological, clinical characteristics of cases of SARS-CoV-2 infection with abnormal imaging findings. Int. J. Infect. Dis. 2020;94:81–87. doi: 10.1016/j.ijid.2020.03.040.
    1. Mao L., Wang M., Chen S., He Q., Chang J., Hong C., Hu B. Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: A retrospective case series study. MedRxiv. 2020;47:536. doi: 10.2139/ssrn.3544840.
    1. Qi D., Yan X., Tang X., Peng J., Yu Q., Feng L., Xiang J. Epidemiological and clinical features of 2019-nCoV acute respiratory disease cases in Chongqing municipality, China: A retrospective, descriptive, multiple-center study. MedRxiv. 2020;54:3151.
    1. Liu P., Lee S., Knoll J., Rauch A., Ostermay S., Luther J., Tuckermann J.P. Loss of menin in osteoblast lineage affects osteocyte–osteoclast crosstalk causing osteoporosis. Cell Death Differ. 2017;24:672–682. doi: 10.1038/cdd.2016.165.
    1. Zhang K., Asai S., Yu B., Enomoto-Iwamoto M. IL-1β irreversibly inhibits tenogenic differentiation and alters metabolism in injured tendon-derived progenitor cells in vitro. Biochem. Biophys. Res. Commun. 2015;463:667–672. doi: 10.1016/j.bbrc.2015.05.122.
    1. Backman L.J., Eriksson D.E., Danielson P. Substance P reduces TNF-α-induced apoptosis in human tenocytes through NK-1 receptor stimulation. Br. J. Sports Med. 2014;48:1414–1420. doi: 10.1136/bjsports-2013-092438.
    1. Lau E.M.C., Chan F.W.K., Hui D.S.C., Wu A.K.L., Leung P.C. Reduced bone mineral density in male Severe Acute Respiratory Syndrome (SARS) patients in Hong Kong. Bone. 2005;37:420–424. doi: 10.1016/j.bone.2005.04.018.
    1. Disser N.P., De Micheli A.J., Schonk M.M., Konnaris M.A., Piacentini A.N., Edon D.L., Mendias C.L. Musculoskeletal consequences of COVID-19. JBJS. 2020;102:1197–1204. doi: 10.2106/JBJS.20.00847.
    1. Hasseli R., Mueller-Ladner U., Hoyer B.F., Krause A., Lorenz H.M., Pfeil A., Regierer A.C. Older age, comorbidity, glucocorticoid use and disease activity are risk factors for COVID-19 hospitalisation in patients with inflammatory rheumatic and musculoskeletal diseases. Rmd Open. 2021;7:e001464. doi: 10.1136/rmdopen-2020-001464.
    1. Rodríguez Y., Novelli L., Rojas M., De Santis M., Acosta-Ampudia Y., Monsalve D.M., Anaya J.M. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J. Autoimmun. 2020;114:102506. doi: 10.1016/j.jaut.2020.102506.
    1. Caso F., Costa L., Ruscitti P., Navarini L., Del Puente A., Giacomelli R., Scarpa R. Could Sars-coronavirus-2 trigger autoimmune and/or autoinflammatory mechanisms in genetically predisposed subjects? Autoimmun. Rev. 2020;19:102524. doi: 10.1016/j.autrev.2020.102524.
    1. Bonometti R., Sacchi M.C., Stobbione P., Lauritano E.C., Tamiazzo S., Marchegiani A., Boverio R. The first case of systemic lupus erythematosus (SLE) triggered by COVID-19 infection. Eur. Rev. Med. Pharm. Sci. 2020;24:9695–9697.
    1. Novelli L., Motta F., Ceribelli A., Guidelli G.M., Luciano N., Isailovic N., De Santis M. A case of psoriatic arthritis triggered by SARS-CoV-2 infection. Rheumatology. 2021;54:456. doi: 10.1093/rheumatology/keaa691.
    1. Parisi S., Borrelli R., Bianchi S., Fusaro E. Viral arthritis and COVID-19. Lancet Rheumatol. 2020;2:e655–e657. doi: 10.1016/S2665-9913(20)30348-9.
    1. Harapan B.N., Yoo H.J. Neurological symptoms, manifestations, and complications associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19) J. Neurol. 2021;1:13. doi: 10.1007/s00415-021-10406-y.
    1. Tsivgoulis G., Palaiodimou L., Katsanos A.H., Caso V., Köhrmann M., Molina C., Tsiodras S. Neurological manifestations and implications of COVID-19 pandemic. Ther. Adv. Neurol. Disord. 2020;13:1756286420932036. doi: 10.1177/1756286420932036.
    1. Domingues R.B., Mendes-Correa M.C., de Moura Leite F.B.V., Sabino E.C., Salarini D.Z., Claro I., Soares C.A.S. First case of SARS-CoV-2 sequencing in cerebrospinal fluid of a patient with suspected demyelinating disease. J. Neurol. 2020;267:3154–3156. doi: 10.1007/s00415-020-09996-w.
    1. Ye M., Ren Y., Lv T. Encephalitis as a clinical manifestation of COVID-19. Brain Behav. Immun. 2020;88:945. doi: 10.1016/j.bbi.2020.04.017.
    1. Wang K., Chen W., Zhou Y.S., Lian J.Q., Zhang Z., Du P., Chen Z.N. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. BioRxiv. 2020;11:632.
    1. Zhou Z., Kang H., Li S., Zhao X. Understanding the neurotropic characteristics of SARS-CoV-2: From neurological manifestations of COVID-19 to potential neurotropic mechanisms. J. Neurol. 2020;267:2179–2184. doi: 10.1007/s00415-020-09929-7.
