Effects of Cochlear Implantation on Binaural Hearing in Adults With Unilateral Hearing Loss

Emily Buss, Margaret T Dillon, Meredith A Rooth, English R King, Ellen J Deres, Craig A Buchman, Harold C Pillsbury, Kevin D Brown, Emily Buss, Margaret T Dillon, Meredith A Rooth, English R King, Ellen J Deres, Craig A Buchman, Harold C Pillsbury, Kevin D Brown

Abstract

A FDA clinical trial was carried out to evaluate the potential benefit of cochlear implant (CI) use for adults with unilateral moderate-to-profound sensorineural hearing loss. Subjects were 20 adults with moderate-to-profound unilateral sensorineural hearing loss and normal or near-normal hearing on the other side. A MED-EL standard electrode was implanted in the impaired ear. Outcome measures included: (a) sound localization on the horizontal plane (11 positions, -90° to 90°), (b) word recognition in quiet with the CI alone, and (c) masked sentence recognition with the target at 0° and the masker at -90°, 0°, or 90°. This battery was completed preoperatively and at 1, 3, 6, 9, and 12 months after CI activation. Normative data were also collected for 20 age-matched control subjects with normal or near-normal hearing bilaterally. The CI improved localization accuracy and reduced side bias. Word recognition with the CI alone was similar to performance of traditional CI recipients. The CI improved masked sentence recognition when the masker was presented from the front or from the side of normal or near-normal hearing. The binaural benefits observed with the CI increased between the 1- and 3-month intervals but appeared stable thereafter. In contrast to previous reports on localization and speech perception in patients with unilateral sensorineural hearing loss, CI benefits were consistently observed across individual subjects, and performance was at asymptote by the 3-month test interval. Cochlear implant settings, consistent CI use, and short duration of deafness could play a role in this result.

Keywords: localization; single-sided deafness; spatial hearing.

Figures

Figure 1.
Figure 1.
Unaided thresholds at the time of study enrollment. Pure-tone thresholds are plotted in dB HL as a function of frequency for individual CI recipients (left panel) and the NH controls (right panel). Symbols indicate thresholds for individual subjects. Circles show data for the normal or near-normal hearing ear, and diamonds show data for the ear with UHL. Thresholds shown for the NH control listeners were based on the ear with the higher mean threshold. Boxplots show the distribution of points: horizontal lines indicate the median, boxes span the 25th to 75th percentiles, and vertical lines span the 10th to 90th percentiles. CI = cochlear implant; UHL = unilateral hearing loss; NH = normal hearing.
Figure 2.
Figure 2.
CNC word scores across test intervals for CI recipients. Preoperative testing was performed with a hearing aid, and subsequent assessments were performed with the CI alone. The NH ear was masked at all intervals. Results are plotted in percent correct, and plotting conventions follow those of Figure 1. CNC = consonant-nucleus-consonant.
Figure 3.
Figure 3.
Distribution of AzBio sentence recognition scores as a function of masker position in units of percent correct. The abscissa indicates the position of the masker; data obtained for the masker at −90° and 90° for the NH control group were randomly assigned as control data for the NH side and the CI side. Horizontal lines indicate the median, boxes span the 25th to 75th percentiles, vertical lines span the 10th to 90th percentiles, and circles indicate the minimum and maximum values. Box shading reflects the subject group and follow-up interval (for the CI recipients). Within each condition, boxes are ordered by the time point of data collection (preoperative on the left, 12-month on the right), with NH control data on the far right of each cluster. For the CI recipients, preoperative data were collected unaided, and postoperative data were collected with the CI. CI = cochlear implant; NH = normal hearing.
Figure 4.
Figure 4.
Derived statistics characterizing localization performance as a function of test interval, with unaided performance indicated at the preoperative interval and performance with the CI indicated for postoperative intervals. Values for the NH control group are shown at the far right of each panel. (a) Overall RMS error, with points representing values for individual subjects. (b) The distribution of side bias, with positive values indicating a bias to localize sound on the side of the NH ear, and negative numbers reflecting a bias to localize sound on the CI side. The side representing the NH ear was randomly selected for the NH control group. CI = cochlear implant; NH = normal hearing.

