Graphene-based sensing of oxygen transport through pulmonary membranes

Mijung Kim, Marilyn Porras-Gomez, Cecilia Leal, Mijung Kim, Marilyn Porras-Gomez, Cecilia Leal

Abstract

Lipid-protein complexes are the basis of pulmonary surfactants covering the respiratory surface and mediating gas exchange in lungs. Cardiolipin is a mitochondrial lipid overexpressed in mammalian lungs infected by bacterial pneumonia. In addition, increased oxygen supply (hyperoxia) is a pathological factor also critical in bacterial pneumonia. In this paper we fabricate a micrometer-size graphene-based sensor to measure oxygen permeation through pulmonary membranes. Combining oxygen sensing, X-ray scattering, and Atomic Force Microscopy, we show that mammalian pulmonary membranes suffer a structural transformation induced by cardiolipin. We observe that cardiolipin promotes the formation of periodic protein-free inter-membrane contacts with rhombohedral symmetry. Membrane contacts, or stalks, promote a significant increase in oxygen gas permeation which may bear significance for alveoli gas exchange imbalance in pneumonia.

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1. Sensing platform for oxygen transport…
Fig. 1. Sensing platform for oxygen transport through pulmonary membranes.
a Schematic illustration of lipid membranes deposited on the FET-based sensor which serves as a solid support for stacked lipid bilayers. b Bright field optical microscopy image of the oxygen gas sensor. The white arrow indicates the graphene channel between gold electrodes. Channel length and width are 50 μm. Inset: photograph of the sensor which has total 50 FETs on a 1 cm × 1 cm SiO2/Si substrate. c Fluorescence microscopy image of fluorescently labeled lipid membranes coated on the FET sensor. Graphene is marked with a white arrow. Inset: photograph of the sensor coated with lipid films.
Fig. 2. Electric characteristics of graphene FET…
Fig. 2. Electric characteristics of graphene FET sensors.
a Schematic image describing how the FET-based sensor detects the oxygen gas using graphene. Black arrows represent the direction of drain current (Id). b Transfer characteristics of graphene FET. Drain voltage (Vd) is 1 V and gate voltage (Vg) is swiped from −5 to 10 V. Blue and red curve indicate Id–Vg curves of the FET sensor without and with lipid films, respectively. c Sensing response calibration graph of the oxygen gas sensor as function of oxygen percent from 0 to 80% with and without lipids. Dots represent the real response data. Blue and green lines are linear fits of with and without lipids, respectively (correlation coefficient (R2) = 0.998).
Fig. 3. Film thickness of model systems…
Fig. 3. Film thickness of model systems and lung extracts.
AFM 3D height images and cross-sectional profiles of a healthy model systems composed of 3:1 DPPC:DOPG, scan size 4 μm × 4 μm, b diseased model system consisting of 3:1 DPPC:DOPG with addition of cardiolipin and Ca2+, scan size 8 μm × 8 μm, c healthy bovine lipid–protein extract surfactant (BLES), scan size 11 μm x 11 μm, and d diseased BLES with cardiolipin and Ca2+. Blue arrows display scanning directions of profiles, scan size 10 μm × 10 μm.
Fig. 4. GISAXS of model diseased pulmonary…
Fig. 4. GISAXS of model diseased pulmonary membranes.
a Synchrotron GISAXS of the diseased lung membrane model system. White arrows indicate stalk phase peaks which appear along the qz direction at qxy~±0.05 Å−1. b Schematic illustration of a stalk phase consisting of spatially ordered inter-bilayer contacts across a membrane with four stacked bilayers. Blue and green areas represent possible in-plane domains. cf In-house GISAXS diffraction patterns of healthy model systems (c) and model systems with Ca2+ 4 mol% (d), with Ca2+ 4 mol% + cardiolipin (CL) 3 mol% (e) and with Ca2+ 4 mol% + CL 8 mol% (f). Stalk-phase peaks are indicated by white arrows. Oxygen gas saturation times (tsatO2) depicted in the GISAXS images corresponds to the time that FET sensors take to get saturated with a flow of 20% oxygen gas.
