Exercise Training and Cardiac Rehabilitation in COVID-19 Patients with Cardiovascular Complications: State of Art

Mariaconsiglia Calabrese, Marina Garofano, Roberta Palumbo, Paola Di Pietro, Carmine Izzo, Antonio Damato, Eleonora Venturini, Severino Iesu, Nicola Virtuoso, Andrea Strianese, Michele Ciccarelli, Gennaro Galasso, Carmine Vecchione, Mariaconsiglia Calabrese, Marina Garofano, Roberta Palumbo, Paola Di Pietro, Carmine Izzo, Antonio Damato, Eleonora Venturini, Severino Iesu, Nicola Virtuoso, Andrea Strianese, Michele Ciccarelli, Gennaro Galasso, Carmine Vecchione

Abstract

Recent scientific literature has investigated the cardiovascular implications of COVID-19. The mechanisms of cardiovascular damage seem to involve the protein angiotensin-converting enzyme 2 (ACE2), to which severe acute respiratory syndrome (SARS) coronavirus-2 (CoV-2) binds to penetrate cells and other mechanisms, most of which are still under study. Cardiovascular sequelae of COVID-19 include heart failure, cardiomyopathy, acute coronary syndrome, arrhythmias, and venous thromboembolism. This article aims to collect scientific evidence by exploiting PubMed, Scopus, and Pedro databases to highlight the cardiovascular complications of COVID-19 and to define the physiotherapy treatment recommended for these patients. Exercise training (ET), an important part of cardiac rehabilitation, is a powerful tool in physiotherapy, capable of inducing significant changes in the cardiovascular system and functional in the recovery of endothelial dysfunction and for the containment of thromboembolic complications. In conclusion, due to the wide variety of possible exercise programs that can be obtained by combining intensity, duration, and speed in various ways, and by adjusting the program based on continuous patient monitoring, exercise training is well suited to the treatment of post-COVID patients with an impaired cardiovascular system of various degrees.

Keywords: COVID-19; cardiovascular; rehabilitation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Schematic representation of the renin–angiotensin system and the function of the Mas receptor. Abbreviations: AT1, angiotensin II type 1 receptor; AT2, angiotensin II type 2 receptor; ACE, angiotensin-converting enzyme; ACE2, angiotensin-converting enzyme 2.

References

    1. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., Xiang J., Wang Y., Song B., Gu X., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020;395:1054–1062. doi: 10.1016/S0140-6736(20)30566-3.
    1. Ruan Q., Yang K., Wang W., Jiang L., Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46:846–848. doi: 10.1007/s00134-020-05991-x.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Wu Z., McGoogan J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020 doi: 10.1001/jama.2020.2648.
    1. Zeng Z., Yu H., Chen H., Qi W., Chen L., Chen G., Yan W., Chen T., Ning Q., Han M., et al. Longitudinal changes of inflammatory parameters and their correlation with disease severity and outcomes in patients with COVID-19 from Wuhan, China. Crit. Care. 2020;24:525. doi: 10.1186/s13054-020-03255-0.
    1. Manson J.J., Crooks C., Naja M., Ledlie A., Goulden B., Liddle T., Khan E., Mehta P., Martin-Gutierrez L., Waddington K.E., et al. COVID-19-associated hyperinflammation and escalation of patient care: A retrospective longitudinal cohort study. Lancet Rheumatol. 2020;2:e594–e602. doi: 10.1016/S2665-9913(20)30275-7.
    1. Bektas A., Schurman S.H., Franceschi C., Ferrucci L. A public health perspective of aging: Do hyper-inflammatory syndromes such as COVID-19, SARS, ARDS, cytokine storm syndrome, and post-ICU syndrome accelerate short- and long-term inflammaging? Immun. Ageing. 2020;17:23. doi: 10.1186/s12979-020-00196-8.
    1. Zheng Y.Y., Ma Y.T., Zhang J.Y., Xie X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020;17:259–260. doi: 10.1038/s41569-020-0360-5.
    1. Li F., Li W., Farzan M., Harrison S.C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 2005;309:1864–1868. doi: 10.1126/science.1116480.
    1. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7.
    1. Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181:281–292.e286. doi: 10.1016/j.cell.2020.02.058.
    1. Du L., He Y., Zhou Y., Liu S., Zheng B.J., Jiang S. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Nat. Rev. Microbiol. 2009;7:226–236. doi: 10.1038/nrmicro2090.
    1. Siu Y.L., Teoh K.T., Lo J., Chan C.M., Kien F., Escriou N., Tsao S.W., Nicholls J.M., Altmeyer R., Peiris J.S., et al. The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J. Virol. 2008;82:11318–11330. doi: 10.1128/JVI.01052-08.
    1. Cui J., Li F., Shi Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019;17:181–192. doi: 10.1038/s41579-018-0118-9.
    1. Li W., Moore M.J., Vasilieva N., Sui J., Wong S.K., Berne M.A., Somasundaran M., Sullivan J.L., Luzuriaga K., Greenough T.C., et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–454. doi: 10.1038/nature02145.
    1. Dijkman R., Jebbink M.F., Deijs M., Milewska A., Pyrc K., Buelow E., van der Bijl A., van der Hoek L. Replication-dependent downregulation of cellular angiotensin-converting enzyme 2 protein expression by human coronavirus NL63. J. Gen. Virol. 2012;93:1924–1929. doi: 10.1099/vir.0.043919-0.
    1. Zhang H., Penninger J.M., Li Y., Zhong N., Slutsky A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46:586–590. doi: 10.1007/s00134-020-05985-9.