References

    1. Arndt S., Aschendorff A., Laszig R., Beck R., Schild C., Kroeger S., Wesarg T. (2010) Comparison of pseudobinaural hearing to real binaural hearing rehabilitation after cochlear implantation in patients wtih unilateral deafness adn tinnitus. Otology & Neurotology 32: 39–47. doi:10.1097/MAO.0b013e3181fcf271.
    1. Bernstein J. G., Iyer N., Brungart D. S. (2015) Release from informational masking in a monaural competing-speech task with vocoded copies of the maskers presented contralaterally. The Journal of Acoustical Society of America 137: 702–713. doi:10.1121/1.4906167.
    1. Bernstein L. R., Trahiotis C. (2016) Behavioral manifestations of audiometrically-defined “slight” or “hidden” hearing loss revealed by measures of binaural detection. The Journal of Acoustical Society of America 140: 3540–3548. doi:10.1121/1.4966113.
    1. Bronkhorst A. W. (2015) The cocktail-party problem revisited: Early processing and selection of multi-talker speech. Attenion, Perception, & Psychophysics 77: 1465–1487. doi:10.3758/s13414-015-0882-9.
    1. Buchman C. A., Dillon M. T., King E. R., Adunka M. C., Adunka O. F., Pillsbury H. C. (2014) Influence of cochlear implant insertion depth on performance: A prospective randomized trial. Otology & Neurotology 35: 1773–1779. doi:10.1097/MAO.0000000000000541.
    1. Buss E., Pillsbury H. C., Buchman C. A., Pillsbury C. H., Clark M. S., Haynes D. S., Barco A. L. (2008) Multicenter U.S. bilateral MED-EL cochlear implantation study: Speech perception over the first year of use. Ear and Hearing 29: 20–32. doi:10.1097/AUD.0b013e31815d7467.
    1. Clopton B. M., Silverman M. S. (1977) Plasticity of binaural interaction. II. Critical period and changes in midline response. Journal of Neurophysiology 40: 1275–1280. doi:10.1152/jn.1977.40.6.1275.
    1. Desmet J. B., Wouters K., De Bodt M., Van de Heyning P. (2012) Comparison of 2 implantable bone conduction devices in patients with single-sided deafness using a daily alternating method. Otology & Neurotology 33: 1018–1026. doi:10.1097/MAO.0b013e31825e79ba.
    1. Dillon M. T., Buss E., Anderson M. L., King E. R., Deres E. J., Buchman C. A., Pillsbury H. C. (2017. a) Cochlear implantation in cases of unilateral hearing loss: Initial localization abilities. Ear and Hearing 38: 611–619. doi:10.1097/AUD.0000000000000430.
    1. Dillon M. T., Buss E., Rooth M. A., King E. R., Deres E. J., Buchman C. A., Brown K. D. (2017. b) Effects of cochlear implantation on quality of life in patients with unilateral hearing loss. Audiology and Neurootology 22: 259–271. doi:10.1159/000484079.
    1. Dorman M. F., Loiselle L., Stohl J., Yost W. A., Spahr A., Brown C., Cook S. (2014) Interaural level differences and sound source localization for bilateral cochlear implant patients. Ear and Hearing 35: 633–640. doi:10.1097/AUD.0000000000000057.
    1. Dunn C. C., Tyler R. S., Witt S. A. (2005) Benefit of wearing a hearing aid on the unimplanted ear in adult users of a cochlear implant. Journal of Speech, Language, and Hearing Research 48: 668–680. doi:10.1044/1092-4388((2005/046).
    1. Dwyer N. Y., Firszt J. B., Reeder R. M. (2014) Effects of unilateral input and mode of hearing in the better ear: Self-reported performance using the speech, spatial and qualities of hearing scale. Ear and Hearing 35: 126–136. doi:10.1097/AUD.0b013e3182a3648b.
