Dose-intensified chemotherapy alone or in combination with mogamulizumab in newly diagnosed aggressive adult T-cell leukaemia-lymphoma: a randomized phase II study

Takashi Ishida, Tatsuro Jo, Shigeki Takemoto, Hitoshi Suzushima, Kimiharu Uozumi, Kazuhito Yamamoto, Naokuni Uike, Yoshio Saburi, Kisato Nosaka, Atae Utsunomiya, Kensei Tobinai, Hiroshi Fujiwara, Kenji Ishitsuka, Shinichiro Yoshida, Naoya Taira, Yukiyoshi Moriuchi, Kazunori Imada, Toshihiro Miyamoto, Shiro Akinaga, Masao Tomonaga, Ryuzo Ueda, Takashi Ishida, Tatsuro Jo, Shigeki Takemoto, Hitoshi Suzushima, Kimiharu Uozumi, Kazuhito Yamamoto, Naokuni Uike, Yoshio Saburi, Kisato Nosaka, Atae Utsunomiya, Kensei Tobinai, Hiroshi Fujiwara, Kenji Ishitsuka, Shinichiro Yoshida, Naoya Taira, Yukiyoshi Moriuchi, Kazunori Imada, Toshihiro Miyamoto, Shiro Akinaga, Masao Tomonaga, Ryuzo Ueda

Abstract

This multicentre, randomized, phase II study was conducted to examine whether the addition of mogamulizumab, a humanized anti-CC chemokine receptor 4 antibody, to mLSG15, a dose-intensified chemotherapy, further increases efficacy without compromising safety of patients with newly diagnosed aggressive adult T-cell leukaemia-lymphoma (ATL). Patients were assigned 1:1 to receive mLSG15 plus mogamulizumab or mLSG15 alone. The primary endpoint was the complete response rate (%CR); secondary endpoints included the overall response rate (ORR) and safety. The %CR and ORR in the mLSG15-plus-mogamulizumab arm (n = 29) were 52% [95% confidence interval (CI), 33-71%] and 86%, respectively; the corresponding values in the mLSG15 arm (n = 24) were 33% (95% CI, 16-55%) and 75%, respectively. Grade ≥ 3 treatment-emergent adverse events, including anaemia, thrombocytopenia, lymphopenia, leucopenia and decreased appetite, were observed more frequently (≥10% difference) in the mLSG15-plus-mogamulizumab arm. Several adverse events, including skin disorders, cytomegalovirus infection, pyrexia, hyperglycaemia and interstitial lung disease, were observed only in the mLSG15-plus-mogamulizumab arm. Although the combination strategy showed a potentially less favourable safety profile, a higher %CR was achieved, providing the basis for further investigation of this novel treatment for newly diagnosed aggressive ATL. This study was registered at ClinicalTrials.gov, identifier: NCT01173887.

Keywords: CCR4; adult T-cell leukaemia-lymphoma; antibody therapy; mogamulizumab; randomized phase II study.

© 2015 The Authors. British Journal of Haematology published by John Wiley & Sons Ltd.