Fig. 5. 1D GISAXS and AFM of…
Fig. 5. 1D GISAXS and AFM of model systems and lung extracts.
1D GISAXS intensity versus reciprocal space q (Å−1) profiles for BLES samples and model membrane systems in healthy (a) and diseased (b) states. The middle panels are schematic representation of stalks and orientation in healthy (c) and diseased (d) model (blue) and BLES (magenta) membrane systems. The space between bilayers (light blue) represents water layers. AFM height and phase images of healthy (e) and diseased (f) model membrane systems are represented in the figure. Inset in the healthy model (e) is 250 nm × 250 nm while inset in the diseased model (f) highlighting the pores in the diseased model system is 500 nm × 500 nm, white arrows point to pore-like defects. Height and phase AFM images of lung extract (BLES) in healthy (g) and diseased (h) states are also displayed.
Fig. 6. Mechanism of enhanced oxygen gas…
Fig. 6. Mechanism of enhanced oxygen gas transport through stalk phases.
Schematic illustrations of model systems and lung extracts in healthy and diseased states and how their different structures affect oxygen gas permeability. Enlarged illustrations (circles) describe detailed structures of each system, displaying lipids (e.g., DPPC, DOPG, Cardiolipin, and BLES), surfactant proteins (SP-B and SP-C) and calcium ions.

References

    1. Veldhuizen R, Nag K, Orgeig S, Possmayer F. The role of lipids in pulmonary surfactant. Biochim. Biophys. Acta—Mol. Basis Dis. 1998;1408:90–108. doi: 10.1016/S0925-4439(98)00061-1.
    1. Notter, R. H. Lung Surfactants (CRC Press, 2000).
    1. Daniels CB, Orgeig S. Pulmonary surfactant: the key to the evolution of air breathing. News Physiol. Sci. 2003;18:151–157.
    1. Bastacky J, et al. Alveolar lining layer is thin and continuous: low-temperature scanning electron microscopy of rat lung. J. Appl. Physiol. 1995;79:1615–1628. doi: 10.1152/jappl.1995.79.5.1615.
    1. Orgeig S, Daniels CB. The roles of cholesterol in pulmonary surfactant: insights from comparative and evolutionary studies. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 2001;129:75–89. doi: 10.1016/S1095-6433(01)00307-5.
    1. Goerke J. Pulmonary surfactant: functions and molecular composition. Biochim. Biophys. Acta—Mol. Basis Dis. 1998;1408:79–89. doi: 10.1016/S0925-4439(98)00060-X.
    1. Parra E, Pérez-Gil J. Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chem. Phys. Lipids. 2015;185:153–175. doi: 10.1016/j.chemphyslip.2014.09.002.
    1. Ivanov II, Fedorov GE, Gus’kova RA, Ivanov KI, Rubin AB. Permeability of lipid membranes to dioxygen. Biochem. Biophys. Res. Commun. 2004;322:746–750. doi: 10.1016/j.bbrc.2004.07.187.
    1. Subczynski WK, Hyde JS, Kusumi A. Oxygen permeability of phosphatidylcholine-cholesterol membranes. Proc. Natl Acad. Sci. 1989;86:4474–4478. doi: 10.1073/pnas.86.12.4474.
    1. Olmeda B, Villén L, Cruz A, Orellana G, Perez-Gil J. Pulmonary surfactant layers accelerate O2 diffusion through the air-water interface. Biochim. Biophys. Acta—Biomembr. 2010;1798:1281–1284. doi: 10.1016/j.bbamem.2010.03.008.
    1. Olmeda B, et al. Effect of hypoxia on lung gene expression and proteomic profile: insights into the pulmonary surfactant response. J. Proteomics. 2014;101:179–191. doi: 10.1016/j.jprot.2014.02.019.
    1. Parra E, Alcaraz A, Cruz A, Aguilella VM, Pérez-Gil J. Hydrophobic pulmonary surfactant proteins SP-b and SP-c induce pore formation in planar lipid membranes: Evidence for proteolipid pores. Biophys. J. 2013;104:146–155. doi: 10.1016/j.bpj.2012.11.014.