    1. Eapen R. J., Buss E., Adunka M. C., Pillsbury H. C., Buchman C. A. (2009) Hearing-in-noise benefits after bilateral simultaneous cochlear implantation continue to improve 4 years after implantation. Otology & Neurotology 30: 153–159. doi:10.1097/MAO.0b013e3181925025.
    1. Finke M., Bonitz H., Lyxell B., Illg A. (2017. a) Cochlear implant effectiveness in postlingual single-sided deaf individuals: What's the point? International Journal of Audiology 56: 417–423. doi:10.1080/14992027.2017.1296595.
    1. Finke M., Strauss-Schier A., Kludt E., Büchner A., Illg A. (2017. b) Speech intelligibility and subjective benefit in single-sided deaf adults after cochlear implantation. Hearing Research 348: 112–119. doi:10.1016/j.heares.2017.03.002.
    1. Firszt J. B., Reeder R. M., Holden L. K. (2017) Unilateral hearing loss: Understanding speech recognition and localization variability-implications for cochlear implant candidacy. Ear and Hearing 38: 159–173. doi:10.1097/AUD.0000000000000380.
    1. Friedmann D. R., Ahmed O. H., McMenomey S. O., Shapiro W. H., Waltzman S. B., Roland J. T. (2016) Single-sided deafness cochlear implantation: Candidacy, evaluation, and outcomes in children and adults. Otology & Neurotology 37: e154–e160. doi:10.1097/MAO.0000000000000951.
    1. Gartrell B. C., Jones H. G., Kan A., Buhr-Lawler M., Gubbels S. P., Litovsky R. Y. (2014) Investigating long-term effects of cochlear implantation in single-sided deafness: A best practice model for longitudinal assessment of spatial hearing abilities and tinnitus handicap. Otology & Neurotology 35: 1525–1532. doi:10.1097/MAO.0000000000000437.
    1. Gifford R. H., Grantham D. W., Sheffield S. W., Davis T. J., Dwyer R., Dorman M. F. (2014) Localization and interaural time difference (ITD) thresholds for cochlear implant recipients with preserved acoustic hearing in the implanted ear. Hearing Research 312: 28–37. doi:10.1016/j.heares.2014.02.007.
    1. Grantham D. W., Ashmead D. H., Haynes D. S., Hornsby B. W., Labadie R. F., Ricketts T. A. (2012) Horizontal plane localization in single-sided deaf adults fitted with a bone-anchored hearing aid (BAHA). Ear and Hearing 33: 595–603. doi:10.1097/AUD.0b013e3182503e5e.
    1. Grantham D. W., Ashmead D. H., Ricketts T. A., Labadie R. F., Haynes D. S. (2007) Horizontal-plane localization of noise and speech signals by postlingually deafened adults fitted with bilateral cochlear implants. Ear and Hearing 28: 524–541. doi:10.1097/AUD.0b013e31806dc21a.
    1. Grossmann W., Brill S., Moeltner A., Mlynski R., Hagen R., Radeloff A. (2016) Cochlear implantation improves spatial release from masking and restores localization abilities in single-sided deaf patients. Otology & Neurotology 37: 658–664. doi:10.1097/MAO.0000000000001043.
    1. Hansen M. R., Gantz B. J., Dunn C. (2013) Outcomes after cochlear implantation for patients with single-sided deafness, including those with recalcitrant Meniere's disease. Otology & Neurotology 34: 1681–1687. doi:10.1097/MAO.0000000000000102.
    1. Hoth S., Rosli-Khabas M., Herisanu I., Plinkert P. K., Praetorius M. (2016) Cochlear implantation in recipients with single-sided deafness: Audiological performance. Cochlear Implants International 17: 190–199. doi:10.1080/14670100.2016.1176778.