Figures

Figure 1
Figure 1
Treatment protocol. The mLSG15 protocol consists of three chemotherapeutic regimens, namely VCAP, AMP and VECP. Subjects assigned to the mLSG15‐plus‐mogamulizumab arm received up to eight infusions of mogamulizumab during four cycles of mLSG15. Cytarabine, methotrexate and prednisolone were intrathecally injected before initiation of VCAP administration in cycles 2 and 4. VCAP: vincristine, cyclophosphamide, doxorubicin, and prednisolone; AMP: doxorubicin, ranimustine, and prednisolone; VECP: vindesine, etoposide, carboplatin, and prednisolone; IV, intravenous; PO, per os (oral administration); IT, intrathecal; VCR, vincristine; CPA, cyclophosphamide; ADM, doxorubicin; PSL, prednisolone; MCNU, ranimustine; VDS, vindesine; ETP, etoposide; CBDCA, carboplatin; Ara‐C, cytarabine; MTX, methotrexate. *Before cycles 2 and 4 (Days −2 to −1). †After VCAP in Cycle 1 (Days 2 to 5). ‡Preceding VECP in Cycles 1–4 (Days 12 to 14). §Preceding VCAP in Cycles 2–4 (Days −3 to −1).
Figure 2
Figure 2
CONSORT diagram. Patients with newly diagnosed CC chemokine receptor 4 ‐positive aggressive adult T‐cell leukaemia‐lymphoma were assigned in a 1:1 ratio to receive treatment with mLSG15 plus mogamulizumab or mLSG15 alone. One patient assigned to the mLSG15 arm was withdrawn from the study, owing to the patient's treatment having to be deferred due to abnormal laboratory values that met the protocol criteria, and the patient was unable to wait for the protocol treatment due to deterioration of their general condition.
Figure 3
Figure 3
Progression‐free survival and overall survival. (A) Kaplan–Meier curve of estimated progression‐free survival (median, 8∙5 months and 6∙3 months in the mLSG15‐plus‐mogamulizumab and mLSG15 arms, respectively). (B) Kaplan–Meier curve of estimated overall survival (median, not achieved in either arm). The median follow‐up periods in the mLSG15‐plus‐mogamulizumab and mLSG15 arms were 413 days (range, 63–764 days) and 502 days (range, 62–794 days), respectively.
Figure 4
Figure 4
T‐cell subset analysis. Blood samples were taken (i) immediately before the initiation of treatment, (ii) immediately before VCAP therapy for cycle three, and (iii) 28 days after VECP therapy for cycle four. The numbers of CD4/CD25/CC chemokine receptor 4 (CCR4)‐positive cells (A) and CD4/CD25/FOXP3‐positive cells (B) are shown as box and whisker plots indicating the minimum, lower, median, upper quartile, and maximum values. The number of samples used for analysis at each point is indicated below the graph. The differences of each point [(ii) & (iii)] between the mLSG15‐plus‐mogamulizumab and mLSG15 arms are indicated as p‐values (Wilcoxon signed‐rank test) below the graphs. CCR4 was detected by using a monoclonal antibody (clone 1G1), with its binding to CCR4 being unaffected by the presence of mogamulizumab. VCAP: vincristine, cyclophosphamide, doxorubicin, and prednisolone; VECP: vindesine, etoposide, carboplatin, and prednisolone.