    1. Tan W., Aboulhosn J. The cardiovascular burden of coronavirus disease 2019 (COVID-19) with a focus on congenital heart disease. Int. J. Cardiol. 2020;309:70–77. doi: 10.1016/j.ijcard.2020.03.063.
    1. Varga Z., Flammer A.J., Steiger P., Haberecker M., Andermatt R., Zinkernagel A.S., Mehra M.R., Schuepbach R.A., Ruschitzka F., Moch H. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395:1417–1418. doi: 10.1016/S0140-6736(20)30937-5.
    1. Cheng Y., Luo R., Wang K., Zhang M., Wang Z., Dong L., Li J., Yao Y., Ge S., Xu G. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97:829–838. doi: 10.1016/j.kint.2020.03.005.
    1. Gu J., Han B., Wang J. COVID-19: Gastrointestinal Manifestations and Potential Fecal-Oral Transmission. Gastroenterology. 2020;158:1518–1519. doi: 10.1053/j.gastro.2020.02.054.
    1. Li B., Yang J., Zhao F., Zhi L., Wang X., Liu L., Bi Z., Zhao Y. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin. Res. Cardiol. 2020;109:531–538. doi: 10.1007/s00392-020-01626-9.
    1. South A.M., Tomlinson L., Edmonston D., Hiremath S., Sparks M.A. Controversies of renin-angiotensin system inhibition during the COVID-19 pandemic. Nat. Rev. Nephrol. 2020;16:305–307. doi: 10.1038/s41581-020-0279-4.
    1. South A.M., Diz D.I., Chappell M.C. COVID-19, ACE2, and the cardiovascular consequences. Am. J. Physiol. Heart Circ. Physiol. 2020;318:H1084–H1090. doi: 10.1152/ajpheart.00217.2020.
    1. Zhang C., Zhao Y.X., Zhang Y.H., Zhu L., Deng B.P., Zhou Z.L., Li S.Y., Lu X.T., Song L.L., Lei X.M., et al. Angiotensin-converting enzyme 2 attenuates atherosclerotic lesions by targeting vascular cells. Proc. Natl. Acad. Sci. USA. 2010;107:15886–15891. doi: 10.1073/pnas.1001253107.
    1. Dong B., Zhang C., Feng J.B., Zhao Y.X., Li S.Y., Yang Y.P., Dong Q.L., Deng B.P., Zhu L., Yu Q.T., et al. Overexpression of ACE2 enhances plaque stability in a rabbit model of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2008;28:1270–1276. doi: 10.1161/ATVBAHA.108.164715.
    1. Hitomi H., Kiyomoto H., Nishiyama A. Angiotensin II and oxidative stress. Curr. Opin. Cardiol. 2007;22:311–315. doi: 10.1097/HCO.0b013e3281532b53.
    1. Masi S., Uliana M., Virdis A. Angiotensin II and vascular damage in hypertension: Role of oxidative stress and sympathetic activation. Vascul Pharmacol. 2019;115:13–17. doi: 10.1016/j.vph.2019.01.004.
    1. Ciaglia E., Vecchione C., Puca A.A. COVID-19 Infection and Circulating ACE2 Levels: Protective Role in Women and Children. Front. Pediatr. 2020;8:206. doi: 10.3389/fped.2020.00206.
    1. Vaduganathan M., Vardeny O., Michel T., McMurray J.J.V., Pfeffer M.A., Solomon S.D. Renin-Angiotensin-Aldosterone System Inhibitors in Patients with Covid-19. N. Engl. J. Med. 2020;382:1653–1659. doi: 10.1056/NEJMsr2005760.
    1. Cohen J.B., Hanff T.C., Corrales-Medina V., William P., Renna N., Rosado-Santander N.R., Rodriguez-Mori J.E., Spaak J., Andrade-Villanueva J., Chang T.I., et al. Randomized elimination and prolongation of ACE inhibitors and ARBs in coronavirus 2019 (REPLACE COVID) Trial Protocol. J. Clin. Hypertens. (Greenwich) 2020;22:1780–1788. doi: 10.1111/jch.14011.
    1. Lopes R.D., Macedo A.V.S., de Barros E.S.P.G.M., Moll-Bernardes R.J., Dos Santos T.M., Mazza L., Feldman A., D’Andrea Saba Arruda G., de Albuquerque D.C., Camiletti A.S., et al. Effect of Discontinuing vs Continuing Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers on Days Alive and Out of the Hospital in Patients Admitted With COVID-19: A Randomized Clinical Trial. JAMA. 2021;325:254–264. doi: 10.1001/jama.2020.25864.
    1. Nakamura S., Imamura T., Okamoto K. Tissue factor in neutrophils: Yes. J. Thromb. Haemost. 2004;2:214–217. doi: 10.1111/j.1538-7836.2004.00548.x.
    1. Ding Y., Wang H., Shen H., Li Z., Geng J., Han H., Cai J., Li X., Kang W., Weng D., et al. The clinical pathology of severe acute respiratory syndrome (SARS): A report from China. J. Pathol. 2003;200:282–289. doi: 10.1002/path.1440.
    1. Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y., Xie C., Ma K., Shang K., Wang W., et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. 2020;71:762–768. doi: 10.1093/cid/ciaa248.
    1. Bansal M. Cardiovascular disease and COVID-19. Diabetes Metab. Syndr. 2020;14:247–250. doi: 10.1016/j.dsx.2020.03.013.