    1. Ihlefeld A., Litovsky R. Y. (2012) Interaural level differences do not suffice for restoring spatial release from masking in simulated cochlear implant listening. PLoS One 7: 1–9. doi:10.1371/journal.pone.0045296.
    1. Jones H., Kan A., Litovsky R. Y. (2014) Comparing sound localization deficits in bilateral cochlear-implant users and vocoder simulations with normal-hearing listeners. Trends in Hearing 18: pii:2331216514554574 doi:10.1177/2331216514554574.
    1. Kan A., Stoelb C., Litovsky R. Y., Goupell M. J. (2013) Effect of mismatched place-of-stimulation on binaural fusion and lateralization in bilateral cochlear-implant users. The Journal of Acoustical Society of America 134: 2923–2936. doi:10.1121/1.4820889.
    1. Keating P., King A. J. (2013) Developmental plasticity of spatial hearing following asymmetric hearing loss: Context-dependent cue integration and its clinical implications. Frontiers in Systems Neuroscience 7: 1–20. doi:10.3389/fnsys.2013.00123.
    1. Kitterick P. T., Lucas L. (2016) Predicting speech perception outcomes following cochlear implantation in adults with unilateral deafness or highly asymmetric hearing loss. Cochlear Implants International 17(Suppl 1): 51–54. doi:10.1080/14670100.2016.1155806.
    1. Kitterick P. T., Smith S. N., Lucas L. (2016) Hearing instruments for unilateral severe-to-profound sensorineural hearing loss in adults: A systematic review and meta-analysis. Ear and Hearing 37: 495–507. doi:10.1097/AUD.0000000000000313.
    1. Kral A., Heid S., Hubka P., Tillein J. (2013. a) Unilateral hearing during development: Hemispheric specificity in plastic reorganizations. Frontiers in Systems Neuroscience 7: 93 doi:10.3389/fnsys.2013.00093.
    1. Kral A., Hubka P., Heid S., Tillein J. (2013. b) Single-sided deafness leads to unilateral aural preference within an early sensitive period. Brain 136: 180–193. doi:10.1093/brain/aws305.
    1. Kral A., Hubka P., Tillein J. (2015) Strengthening of hearing ear representation reduces binaural sensitivity in early single-sided deafness. Audiology and Neurotology 20(Suppl 1): 7–12. doi:10.1159/000380742.
    1. Landsberger D. M., Svrakic M., Roland J. T., Jr, Svirsky M. (2015) The relationship between insertion angles, default frequency allocations, and spiral ganglion place pitch in cochlear implants. Ear and Hearing 36: e207–e213. doi:10.1097/AUD.0000000000000163.
    1. Lin F. R., Niparko J. K., Ferrucci L. (2011) Hearing loss prevalence in the United States. Archives of Internal Medicine 171: 1851–1852. doi:10.1001/archinternmed.2011.506.
    1. Linstrom C. J., Silverman C. A., Yu G. P. (2009) Efficacy of the bone-anchored hearing aid for single-sided deafness. Laryngoscope 119: 713–720. doi:10.1002/lary.20164.
    1. Litovsky R. Y., Parkinson A., Arcaroli J. (2009) Spatial hearing and speech intelligibility in bilateral cochlear implant users. Ear and Hearing 30: 419–431. doi:10.1097/AUD.0b013e3181a165be.
    1. Ma N., Morris S., Kitterick P. T. (2016) Benefits to speech perception in noise from the binaural integration of electric and acoustic signals in simulated unilateral deafness. Ear and Hearing 37: 248–259. doi:10.1097/AUD.0000000000000252.
    1. Maslin M. R., Munro K. J., El-Deredy W. (2013) Source analysis reveals plasticity in the auditory cortex: Evidence for reduced hemispheric asymmetries following unilateral deafness. Clinical Neurophysiology 124: 391–399. doi:10.1016/j.clinph.2012.07.016.
    1. Mertens G., De Bodt M., Van de Heyning P. (2017) Evaluation of long-term cochlear implant use in subjects with acquired unilateral profound hearing loss: Focus on binaural auditory outcomes. Ear and Hearing 38: 117–125. doi:10.1097/AUD.0000000000000359.