References

    1. Chihara, D. , Ito, H. , Matsuda, T. , Katanoda, K. , Shibata, A. , Taniguchi, S. , Utsunomiya, A. , Sobue, T. & Matsuo, K. (2013) Association between decreasing trend in the mortality of adult T‐cell leukemia/lymphoma and allogeneic hematopoietic stem cell transplants in Japan: analysis of Japanese vital statistics and Japan Society for Hematopoietic Cell Transplantation (JSHCT). Blood Cancer Journal, 3, e159.
    1. Hishizawa, M. , Kanda, J. , Utsunomiya, A. , Taniguchi, S. , Eto, T. , Moriuchi, Y. , Tanosaki, R. , Kawano, F. , Miyazaki, Y. , Masuda, M. , Nagafuji, K. , Hara, M. , Takanashi, M. , Kai, S. , Atsuta, Y. , Suzuki, R. , Kawase, T. , Matsuo, K. , Nagamura‐Inoue, T. , Kato, S. , Sakamaki, H. , Morishima, Y. , Okamura, J. , Ichinohe, T. & Uchiyama, T. (2010) Transplantation of allogeneic hematopoietic stem cells for adult T‐cell leukemia: a nationwide retrospective study. Blood, 116, 1369–1376.
    1. Ishida, T. & Ueda, R. (2011) Immunopathogenesis of lymphoma: focus on CCR4. Cancer Science, 102, 44–50.
    1. Ishida, T. , Utsunomiya, A. , Iida, S. , Inagaki, H. , Takatsuka, Y. , Kusumoto, S. , Takeuchi, G. , Shimizu, S. , Ito, M. , Komatsu, H. , Wakita, A. , Eimoto, T. , Matsushima, K. & Ueda, R. (2003) Clinical significance of CCR4 expression in adult T‐cell leukemia/lymphoma: its close association with skin involvement and unfavorable outcome. Clinical Cancer Research, 9, 3625–3634.
    1. Ishida, T. , Inagaki, H. , Utsunomiya, A. , Takatsuka, Y. , Komatsu, H. , Iida, S. , Takeuchi, G. , Eimoto, T. , Nakamura, S. & Ueda, R. (2004) CXC chemokine receptor 3 and CC chemokine receptor 4 expression in T‐cell and NK‐cell lymphomas with special reference to clinicopathological significance for peripheral T‐cell lymphoma, unspecified. Clinical Cancer Research, 10, 5494–5500.
    1. Ishida, T. , Hishizawa, M. , Kato, K. , Tanosaki, R. , Fukuda, T. , Taniguchi, S. , Eto, T. , Takatsuka, Y. , Miyazaki, Y. , Moriuchi, Y. , Hidaka, M. , Akashi, K. , Uike, N. , Sakamaki, H. , Morishima, Y. , Kato, K. , Suzuki, R. , Nishiyama, T. & Utsunomiya, A. (2012a) Allogeneic hematopoietic stem cell transplantation for adult T‐cell leukemia‐lymphoma with special emphasis on preconditioning regimen: a nationwide retrospective study. Blood, 120, 1734–1741.
    1. Ishida, T. , Joh, T. , Uike, N. , Yamamoto, K. , Utsunomiya, A. , Yoshida, S. , Saburi, Y. , Miyamoto, T. , Takemoto, S. , Suzushima, H. , Tsukasaki, K. , Nosaka, K. , Fujiwara, H. , Ishitsuka, K. , Inagaki, H. , Ogura, M. , Akinaga, S. , Tomonaga, M. , Tobinai, K. & Ueda, R. (2012b) Defucosylated anti‐CCR4 monoclonal antibody (KW‐0761) for relapsed adult T‐cell leukemia‐lymphoma: a multicenter phase II study. Journal of Clinical Oncology, 30, 837–842.
    1. Ishida, T. , Ito, A. , Sato, F. , Kusumoto, S. , Iida, S. , Inagaki, H. , Morita, A. , Akinaga, S. & Ueda, R. (2013) Stevens‐Johnson Syndrome associated with mogamulizumab treatment of adult T‐cell leukemia/lymphoma. Cancer Science, 104, 647–650.
    1. Ishii, T. , Ishida, T. , Utsunomiya, A. , Inagaki, A. , Yano, H. , Komatsu, H. , Iida, S. , Imada, K. , Uchiyama, T. , Akinaga, S. , Shitara, K. & Ueda, R. (2010) Defucosylated humanized anti‐CCR4 monoclonal antibody KW‐0761 as a novel immunotherapeutic agent for adult T‐cell leukemia/lymphoma. Clinical Cancer Research, 16, 1520–1531.