    1. Amodio G., Moltedo O., Fasano D., Zerillo L., Oliveti M., Di Pietro P., Faraonio R., Barone P., Pellecchia M.T., De Rosa A., et al. PERK-Mediated Unfolded Protein Response Activation and Oxidative Stress in PARK20 Fibroblasts. Front. Neurosci. 2019;13:673. doi: 10.3389/fnins.2019.00673.
    1. Caggiano R., Cattaneo F., Moltedo O., Esposito G., Perrino C., Trimarco B., Ammendola R., Faraonio R. miR-128 Is Implicated in Stress Responses by Targeting MAFG in Skeletal Muscle Cells. Oxid. Med. Cell Longev. 2017;2017:9308310. doi: 10.1155/2017/9308310.
    1. Guo T., Fan Y., Chen M., Wu X., Zhang L., He T., Wang H., Wan J., Wang X., Lu Z. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19) JAMA Cardiol. 2020 doi: 10.1001/jamacardio.2020.1017.
    1. Mogensen T.H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 2009;22:240–273. doi: 10.1128/CMR.00046-08.
    1. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Wang B., Xiang H., Cheng Z., Xiong Y., et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323:1061–1069. doi: 10.1001/jama.2020.1585.
    1. Shi S., Qin M., Shen B., Cai Y., Liu T., Yang F., Gong W., Liu X., Liang J., Zhao Q., et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5:802–810. doi: 10.1001/jamacardio.2020.0950.
    1. Inciardi R.M., Lupi L., Zaccone G., Italia L., Raffo M., Tomasoni D., Cani D.S., Cerini M., Farina D., Gavazzi E., et al. Cardiac Involvement in a Patient With Coronavirus Disease 2019 (COVID-19) JAMA Cardiol. 2020;5:819–824. doi: 10.1001/jamacardio.2020.1096.
    1. Fleet J.C., Clinton S.K., Salomon R.N., Loppnow H., Libby P. Atherogenic diets enhance endotoxin-stimulated interleukin-1 and tumor necrosis factor gene expression in rabbit aortae. J. Nutr. 1992;122:294–305. doi: 10.1093/jn/122.2.294.
    1. Hu H., Ma F., Wei X., Fang Y. Coronavirus fulminant myocarditis treated with glucocorticoid and human immunoglobulin. Eur. Heart J. 2021;42:206. doi: 10.1093/eurheartj/ehaa190.
    1. Tomasoni D., Italia L., Adamo M., Inciardi R.M., Lombardi C.M., Solomon S.D., Metra M. COVID-19 and heart failure: From infection to inflammation and angiotensin II stimulation. Searching for evidence from a new disease. Eur. J. Heart Fail. 2020;22:957–966. doi: 10.1002/ejhf.1871.
    1. Giustino G., Croft L.B., Oates C.P., Rahman K., Lerakis S., Reddy V.Y., Goldman M. Takotsubo Cardiomyopathy in COVID-19. J. Am. Coll. Cardiol. 2020;76:628–629. doi: 10.1016/j.jacc.2020.05.068.
    1. Shah R.M., Shah M., Shah S., Li A., Jauhar S. Takotsubo Syndrome and COVID-19: Associations and Implications. Curr. Probl. Cardiol. 2021;46:100763. doi: 10.1016/j.cpcardiol.2020.100763.
    1. Arentz M., Yim E., Klaff L., Lokhandwala S., Riedo F.X., Chong M., Lee M. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. JAMA. 2020;323:1612–1614. doi: 10.1001/jama.2020.4326.
    1. Driggin E., Madhavan M.V., Bikdeli B., Chuich T., Laracy J., Biondi-Zoccai G., Brown T.S., Der Nigoghossian C., Zidar D.A., Haythe J., et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J. Am. Coll. Cardiol. 2020;75:2352–2371. doi: 10.1016/j.jacc.2020.03.031.
    1. Tsao C.W., Strom J.B., Chang J.D., Manning W.J. COVID-19-Associated Stress (Takotsubo) Cardiomyopathy. Circ. Cardiovasc. Imaging. 2020;13:e011222. doi: 10.1161/CIRCIMAGING.120.011222.
    1. Oudit G.Y., Kassiri Z., Jiang C., Liu P.P., Poutanen S.M., Penninger J.M., Butany J. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur. J. Clin. Investig. 2009;39:618–625. doi: 10.1111/j.1365-2362.2009.02153.x.
    1. Hendren N.S., Drazner M.H., Bozkurt B., Cooper L.T., Jr. Description and Proposed Management of the Acute COVID-19 Cardiovascular Syndrome. Circulation. 2020;141:1903–1914. doi: 10.1161/CIRCULATIONAHA.120.047349.
    1. Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J., Hlh Across Speciality Collaboration U.K. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–1034. doi: 10.1016/S0140-6736(20)30628-0.
    1. Mann D.L. Innate immunity and the failing heart: The cytokine hypothesis revisited. Circ. Res. 2015;116:1254–1268. doi: 10.1161/CIRCRESAHA.116.302317.
    1. Mangalmurti N., Hunter C.A. Cytokine Storms: Understanding COVID-19. Immunity. 2020;53:19–25. doi: 10.1016/j.immuni.2020.06.017.
    1. Madjid M., Safavi-Naeini P., Solomon S.D., Vardeny O. Potential Effects of Coronaviruses on the Cardiovascular System: A Review. JAMA Cardiol. 2020 doi: 10.1001/jamacardio.2020.1286.
    1. Chen T., Wu D., Chen H., Yan W., Yang D., Chen G., Ma K., Xu D., Yu H., Wang H., et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ. 2020;368:m1091. doi: 10.1136/bmj.m1091.