    1. Mertens G., Punte A. K., De Bodt M., Van de Heyning P. (2015) Binaural auditory outcomes in patients with postlingual profound unilateral hearing loss: 3 years after cochlear implantation. Audiology and Neuro-Otology 20: 67–72. doi:10.1159/000380751.
    1. Moore D. R., Irvine D. R. (1981) Plasticity of binaural interaction in the cat inferior colliculus. Brain Research 208: 198–202. doi:10.1016/0006-8993((81)90632-6.
    1. Morera C., Cavalle L., Manrique M., Huarte A., Angel R., Osorio A., Morera-Ballester C. (2012) Contralateral hearing aid use in cochlear implanted patients: Multicenter study of bimodal benefit. Acta Otolaryngologica 132: 1084–1094. doi:10.3109/00016489.2012.677546.
    1. Nawaz S., McNeill C., Greenberg S. L. (2014) Improving sound localization after cochlear implantation and auditory training for the management of single-sided deafness. Otology & Neurotology 35: 271–276. doi:10.1097/MAO.0000000000000257.
    1. Peters J. P., Smit A. L., Stegeman I., Grolman W. (2015) Review: Bone conduction devices and contralateral routing of sound systems in single-sided deafness. Laryngoscope 125: 218–226. doi:10.1002/lary.24865.
    1. Peterson G. E., Lehiste I. (1962) Revised CNC lists for auditory tests. The Journal of Speech and Hearing Disorders 27: 62–70. doi:10.1044/jshd.2701.62.
    1. Pinheiro, J., Bates, D., & DebRoy, S., et al. (2016). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–125, .
    1. Plant K., Babic L. (2016) Utility of bilateral acoustic hearing in combination with electrical stimulation provided by the cochlear implant. International Journal of Audiology 55(Suppl 2): S31–S38. doi:10.3109/14992027.2016.1150609.
    1. Plant K., McDermott H., van Hoesel R., Dawson P., Cowan R. (2016) Factors predicting postoperative unilateral and bilateral speech recognition in adult cochlear implant recipients with acoustic hearing. Ear and Hearing 37: 153–163. doi:10.1097/AUD.0000000000000233.
    1. Ponton C. W., Vasama J. P., Tremblay K., Khosla D., Kwong B., Don M. (2001) Plasticity in the adult human central auditory system: Evidence from late-onset profound unilateral deafness. Hearing Research 154: 32–44. doi:10.1016/S0378-5955(01)00214-3.
    1. Potts L. G., Skinner M. W., Litovsky R. A., Strube M. J., Kuk F. (2009) Recognition and localization of speech by adult cochlear implant recipients wearing a digital hearing aid in the nonimplanted ear (bimodal hearing). Journal of the American Academy of Audiology 20: 353–373. doi:10.3766/jaaa.20.6.4.
    1. Pross S. E., Chang J. L., Mizuiri D., Findlay A. M., Nagarajan S. S., Cheung S. W. (2015) Temporal cortical plasticity in single-sided deafness: A functional imaging study. Otology & Neurotology 36: 1443–1449. doi:10.1097/MAO.0000000000000821.
    1. R Core Team (2016) R: A language and environment for statistical computing, Vienna, Austria: R Foundation for Statistical Computing.
    1. Rana B., Buchholz J. M., Morgan C., Sharma M., Weller T., Konganda S. A., Kawano A. (2017) Bilateral versus unilateral cochlear implantation in adult listeners: Speech-on-speech masking and multitalker localization. Trends in Hearing 21: pii:2331216517722106 doi:10.1177/2331216517722106.
    1. Reiss L. A., Turner C. W., Karsten S. A., Gantz B. J. (2014) Plasticity in human pitch perception induced by tonotopically mismatched electro-acoustic stimulation. Neuroscience 256: 43–52. doi:10.1016/j.neuroscience.2013.10.024.