    1. Iwanaga, M. , Watanabe, T. & Yamaguchi, K. (2012) Adult T‐cell leukemia: a review of epidemiological evidence. Frontiers in Microbiology, 3, 322.
    1. Jacobs, J.F. , Nierkens, S. , Figdor, C.G. , de Vries, I.J. & Adema, G.J. (2012) Regulatory T cells in melanoma: the final hurdle towards effective immunotherapy? Lancet Oncology, 13, e32–e42.
    1. Matsuoka, M. & Jeang, K.T. (2007) Human T‐cell leukaemia virus type 1 (HTLV‐1) infectivity and cellular transformation. Nat Reviews Cancer, 7, 270–280.
    1. Michels‐van Amelsfort, J.M. , Walter, G.J. & Taams, L.S. (2011) CD4+ CD25+ regulatory T cells in systemic sclerosis and other rheumatic diseases. Expert Review of Clinical Immunology, 7, 499–514.
    1. Miyara, M. , Yoshioka, Y. , Kitoh, A. , Shima, T. , Wing, K. , Niwa, A. , Parizot, C. , Taflin, C. , Heike, T. , Valeyre, D. , Mathian, A. , Nakahata, T. , Yamaguchi, T. , Nomura, T. , Ono, M. , Amoura, Z. , Gorochov, G. & Sakaguchi, S. (2009) Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity, 30, 899–911.
    1. Nakagawa, M. , Nakagawa‐Oshiro, A. , Karnan, S. , Tagawa, H. , Utsunomiya, A. , Nakamura, S. , Takeuchi, I. , Ohshima, K. & Seto, M. (2009) Array comparative genomic hybridization analysis of PTCL‐U reveals a distinct subgroup with genetic alterations similar to lymphoma‐type adult T‐cell leukemia/lymphoma. Clinical Cancer Research, 15, 30–38.
    1. Ogata, M. , Satou, T. , Kawano, R. , Yoshikawa, T. , Ikewaki, J. , Kohno, K. , Ando, T. , Miyazaki, Y. , Ohtsuka, E. , Saburi, Y. , Kikuchi, H. , Saikawa, T. & Kadota, J. (2011) High incidence of cytomegalovirus, human herpesvirus‐6, and Epstein‐Barr virus reactivation in patients receiving cytotoxic chemotherapy for adult T cell leukemia. Journal of Medical Virology, 83, 702–709.
    1. Ogura, M. , Ishida, T. , Hatake, K. , Taniwaki, M. , Ando, K. , Tobinai, K. , Fujimoto, K. , Yamamoto, K. , Miyamoto, T. , Uike, N. , Tanimoto, M. , Tsukasaki, K. , Ishizawa, K. , Suzumiya, J. , Inagaki, H. , Tamura, K. , Akinaga, S. , Tomonaga, M. & Ueda, R. (2014) Multicenter phase II study of mogamulizumab (KW‐0761), a defucosylated anti‐cc chemokine receptor 4 antibody, in patients with relapsed peripheral T‐cell lymphoma and cutaneous T‐cell lymphoma. Journal of Clinical Oncology, 32, 1157–1163.
    1. Pocock, S.J. & Simon, R. (1975) Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial. Biometrics, 31, 103–115.
    1. Shimoyama, M. (1991) Diagnostic criteria and classification of clinical subtypes of adult T‐cell leukaemia‐lymphoma. A report from the Lymphoma Study Group (1984–87). British Journal of Haematology, 79, 428–437.
    1. Shinkawa, T. , Nakamura, K. , Yamane, N. , Shoji‐Hosaka, E. , Kanda, Y. , Sakurada, M. , Uchida, K. , Anazawa, H. , Satoh, M. , Yamasaki, M. , Hanai, N. & Shitara, K. (2003) The absence of fucose but not the presence of galactose or bisecting N‐acetylglucosamine of human IgG1 complex‐type oligosaccharides shows the critical role of enhancing antibody‐dependent cellular cytotoxicity. Journal of Biological Chemistry, 278, 3466–3473.
    1. Simon, R. , Wittes, R.E. & Ellenberg, S.S. (1985) Randomized phase II clinical trials. Cancer Treatment Reports, 69, 1375–1381.