    1. Tersalvi G., Vicenzi M., Calabretta D., Biasco L., Pedrazzini G., Winterton D. Elevated Troponin in Patients With Coronavirus Disease 2019: Possible Mechanisms. J. Card. Fail. 2020;26:470–475. doi: 10.1016/j.cardfail.2020.04.009.
    1. Bader F., Manla Y., Atallah B., Starling R.C. Heart failure and COVID-19. Heart Fail Rev. 2021;26:1–10. doi: 10.1007/s10741-020-10008-2.
    1. Long B., Brady W.J., Koyfman A., Gottlieb M. Cardiovascular complications in COVID-19. Am. J. Emerg. Med. 2020;38:1504–1507. doi: 10.1016/j.ajem.2020.04.048.
    1. Bonow R.O., Fonarow G.C., O’Gara P.T., Yancy C.W. Association of Coronavirus Disease 2019 (COVID-19) With Myocardial Injury and Mortality. JAMA Cardiol. 2020 doi: 10.1001/jamacardio.2020.1105.
    1. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020;18:844–847. doi: 10.1111/jth.14768.
    1. Wang Y.D., Zhang S.P., Wei Q.Z., Zhao M.M., Mei H., Zhang Z.L., Hu Y. COVID-19 complicated with DIC: 2 cases report and literatures review. Zhonghua Xue Ye Xue Za Zhi. 2020;41:245–247. doi: 10.3760/cma.j.issn.0253-2727.2020.0001.
    1. Gawalko M., Kaplon-Cieslicka A., Hohl M., Dobrev D., Linz D. COVID-19 associated atrial fibrillation: Incidence, putative mechanisms and potential clinical implications. Int. J. Cardiol. Heart Vasc. 2020;30:100631. doi: 10.1016/j.ijcha.2020.100631.
    1. Si D., Du B., Ni L., Yang B., Sun H., Jiang N., Liu G., Masse S., Jin L., Nanthakumar J., et al. Death, discharge and arrhythmias among patients with COVID-19 and cardiac injury. CMAJ. 2020;192:E791–E798. doi: 10.1503/cmaj.200879.
    1. Babapoor-Farrokhran S., Rasekhi R.T., Gill D., Babapoor S., Amanullah A. Arrhythmia in COVID-19. SN Compr. Clin. Med. 2020:1–6. doi: 10.1007/s42399-020-00454-2.
    1. Liu K., Fang Y.Y., Deng Y., Liu W., Wang M.F., Ma J.P., Xiao W., Wang Y.N., Zhong M.H., Li C.H., et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin. Med. J. (Engl.) 2020;133:1025–1031. doi: 10.1097/CM9.0000000000000744.
    1. Guo Y.R., Cao Q.D., Hong Z.S., Tan Y.Y., Chen S.D., Jin H.J., Tan K.S., Wang D.Y., Yan Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil. Med. Res. 2020;7:11. doi: 10.1186/s40779-020-00240-0.
    1. Chen C., Zhou Y., Wang D.W. SARS-CoV-2: A potential novel etiology of fulminant myocarditis. Herz. 2020;45:230–232. doi: 10.1007/s00059-020-04909-z.
    1. Miesbach W., Makris M. COVID-19: Coagulopathy, Risk of Thrombosis, and the Rationale for Anticoagulation. Clin. Appl. Thromb. Hemost. 2020;26:1076029620938149. doi: 10.1177/1076029620938149.
    1. Al-Ani F., Chehade S., Lazo-Langner A. Thrombosis risk associated with COVID-19 infection. A scoping review. Thromb. Res. 2020;192:152–160. doi: 10.1016/j.thromres.2020.05.039.
    1. Zhang L., Yan X., Fan Q., Liu H., Liu X., Liu Z., Zhang Z. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J. Thromb. Haemost. 2020;18:1324–1329. doi: 10.1111/jth.14859.
    1. Lillicrap D. Disseminated intravascular coagulation in patients with 2019-nCoV pneumonia. J. Thromb. Haemost. 2020;18:786–787. doi: 10.1111/jth.14781.
    1. Thomas P., Baldwin C., Bissett B., Boden I., Gosselink R., Granger C.L., Hodgson C., Jones A.Y., Kho M.E., Moses R., et al. Physiotherapy management for COVID-19 in the acute hospital setting: Clinical practice recommendations. J. Physiother. 2020;66:73–82. doi: 10.1016/j.jphys.2020.03.011.
    1. Cardiovascular A.A.O., Rehabilitation P. Guidelines for Cardiac Rehabilitation and Secondary Prevention Programs. 4th ed. Human Kinetics; Champaign, IL, USA: 2004.
    1. Kamiya K., Hamazaki N., Matsue Y., Mezzani A., Corra U., Matsuzawa R., Nozaki K., Tanaka S., Maekawa E., Noda C., et al. Gait speed has comparable prognostic capability to six-minute walk distance in older patients with cardiovascular disease. Eur. J. Prev. Cardiol. 2018;25:212–219. doi: 10.1177/2047487317735715.
    1. Klok F.A., Kruip M., van der Meer N.J.M., Arbous M.S., Gommers D., Kant K.M., Kaptein F.H.J., van Paassen J., Stals M.A.M., Huisman M.V., et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb. Res. 2020;191:148–150. doi: 10.1016/j.thromres.2020.04.041.
    1. Cui S., Chen S., Li X., Liu S., Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J. Thromb. Haemost. 2020;18:1421–1424. doi: 10.1111/jth.14830.