    1. Ricketts T., Grantham D. W., D'Haese P., Edwards J., Barco A. (2006) Cochlear implant speech processor placement and compression effects on sound sensitivity and interaural level difference. Journal of the American Academy of Audiology 17: 133–140. doi:10.3766/jaaa.17.2.5.
    1. Rothpletz A. M., Wightman F. L., Kistler D. J. (2012) Informational masking and spatial hearing in listeners with and without unilateral hearing loss. Journal of Speech, Language, and Hearing Research 55: 511–531. doi:10.1044/1092-4388((2011/10-0205).
    1. Saroul N., Akkari M., Pavier Y., Gilain L., Mom T. (2013) Long-term benefit and sound localization in patients with single-sided deafness rehabilitated with an osseointegrated bone-conduction device. Otology & Neurotology 34: 111–114. doi:10.1097/MAO.0b013e31827a2020.
    1. Scherf F. W., Arnold L. P. (2014) Exploring the clinical approach to the bimodal fitting of hearing aids and cochlear implants: Results of an international survey. Acta Otolaryngologica 134: 1151–1157. doi:10.3109/00016489.2014.914244.
    1. Schoof T., Green T., Faulkner A., Rosen S. (2013) Advantages from bilateral hearing in speech perception in noise with simulated cochlear implants and residual acoustic hearing. The Journal of Acoustical Society of America 133: 1017–1030. doi:10.1121/1.4773274.
    1. Shub D. E., Carr S. P., Kong Y., Colburn H. S. (2008) Discrimination and identification of azimuth using spectral shape. The Journal of Acoustical Society of America 124: 3132–3141. doi:10.1121/1.2981634.
    1. Silverman M. S., Clopton B. M. (1977) Plasticity of binaural interaction. I. Effect of early auditory deprivation. Journal of Neurophysiology 40: 1266–1274. doi:10.1152/jn.1977.40.6.1266.
    1. Sladen D. P., Frisch C. D., Carlson M. L., Driscoll C. L., Torres J. H., Zeitler D. M. (2016) Cochlear implantation for single-sided deafness: A multicenter study. Laryngoscope 127: 223–228. doi:10.1002/lary.26102.
    1. Sladen D. P., Zappler A. (2015) Older and younger adult cochlear implant users: Speech recognition in quiet and noise, quality of life, and music perception. American Journal of Audiology 24: 31–39. doi:10.1044/2014_AJA-13-0066.
    1. Slattery W. H., 3rd, Middlebrooks J. C. (1994) Monaural sound localization: Acute versus chronic unilateral impairment. Hearing Research 75: 38–46. doi:10.1016/0378-5955(94)90053-1.
    1. Smulders Y. E., van Zon A., Stegeman I., Rinia A. B., Van Zanten G. A., Stokroos R. J., Grolman W. (2016) Comparison of bilateral and unilateral cochlear implantation in adults: A randomized clinical trial. JAMA Otolaryngology: Head & Neck Surgery 142: 249–256. doi:10.1001/jamaoto.2015.3305.
    1. Spahr A. J., Dorman M. F., Litvak L. M., Van Wie S., Gifford R. H., Loizou P. C., Cook S. (2012) Development and validation of the AzBio sentence lists. Ear and Hearing 33: 112–117. doi:10.1097/AUD.0b013e31822c2549.
    1. Studebaker G. A. (1985) A “rationalized” arcsine transform. Journal of Speech and Hearing Research 28: 455–462. doi:10.1044/jshr.2803.455.
    1. Suneel D., Staisloff H., Shayman C. S., Stelmach J., Aronoff J. M. (2017) Localization performance correlates with binaural fusion for interaurally mismatched vocoded speech. The Journal of Acoustical Society of America 142: EL276 doi:10.1121/1.5001903.
    1. Svirsky M. A., Talavage T. M., Sinha S., Neuburger H., Azadpour M. (2015) Gradual adaptation to auditory frequency mismatch. Hearing Research 322: 163–170. doi:10.1016/j.heares.2014.10.008.