    1. Perez-Gil J, Weaver TE. Pulmonary surfactant pathophysiology: current models and open questions. Physiology. 2010;25:132–141. doi: 10.1152/physiol.00006.2010.
    1. Crouse D, Cassell G, Waites K, Foster J, Cassady G. Hyperoxia potentiates ureaplasma urealyticum pneumonia in newborn mice. Infect. Immun. 1990;58:3487–3493. doi: 10.1128/IAI.58.11.3487-3493.1990.
    1. Tateda K, et al. Hyperoxia mediates acute lung injury and increased lethality in murine legionella pneumonia: the role of apoptosis. J. Immunol. 2003;170:4209–4216. doi: 10.4049/jimmunol.170.8.4209.
    1. Ray NB, et al. Dynamic regulation of cardiolipin by the lipid pump atp8b1 determines the severity of lung injury in experimental pneumonia. Nat. Med. 2010;16:1120–1127. doi: 10.1038/nm.2213.
    1. Steer D, Leung SSW, Meiselman H, Topgaard D, Leal C. Structure of lung-mimetic multilamellar bodies with lipid compositions relevant in pneumonia. Langmuir. 2018;34:7561–7574. doi: 10.1021/acs.langmuir.8b01359.
    1. De Kruijff, B. et al. Non-bilayer lipids and the inner mitochondrial membrane. In International Cell Biology (ed. Schweiger H. G.) 1980–1981, 559–571 (Springer, 1981).
    1. De Kruijff B, et al. Further aspects of the Ca2+-dependent polymorphism of bovine heart cardiolipin. Biochim. Biophys. Acta—Biomembr. 1982;693:1–12. doi: 10.1016/0005-2736(82)90464-3.
    1. Pedersen UR, Leidy C, Westh P, Peters GH. The effect of calcium on the properties of charged phospholipid bilayers. Biochim. Biophys. Acta—Biomembr. 2006;1758:573–582. doi: 10.1016/j.bbamem.2006.03.035.
    1. Broder UN, Jaeger T, Jenal U. LadS is a calcium-responsive kinase that induces acute-to-chronic virulence switch in pseudomonas aeruginosa. Nat. Microbiol. 2016;2:16184. doi: 10.1038/nmicrobiol.2016.184.
    1. Xu Q, et al. Direct measurement of strain-dependent solid surface stress. Nat. Commun. 2017;8:555. doi: 10.1038/s41467-017-00636-y.
    1. Åberg C, Sparr E, Larsson M, Wennerström H. A theoretical study of diffusional transport over the alveolar surfactant layer. J. R. Soc. Interface. 2010;7:1403–1410. doi: 10.1098/rsif.2010.0082.
    1. Ramamoorthy R, Dutta PK, Akbar SA. Oxygen sensors: materials, methods, designs and applications. J. Mater. Sci. 2003;38:4271–4282. doi: 10.1023/A:1026370729205.
    1. Gan T, Hu S. Electrochemical sensors based on graphene materials. Microchim. Acta. 2011;175:1–19. doi: 10.1007/s00604-011-0639-7.
    1. Mills A, Graham A. Extruded polymer films pigmented with a heterogeneous ion-pair based lumophore for O2 sensing. Analyst. 2013;138:6488. doi: 10.1039/c3an01141k.
    1. Achatz DE, Meier RJ, Fischer LH, Wolfbeis OS. Luminescent sensing of oxygen using a quenchable probe and upconverting nanoparticles. Angew. Chem. 2010;123:274–277. doi: 10.1002/ange.201004902.
    1. Miyahara Y, Tsukada K, Miyagi H. Field-effect transistor using a solid electrolyte as a new oxygen sensor. J. Appl. Phys. 1988;63:2431–2434. doi: 10.1063/1.341038.
    1. Zhang C, Chen P, Hu W. Organic field-effect transistor-based gas sensors. Chem. Soc. Rev. 2015;44:2087–2107. doi: 10.1039/C4CS00326H.
    1. Star A, Joshi V, Skarupo S, Thomas D, Gabriel J-CP. Gas sensor array based on metal-decorated carbon nanotubes. J. Phys. Chem. B. 2006;110:21014–21020. doi: 10.1021/jp064371z.