    1. Celis-Morales C.A., Welsh P., Lyall D.M., Steell L., Petermann F., Anderson J., Iliodromiti S., Sillars A., Graham N., Mackay D.F., et al. Associations of grip strength with cardiovascular, respiratory, and cancer outcomes and all cause mortality: Prospective cohort study of half a million UK Biobank participants. BMJ. 2018;361:k1651. doi: 10.1136/bmj.k1651.
    1. Chinese Association of Rehabilitation Medicine. Respiratory Rehabilitation Committee of Chinese Association of Rehabilitation Medicine. Cardiopulmonary Rehabilitation Group of Chinese Society of Physical Medicine. Rehabilitation Recommendations for respiratory rehabilitation of coronavirus disease 2019 in adult. Zhonghua Jie He He Hu Xi Za Zhi. 2020;43:308–314. doi: 10.3760/cma.j.cn112147-20200228-00206.
    1. O’Neill D., Forman D.E. The importance of physical function as a clinical outcome: Assessment and enhancement. Clin. Cardiol. 2020;43:108–117. doi: 10.1002/clc.23311.
    1. Smith S.C., Jr., Allen J., Blair S.N., Bonow R.O., Brass L.M., Fonarow G.C., Grundy S.M., Hiratzka L., Jones D., Krumholz H.M., et al. AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update: Endorsed by the National Heart, Lung, and Blood Institute. Circulation. 2006;113:2363–2372. doi: 10.1161/CIRCULATIONAHA.106.174516.
    1. Thomas R.J., King M., Lui K., Oldridge N., Pina I.L., Spertus J., Measures A.T.F.O.P. AACVPR/ACCF/AHA 2010 Update: Performance measures on cardiac rehabilitation for referral to cardiac rehabilitation/secondary prevention services: A report of the American Association of Cardiovascular and Pulmonary Rehabilitation and the American College of Cardiology Foundation/American Heart Association Task Force on Performance Measures (Writing Committee to Develop Clinical Performance Measures for Cardiac Rehabilitation) J. Cardiopulm. Rehabi. Prev. 2010;30:279–288. doi: 10.1097/HCR.0b013e3181f5e36f.
    1. Ribeiro F., Alves A.J., Duarte J.A., Oliveira J. Is exercise training an effective therapy targeting endothelial dysfunction and vascular wall inflammation? Int. J. Cardiol. 2010;141:214–221. doi: 10.1016/j.ijcard.2009.09.548.
    1. Guizoni D.M., Dorighello G.G., Oliveira H.C., Delbin M.A., Krieger M.H., Davel A.P. Aerobic exercise training protects against endothelial dysfunction by increasing nitric oxide and hydrogen peroxide production in LDL receptor-deficient mice. J. Transl. Med. 2016;14:213. doi: 10.1186/s12967-016-0972-z.
    1. Qiu S., Cai X., Yin H., Sun Z., Zugel M., Steinacker J.M., Schumann U. Exercise training and endothelial function in patients with type 2 diabetes: A meta-analysis. Cardiovasc. Diabetol. 2018;17:64. doi: 10.1186/s12933-018-0711-2.
    1. Ashor A.W., Lara J., Siervo M., Celis-Morales C., Mathers J.C. Effects of exercise modalities on arterial stiffness and wave reflection: A systematic review and meta-analysis of randomized controlled trials. PLoS ONE. 2014;9:e110034. doi: 10.1371/journal.pone.0110034.
    1. Lavie C.J., Arena R., Swift D.L., Johannsen N.M., Sui X., Lee D.C., Earnest C.P., Church T.S., O’Keefe J.H., Milani R.V., et al. Exercise and the cardiovascular system: Clinical science and cardiovascular outcomes. Circ. Res. 2015;117:207–219. doi: 10.1161/CIRCRESAHA.117.305205.
    1. Brito L.C., Queiroz A.C., Forjaz C.L. Influence of population and exercise protocol characteristics on hemodynamic determinants of post-aerobic exercise hypotension. Braz. J. Med. Biol. Res. 2014;47:626–636. doi: 10.1590/1414-431x20143832.
    1. Cornelissen V.A., Fagard R.H. Exercise intensity and postexercise hypotension. J. Hypertens. 2004;22:1859–1861. doi: 10.1097/00004872-200410000-00004.
    1. Arias-Fernandez P., Romero-Martin M., Gomez-Salgado J., Fernandez-Garcia D. Rehabilitation and early mobilization in the critical patient: Systematic review. J. Phys. Sci. 2018;30:1193–1201. doi: 10.1589/jpts.30.1193.
    1. Mitranun W., Deerochanawong C., Tanaka H., Suksom D. Continuous vs interval training on glycemic control and macro- and microvascular reactivity in type 2 diabetic patients. Scand J. Med. Sci. Sports. 2014;24:e69–e76. doi: 10.1111/sms.12112.
    1. Jones H., Taylor C.E., Lewis N.C., George K., Atkinson G. Post-exercise blood pressure reduction is greater following intermittent than continuous exercise and is influenced less by diurnal variation. Chronobiol. Int. 2009;26:293–306. doi: 10.1080/07420520902739717.
    1. Boff W., da Silva A.M., Farinha J.B., Rodrigues-Krause J., Reischak-Oliveira A., Tschiedel B., Punales M., Bertoluci M.C. Superior Effects of High-Intensity Interval vs. Moderate-Intensity Continuous Training on Endothelial Function and Cardiorespiratory Fitness in Patients With Type 1 Diabetes: A Randomized Controlled Trial. Front. Physiol. 2019;10:450. doi: 10.3389/fphys.2019.00450.