    1. Tavora-Vieira D., Boisvert I., McMahon C. M., Maric V., Rajan G. P. (2013. a) Successful outcomes of cochlear implantation in long-term unilateral deafness: Brain plasticity? Neuroreport 24: 724–729. doi:10.1097/WNR.0b013e3283642a93.
    1. Tavora-Vieira D., De Ceulaer G., Govaerts P. J., Rajan G. P. (2015) Cochlear implantation improves localization ability in patients with unilateral deafness. Ear and Hearing 36: e93–e98. doi:10.1097/AUD.0000000000000130.
    1. Tavora-Vieira D., Marino R., Krishnaswamy J., Kuthbutheen J., Rajan G. P. (2013. b) Cochlear implantation for unilateral deafness with and without tinnitus: A case series. Laryngoscope 123: 1251–1255. doi:10.1002/lary.23764.
    1. Throckmorton C. S., Collins L. M. (2001) A comparison of two loudness balancing tasks in cochlear implant subjects using bipolar stimulation. Ear and Hearing 22: 439–448. doi:10.1097/00003446-200110000-00008.
    1. Tillein J., Hubka P., Kral A. (2016) Monaural congenital deafness affects aural dominance and degrades binaural processing. Cerebral Cortex 26: 1762–1777. doi:10.1093/cercor/bhv351.
    1. Vannson N., James C., Fraysse B., Strelnikov K., Barone P., Deguine O., Marx M. (2015) Quality of life and auditory performance in adults with asymmetric hearing loss. Audiology & Neurootology 20(Suppl 1): 38–43. doi:10.1159/000380746.
    1. Vermeire K., Landsberger D. M., Van de Heyning P. H., Voormolen M., Kleine Punte A., Schatzer R., Zierhofer C. (2015) Frequency-place map for electrical stimulation in cochlear implants: Change over time. Hearing Research 326: 8–14. doi:10.1016/j.heares.2015.03.011.
    1. Vermeire K., Van de Heyning P. (2009) Binaural hearing after cochlear implantation in subjects with unilateral sensorineural deafness and tinnitus. Audiology & Neurootology 14: 163–171. doi:10.1159/000171478.
    1. Wess J. M., Brungart D. S., Bernstein J. G. W. (2017) The effect of interaural mismatches on contralateral unmasking with single-sided vocoders. Ear and Hearing 38: 374–386. doi:10.1097/AUD.0000000000000374.
    1. Wightman F. L., Kistler D. J. (1992) The dominant role of low-frequency interaural time differences in sound localization. The Journal of Acoustical Society of America 91: 1648–1661. doi:10.1121/1.402445.
    1. Yoon Y. S., Shin Y. R., Fu Q. J. (2013) Binaural benefit with and without a bilateral spectral mismatch in acoustic simulations of cochlear implant processing. Ear and Hearing 34: 273–279. doi:10.1097/AUD.0b013e31826709e8.
    1. Zeitler D. M., Dorman M. F., Natale S. J., Loiselle L., Yost W. A., Gifford R. H. (2015) Sound source localization and speech understanding in complex listening environments by single-sided deaf listeners after cochlear implantation. Otology & Neurotology 36: 1467–1471. doi:10.1097/MAO.0000000000000841.
    1. Zhou X., Li H., Yuan W., Galvin J. J., 3rd, Fu Q.-J. (2017) Effects of insertion depth on spatial speech perception in noise for simulations of cochlear implants and single-sided deafness. International Journal of Audiology 56: S41–S48. doi:10.1080/14992027.2016.1197426.
    1. Zirn S., Arndt S., Aschendorff A., Laszig R., Wesarg T. (2016) Perception of interaural phase differences with envelope and fine structure coding strategies in bilateral cochlear implant users. Trends in Hearing 20: pii:2331216516665608 doi:10.1177/2331216516665608.

Source: PubMed

3
구독하다