    1. Sugiyama, D. , Nishikawa, H. , Maeda, Y. , Nishioka, M. , Tanemura, A. , Katayama, I. , Ezoe, S. , Kanakura, Y. , Sato, E. , Fukumori, Y. , Karbach, J. , Jäger, E. & Sakaguchi, S. (2013) Anti‐CCR4 mAb selectively depletes effector‐type FoxP3 CD4+ regulatory T cells, evoking antitumor immune responses in humans. Proceedings of the National Academy of Sciences of the United States of America, 110, 17945–17950.
    1. Tsukasaki, K. , Utsunomiya, A. , Fukuda, H. , Shibata, T. , Fukushima, T. , Takatsuka, Y. , Ikeda, S. , Masuda, M. , Nagoshi, H. , Ueda, R. , Tamura, K. , Sano, M. , Momita, S. , Yamaguchi, K. , Kawano, F. , Hanada, S. , Tobinai, K. , Shimoyama, M. , Hotta, T. & Tomonaga, M. (2007) VCAP‐AMP‐VECP compared with biweekly CHOP for adult T‐cell leukemia‐lymphoma: Japan Clinical Oncology Group Study JCOG9801. Journal of Clinical Oncology, 25, 5458–5464.
    1. Tsukasaki, K. , Hermine, O. , Bazarbachi, A. , Ratner, L. , Ramos, J.C. , Harrington, W. Jr , O'Mahony, D. , Janik, J.E. , Bittencourt, A.L. , Taylor, G.P. , Yamaguchi, K. , Utsunomiya, A. , Tobinai, K. & Watanabe, T. (2009) Definition, prognostic factors, treatment, and response criteria of adult T‐cell leukemia‐lymphoma: a proposal from an international consensus meeting. Journal of Clinical Oncology, 27, 453–459.
    1. Uchiyama, T. , Yodoi, J. , Sagawa, K. , Takatsuki, K. & Uchino, H. (1977) Adult T‐cell leukemia: clinical and hematologic features of 16 cases. Blood, 50, 481–492.
    1. Waldmann, T.A. , Greene, W.C. , Sarin, P.S. , Saxinger, C. , Blayney, D.W. , Blattner, W.A. , Goldman, C.K. , Bongiovanni, K. , Sharrow, S. & Depper, J.M. (1984) Functional and phenotypic comparison of human T cell leukemia/lymphoma virus positive adult T cell leukemia with human T cell leukemia/lymphoma virus negative Sézary leukemia, and their distinction using anti‐Tac. Monoclonal antibody identifying the human receptor for T cell growth factor. The Journal of Clinical Investigation, 73, 1711–1718.
    1. Yamada, Y. , Tomonaga, M. , Fukuda, H. , Hanada, S. , Utsunomiya, A. , Tara, M. , Sano, M. , Ikeda, S. , Takatsuki, K. , Kozuru, M. , Araki, K. , Kawano, F. , Niimi, M. , Tobinai, K. , Hotta, T. & Shimoyama, M. (2001) A new G‐CSF‐supported combination chemotherapy, LSG15, for adult T‐cell leukaemia‐lymphoma: Japan Clinical Oncology Group Study 9303. British Journal of Haematology, 113, 375–382.
    1. Yamamoto, K. , Utsunomiya, A. , Tobinai, K. , Tsukasaki, K. , Uike, N. , Uozumi, K. , Yamaguchi, K. , Yamada, Y. , Hanada, S. , Tamura, K. , Nakamura, S. , Inagaki, H. , Ohshima, K. , Kiyoi, H. , Ishida, T. , Matsushima, K. , Akinaga, S. , Ogura, M. , Tomonaga, M. & Ueda, R. (2010) Phase I study of KW‐0761, a defucosylated humanized anti‐CCR4 antibody, in relapsed patients with adult T‐cell leukemia‐lymphoma and peripheral T‐cell lymphoma. Journal of Clinical Oncology, 28, 1591–1598.
    1. Yano, H. , Ishida, T. , Inagaki, A. , Ishii, T. , Kusumoto, S. , Komatsu, H. , Iida, S. , Utsunomiya, A. & Ueda, R. (2007) Regulatory T‐cell function of adult T‐cell leukemia/lymphoma cells. International Journal of Cancer, 120, 2052–2057.
    1. Yoshie, O. , Fujisawa, R. , Nakayama, T. , Harasawa, H. , Tago, H. , Izawa, D. , Hieshima, K. , Tatsumi, Y. , Matsushima, K. , Hasegawa, H. , Kanamaru, A. , Kamihira, S. & Yamada, Y. (2002) Frequent expression of CCR4 in adult T‐cell leukemia and human T‐cell leukemia virus type 1‐transformed T cells. Blood, 99, 1505–1511.

Source: PubMed

3
구독하다