    1. Molmen-Hansen H.E., Stolen T., Tjonna A.E., Aamot I.L., Ekeberg I.S., Tyldum G.A., Wisloff U., Ingul C.B., Stoylen A. Aerobic interval training reduces blood pressure and improves myocardial function in hypertensive patients. Eur. J. Prev. Cardiol. 2012;19:151–160. doi: 10.1177/1741826711400512.
    1. Lopez P., Pinto R.S., Radaelli R., Rech A., Grazioli R., Izquierdo M., Cadore E.L. Benefits of resistance training in physically frail elderly: A systematic review. Aging Clin. Exp. Res. 2018;30:889–899. doi: 10.1007/s40520-017-0863-z.
    1. Casonatto J., Goessler K.F., Cornelissen V.A., Cardoso J.R., Polito M.D. The blood pressure-lowering effect of a single bout of resistance exercise: A systematic review and meta-analysis of randomised controlled trials. Eur. J. Prev. Cardiol. 2016;23:1700–1714. doi: 10.1177/2047487316664147.
    1. Yamamoto S., Hotta K., Ota E., Mori R., Matsunaga A. Effects of resistance training on muscle strength, exercise capacity, and mobility in middle-aged and elderly patients with coronary artery disease: A meta-analysis. J. Cardiol. 2016;68:125–134. doi: 10.1016/j.jjcc.2015.09.005.
    1. Kelley G.A., Kelley K.S. Progressive resistance exercise and resting blood pressure: A meta-analysis of randomized controlled trials. Hypertension. 2000;35:838–843. doi: 10.1161/01.HYP.35.3.838.
    1. Faria T.O., Angeli J.K., Mello L.G.M., Pinto G.C., Stefanon I., Vassallo D.V., Lizardo J.H.F. A Single Resistance Exercise Session Improves Aortic Endothelial Function in Hypertensive Rats. Arq. Bras. Cardiol. 2017;108:228–236. doi: 10.5935/abc.20170023.
    1. Abd El-Kader S.M., Al-Shreef F.M., Al-Jiffri O.H. Impact of aerobic exercise versus resisted exercise on endothelial activation markers and inflammatory cytokines among elderly. Afr. Health Sci. 2019;19:2874–2880. doi: 10.4314/ahs.v19i4.9.
    1. Zhao H.M., Xie Y.X., Wang C., Chinese Association of Rehabilitation Medicine. Respiratory Rehabilitation Committee of Chinese Association of Rehabilitation Medicine. Cardiopulmonary Rehabilitation Group of Chinese Society of Physical Medicine. Rehabilitation Recommendations for respiratory rehabilitation in adults with coronavirus disease 2019. Chin. Med. J. (Engl.) 2020;133:1595–1602. doi: 10.1097/CM9.0000000000000848.
    1. Yang L.L., Yang T. Pulmonary rehabilitation for patients with coronavirus disease 2019 (COVID-19) Chronic Dis. Transl. Med. 2020;6:79–86. doi: 10.1016/j.cdtm.2020.05.002.
    1. Russomanno G., Corbi G., Manzo V., Ferrara N., Rengo G., Puca A.A., Latte S., Carrizzo A., Calabrese M.C., Andriantsitohaina R., et al. The anti-ageing molecule sirt1 mediates beneficial effects of cardiac rehabilitation. Immun. Ageing. 2017;14:7. doi: 10.1186/s12979-017-0088-1.
    1. Williams M.A., Ades P.A., Hamm L.F., Keteyian S.J., LaFontaine T.P., Roitman J.L., Squires R.W. Clinical evidence for a health benefit from cardiac rehabilitation: An update. Am. Heart J. 2006;152:835–841. doi: 10.1016/j.ahj.2006.05.015.
    1. Hambrecht R., Wolf A., Gielen S., Linke A., Hofer J., Erbs S., Schoene N., Schuler G. Effect of exercise on coronary endothelial function in patients with coronary artery disease. N. Engl. J. Med. 2000;342:454–460. doi: 10.1056/NEJM200002173420702.
    1. Belardinelli R., Georgiou D., Cianci G., Purcaro A. 10-year exercise training in chronic heart failure: A randomized controlled trial. J. Am. Coll. Cardiol. 2012;60:1521–1528. doi: 10.1016/j.jacc.2012.06.036.
    1. Ades P.A., Green N.M., Coello C.E. Effects of exercise and cardiac rehabilitation on cardiovascular outcomes. Cardiol. Clin. 2003;21:435–448. doi: 10.1016/S0733-8651(03)00056-0.
    1. Radak Z., Chung H.Y., Koltai E., Taylor A.W., Goto S. Exercise, oxidative stress and hormesis. Ageing Res. Rev. 2008;7:34–42. doi: 10.1016/j.arr.2007.04.004.
    1. Nystoriak M.A., Bhatnagar A. Cardiovascular Effects and Benefits of Exercise. Front. Cardiovasc. Front. Cardiovasc. Med. 2018;5:135. doi: 10.3389/fcvm.2018.00135.
    1. Pelliccia A., Fagard R., Bjornstad H.H., Anastassakis A., Arbustini E., Assanelli D., Biffi A., Borjesson M., Carre F., Corrado D., et al. Recommendations for competitive sports participation in athletes with cardiovascular disease: A consensus document from the Study Group of Sports Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology. Eur. Heart J. 2005;26:1422–1445. doi: 10.1093/eurheartj/ehi325.