    1. Amirian E.S. Potential fecal transmission of SARS-CoV-2: Current evidence and implications for public health. Int. J. Infect. Dis. 2020;95:363–370. doi: 10.1016/j.ijid.2020.04.057.
    1. Keyhanian K., Umeton R.P., Mohit B., Davoudi V., Hajighasemi F., Ghasemi M. SARS-CoV-2 and nervous system: From pathogenesis to clinical manifestation. J. Neuroimmunol. 2021;350:577436. doi: 10.1016/j.jneuroim.2020.577436.
    1. Rao S., Singh M. The Newly Detected B. 1.1. 529 (Omicron) Variant of SARS-CoV-2 With Multiple Mutations: Implications for transmission, diagnostics, therapeutics, and immune evasion. DHR Proc. 2021;1:7–10. doi: 10.47488/dhrp.v1iS5.35.
    1. Samaranayake L.P., Fakhruddin K.S., Panduwawala C. Sudden onset, acute loss of taste and smell in coronavirus disease 2019 (COVID-19): A systematic review. Acta Odontol. Scand. 2020;78:467–473. doi: 10.1080/00016357.2020.1787505.
    1. Whitcroft K.L., Hummel T. Olfactory dysfunction in COVID-19: Diagnosis and management. JAMA. 2020;323:2512–2514. doi: 10.1001/jama.2020.8391.
    1. Lechien J.R., Chiesa-Estomba C.M., De Siati D.R., Horoi M., Le Bon S.D., Rodriguez A., Saussez S. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): A multicenter European study. Eur. Arch. Oto-Rhino-Laryngol. 2020;277:2251–2261. doi: 10.1007/s00405-020-05965-1.
    1. Brann D.H., Tsukahara T., Weinreb C., Lipovsek M., Van den Berge K., Gong B., Datta S.R. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci. Adv. 2020;6:eabc5801. doi: 10.1126/sciadv.abc5801.
    1. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395:507–513. doi: 10.1016/S0140-6736(20)30211-7.
    1. Baig A.M., Khaleeq A., Ali U., Syeda H. Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci. 2020;11:995–998. doi: 10.1021/acschemneuro.0c00122.
    1. Mao L., Jin H., Wang M., Hu Y., Chen S., He Q., Hu B. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77:683–690. doi: 10.1001/jamaneurol.2020.1127.
    1. García-Azorín D., Martínez-Pías E., Trigo J., Hernández-Pérez I., Valle-Peñacoba G., Talavera B., Arenillas J.F. Neurological comorbidity is a predictor of death in COVID-19 disease: A cohort study on 576 patients. Front. Neurol. 2020;11:781. doi: 10.3389/fneur.2020.00781.
    1. Favas T.T., Dev P., Chaurasia R.N., Chakravarty K., Mishra R., Joshi D., Pathak A. Neurological manifestations of COVID-19: A systematic review and meta-analysis of proportions. Neurol. Sci. 2020;1:34. doi: 10.1007/s10072-020-04801-y.
    1. Rahimi K. Guillain-Barre syndrome during COVID-19 pandemic: An overview of the reports. Neurol. Sci. 2020;18:118.
    1. Tiet M.Y., AlShaikh N. Guillain-Barré syndrome associated with COVID-19 infection: A case from the UK. BMJ Case Rep. CP. 2020;13:e236536. doi: 10.1136/bcr-2020-236536.
    1. Ray A. Miller Fisher syndrome and COVID-19: Is there a link? BMJ Case Rep. CP. 2020;13:e236419. doi: 10.1136/bcr-2020-236419.
    1. Assini A., Benedetti L., Di Maio S., Schirinzi E., Del Sette M. New clinical manifestation of COVID-19 related Guillain-Barrè syndrome highly responsive to intravenous immunoglobulins: Two Italian cases. Neurol. Sci. 2020;41:1657–1658. doi: 10.1007/s10072-020-04484-5.
    1. Yoshikawa K., Kuwahara M., Morikawa M., Fukumoto Y., Yamana M., Yamagishi Y., Kusunoki S. Varied antibody reactivities and clinical relevance in anti-GQ1b antibody–related diseases. Neurol.-Neuroimmunol. Neuroinflammation. 2018;5:1452. doi: 10.1212/NXI.0000000000000501.
    1. Moriguchi T., Harii N., Goto J., Harada D., Sugawara H., Takamino J., Shimada S. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int. J. Infect. Dis. 2020;94:55–58. doi: 10.1016/j.ijid.2020.03.062.
    1. Huang Y.H., Jiang D., Huang J.T. SARS-CoV-2 detected in cerebrospinal fluid by PCR in a case of COVID-19 encephalitis. Brain Behav. Immun. 2020;87:149. doi: 10.1016/j.bbi.2020.05.012.
    1. Cariddi L.P., Damavandi P.T., Carimati F., Banfi P., Clemenzi A., Marelli M., Versino M. Reversible encephalopathy syndrome (PRES) in a COVID-19 patient. J. Neurol. 2020;267:3157–3160. doi: 10.1007/s00415-020-10001-7.
    1. Zachariadis A., Tulbu A., Strambo D., Dumoulin A., Di Virgilio G. Transverse myelitis related to COVID-19 infection. J. Neurol. 2020;267:3459–3461. doi: 10.1007/s00415-020-09997-9.
    1. Proal A.D., VanElzakker M.B. Long COVID or post-acute sequelae of COVID-19 (PASC): An overview of biological factors that may contribute to persistent symptoms. Front. Microbiol. 2021;12:1494. doi: 10.3389/fmicb.2021.698169.

Source: PubMed

3
구독하다