    1. Pelliccia A., Solberg E.E., Papadakis M., Adami P.E., Biffi A., Caselli S., La Gerche A., Niebauer J., Pressler A., Schmied C.M., et al. Recommendations for participation in competitive and leisure time sport in athletes with cardiomyopathies, myocarditis, and pericarditis: Position statement of the Sport Cardiology Section of the European Association of Preventive Cardiology (EAPC) Eur. Heart J. 2019;40:19–33. doi: 10.1093/eurheartj/ehy730.
    1. O’Keefe J.H., Patil H.R., Lavie C.J., Magalski A., Vogel R.A., McCullough P.A. Potential adverse cardiovascular effects from excessive endurance exercise. Mayo Clin. Proc. 2012;87:587–595. doi: 10.1016/j.mayocp.2012.04.005.
    1. Laddu D.R., Rana J.S., Murillo R., Sorel M.E., Quesenberry C.P., Jr., Allen N.B., Gabriel K.P., Carnethon M.R., Liu K., Reis J.P., et al. 25-Year Physical Activity Trajectories and Development of Subclinical Coronary Artery Disease as Measured by Coronary Artery Calcium: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. Mayo Clin. Proc. 2017;92:1660–1670. doi: 10.1016/j.mayocp.2017.07.016.
    1. Roberts W.O., Schwartz R.S., Garberich R.F., Carlson S., Knickelbine T., Schwartz J.G., Peichel G., Lesser J.R., Wickstrom K., Harris K.M. Fifty Men, 3510 Marathons, Cardiac Risk Factors, and Coronary Artery Calcium Scores. Med. Sci. Sports Exerc. 2017;49:2369–2373. doi: 10.1249/MSS.0000000000001373.
    1. Merghani A., Maestrini V., Rosmini S., Cox A.T., Dhutia H., Bastiaenan R., David S., Yeo T.J., Narain R., Malhotra A., et al. Prevalence of Subclinical Coronary Artery Disease in Masters Endurance Athletes With a Low Atherosclerotic Risk Profile. Circulation. 2017;136:126–137. doi: 10.1161/CIRCULATIONAHA.116.026964.
    1. Aengevaeren V.L., Mosterd A., Braber T.L., Prakken N.H.J., Doevendans P.A., Grobbee D.E., Thompson P.D., Eijsvogels T.M.H., Velthuis B.K. Relationship Between Lifelong Exercise Volume and Coronary Atherosclerosis in Athletes. Circulation. 2017;136:138–148. doi: 10.1161/CIRCULATIONAHA.117.027834.
    1. Conti V., Corbi G., Russomanno G., Simeon V., Ferrara N., Filippelli W., Limongelli F., Canonico R., Grasso C., Stiuso P., et al. Oxidative stress effects on endothelial cells treated with different athletes’ sera. Med. Sci. Sports Exerc. 2012;44:39–49. doi: 10.1249/MSS.0b013e318227f69c.
    1. Doughty K.N., Del Pilar N.X., Audette A., Katz D.L. Lifestyle Medicine and the Management of Cardiovascular Disease. Curr Cardiol. Rep. 2017;19:116. doi: 10.1007/s11886-017-0925-z.
    1. Karjalainen J.J., Kiviniemi A.M., Hautala A.J., Piira O.P., Lepojarvi E.S., Perkiomaki J.S., Junttila M.J., Huikuri H.V., Tulppo M.P. Effects of physical activity and exercise training on cardiovascular risk in coronary artery disease patients with and without type 2 diabetes. Diabetes Care. 2015;38:706–715. doi: 10.2337/dc14-2216.
    1. Miura Y., Fukumoto Y., Miura T., Shimada K., Asakura M., Kadokami T., Ando S., Miyata S., Sakata Y., Daida H., et al. Impact of physical activity on cardiovascular events in patients with chronic heart failure. A multicenter prospective cohort study. Circ. J. 2013;77:2963–2972. doi: 10.1253/circj.CJ-13-0746.
    1. Chen C.H., Chen Y.J., Tu H.P., Huang M.H., Jhong J.H., Lin K.L. Benefits of exercise training and the correlation between aerobic capacity and functional outcomes and quality of life in elderly patients with coronary artery disease. Kaohsiung J. Med. Sci. 2014;30:521–530. doi: 10.1016/j.kjms.2014.08.004.
    1. Hammill B.G., Curtis L.H., Schulman K.A., Whellan D.J. Relationship between cardiac rehabilitation and long-term risks of death and myocardial infarction among elderly Medicare beneficiaries. Circulation. 2010;121:63–70. doi: 10.1161/CIRCULATIONAHA.109.876383.
    1. Vitacca M., Carone M., Clini E.M., Paneroni M., Lazzeri M., Lanza A., Privitera E., Pasqua F., Gigliotti F., Castellana G., et al. Joint Statement on the Role of Respiratory Rehabilitation in the COVID-19 Crisis: The Italian Position Paper. Respiration. 2020;99:493–499. doi: 10.1159/000508399.
    1. Lewis L.K., Williams M.T., Olds T.S. The active cycle of breathing technique: A systematic review and meta-analysis. Respir. Med. 2012;106:155–172. doi: 10.1016/j.rmed.2011.10.014.
    1. Ozalp O., Inal-Ince D., Cakmak A., Calik-Kutukcu E., Saglam M., Savci S., Vardar-Yagli N., Arikan H., Karakaya J., Coplu L. High-intensity inspiratory muscle training in bronchiectasis: A randomized controlled trial. Respirology. 2019;24:246–253. doi: 10.1111/resp.13397.
    1. Postiaux G., LENS E. La kinésithérapie respiratoire guidée par l’auscultation pulmonaire actualisée: Bases méthodologiques et technologiques. Cah. De Kinésithérapie. 1992;156:57–66.
    1. Lazzeri M., Lanza A., Bellini R., Bellofiore A., Cecchetto S., Colombo A., D’Abrosca F., Del Monaco C., Gaudiello G., Paneroni M., et al. Respiratory physiotherapy in patients with COVID-19 infection in acute setting: A Position Paper of the Italian Association of Respiratory Physiotherapists (ARIR) Monaldi. Arch. Chest. Dis. 2020;90 doi: 10.4081/monaldi.2020.1285.
    1. Respiratory Care Committee of Chinese Thoracic Society Expert consensus on preventing nosocomial transmission during respiratory care for critically ill patients infected by 2019 novel coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za Zhi. 2020;43:288–296. doi: 10.3760/cma.j.cn112147-20200304-00239.
    1. Lim W.S., Anderson S.R., Read R.C. Hospital management of adults with severe acute respiratory syndrome (SARS) if SARS re-emerges--updated 10 February 2004. J. Infect. 2004;49:1–7. doi: 10.1016/j.jinf.2004.04.001.
    1. Boldrini P., Bernetti A., Fiore P., SIMFER Executive Committee Impact of COVID-19 outbreak on rehabilitation services and Physical and Rehabilitation Medicine physicians’ activities in Italy. An official document of the Italian PRM Society (SIMFER) Eur. J. Phys. Rehabil. Med. 2020;56:316–318. doi: 10.23736/S1973-9087.20.06256-5.
    1. Blair J., Corrigall H., Angus N.J., Thompson D.R., Leslie S. Home versus hospital-based cardiac rehabilitation: A systematic review. Rural Remote Health. 2011;11:1532.
    1. Clark R.A., Conway A., Poulsen V., Keech W., Tirimacco R., Tideman P. Alternative models of cardiac rehabilitation: A systematic review. Eur. J. Prev. Cardiol. 2015;22:35–74. doi: 10.1177/2047487313501093.
    1. Scalvini S., Zanelli E., Comini L., Tomba M.D., Troise G., Giordano A. Home-based exercise rehabilitation with telemedicine following cardiac surgery. J. Telemed. Telecare. 2009;15:297–301. doi: 10.1258/jtt.2009.090208.
    1. Busch C., Baumbach C., Willemsen D., Nee O., Gorath T., Hein A., Scheffold T. Supervised training with wireless monitoring of ECG, blood pressure and oxygen-saturation in cardiac patients. J. Telemed. Telecare. 2009;15:112–114. doi: 10.1258/jtt.2009.003002.
    1. Piotrowicz E., Piepoli M.F., Jaarsma T., Lambrinou E., Coats A.J., Schmid J.P., Corra U., Agostoni P., Dickstein K., Seferovic P.M., et al. Telerehabilitation in heart failure patients: The evidence and the pitfalls. Int. J. Cardiol. 2016;220:408–413. doi: 10.1016/j.ijcard.2016.06.277.
    1. Frederix I., Vanhees L., Dendale P., Goetschalckx K. A review of telerehabilitation for cardiac patients. J. Telemed. Telecare. 2015;21:45–53. doi: 10.1177/1357633X14562732.
    1. Sumner J., Harrison A., Doherty P. The effectiveness of modern cardiac rehabilitation: A systematic review of recent observational studies in non-attenders versus attenders. PLoS ONE. 2017;12:e0177658. doi: 10.1371/journal.pone.0177658.
    1. Luisi M.L., Biffi B., Gheri C.F., Sarli E., Rafanelli E., Graziano E., Vidali S., Fattirolli F., Gensini G.F., Macchi C. Efficacy of a nutritional education program to improve diet in patients attending a cardiac rehabilitation program: Outcomes of a one-year follow-up. Intern. Emerg. Med. 2015;10:671–676. doi: 10.1007/s11739-015-1211-y.
    1. Thachil J. The versatile heparin in COVID-19. J. Thromb. Haemost. 2020;18:1020–1022. doi: 10.1111/jth.14821.
    1. Leisman D.E., Deutschman C.S., Legrand M. Facing COVID-19 in the ICU: Vascular dysfunction, thrombosis, and dysregulated inflammation. Intensive Care Med. 2020;46:1105–1108. doi: 10.1007/s00134-020-06059-6.
    1. Lodigiani C., Iapichino G., Carenzo L., Cecconi M., Ferrazzi P., Sebastian T., Kucher N., Studt J.D., Sacco C., Alexia B., et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb. Res. 2020;191:9–14. doi: 10.1016/j.thromres.2020.04.024.
    1. Bikdeli B., Madhavan M.V., Jimenez D., Chuich T., Dreyfus I., Driggin E., Nigoghossian C., Ageno W., Madjid M., Guo Y., et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020;75:2950–2973. doi: 10.1016/j.jacc.2020.04.031.
    1. Oxley T.J., Mocco J., Majidi S., Kellner C.P., Shoirah H., Singh I.P., De Leacy R.A., Shigematsu T., Ladner T.R., Yaeger K.A., et al. Large-Vessel Stroke as a Presenting Feature of Covid-19 in the Young. N. Engl. J. Med. 2020;382:e60. doi: 10.1056/NEJMc2009787.
    1. Lanza G.A., Golino M., Villano A., Lanza O., Lamendola P., Fusco A., Leggio M. Cardiac Rehabilitation and Endothelial Function. J. Clin. Med. 2020;9:2487. doi: 10.3390/jcm9082487.

Source: PubMed

3
구독하다