    1. Castellana ET, Cremer PS. Solid supported lipid bilayers: from biophysical studies to sensor design. Surf. Sci. Rep. 2006;61:429–444. doi: 10.1016/j.surfrep.2006.06.001.
    1. Ang PK, et al. A bioelectronic platform using a graphene-lipid bilayer interface. ACS Nano. 2010;4:7387–7394. doi: 10.1021/nn1022582.
    1. Bergveld P. The development and application of FET-based biosensors. Biosensors. 1986;2:15–33. doi: 10.1016/0265-928X(86)85010-6.
    1. Schedin F, et al. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007;6:652–655. doi: 10.1038/nmat1967.
    1. Yuan W, Shi G. Graphene-based gas sensors. J. Mater. Chem. A. 2013;1:10078. doi: 10.1039/c3ta11774j.
    1. Chen CW, et al. Oxygen sensors made by monolayer graphene under room temperature. Appl. Phys. Lett. 2011;99:243502. doi: 10.1063/1.3668105.
    1. Joshi RK, Gomez H, Alvi F, Kumar A. Graphene films and ribbons for sensing of O2, and 100 ppm of CO and NO2 in practical conditions. J. Phys. Chem. C. 2010;114:6610–6613. doi: 10.1021/jp100343d.
    1. Kauffman DR, Star A. Carbon nanotube gas and vapor sensors. Angew. Chem. Int. Ed. 2008;47:6550–6570. doi: 10.1002/anie.200704488.
    1. Zhang T, Mubeen S, Myung NV, Deshusses MA. Recent progress in carbon nanotube-based gas sensors. Nanotechnology. 2008;19:332001. doi: 10.1088/0957-4484/19/33/332001.
    1. Lu HF, et al. Amorphous TiO2 nanotube arrays for low-temperature oxygen sensors. Nanotechnology. 2008;19:405504. doi: 10.1088/0957-4484/19/40/405504.
    1. Neri G, et al. In2O3 and pt-In2O3 nanopowders for low temperature oxygen sensors. Sens. Actuators B. 2007;127:455–462. doi: 10.1016/j.snb.2007.04.046.
    1. Sharma RK, Bhatnagar M, Sharma G. Mechanism of highly sensitive and fast response Cr doped TiO2 oxygen gas sensor. Sens. Actuators B. 1997;45:209–215. doi: 10.1016/S0925-4005(97)00295-5.
    1. Fowler JD, et al. Practical chemical sensors from chemically derived graphene. ACS Nano. 2009;3:301–306. doi: 10.1021/nn800593m.
    1. Kiani M, et al. Conductance modulation of charged lipid bilayer using electrolyte-gated graphene-field effect transistor. Nanoscale Res. Lett. 2014;9:371. doi: 10.1186/1556-276X-9-371.
    1. Kang M, Leal C. Soft nanostructured films for actuated surface-based siRNA delivery. Adv. Funct. Mater. 2016;26:5610–5620. doi: 10.1002/adfm.201600681.
    1. Kang M, Lee B, Leal C. Three-dimensional microphase separation and synergistic permeability in stacked lipid-polymer hybrid membranes. Chem. Mater. 2017;29:9120–9132. doi: 10.1021/acs.chemmater.7b02845.
    1. Kang M, Tuteja M, Centrone A, Topgaard D, Leal C. Nanostructured lipid-based films for substrate-mediated applications in biotechnology. Adv. Funct. Mater. 2018;28:1704356. doi: 10.1002/adfm.201704356.
    1. Kozlovsky Y, Efrat A, Siegel DA, Kozlov MM. Stalk phase formation: effects of dehydration and saddle splay modulus. Biophys. J. 2004;87:2508–2521. doi: 10.1529/biophysj.103.038075.
    1. Aeffner S, Reusch T, Weinhausen B, Salditt T. Energetics of stalk intermediates in membrane fusion are controlled by lipid composition. Proc. Natl Acad. Sci. 2012;109:E1609–E1618. doi: 10.1073/pnas.1119442109.
    1. Qian S, Rai DK. Grazing-angle neutron diffraction study of the water distribution in membrane hemifusion: from the lamellar to rhombohedral phase. J. Phys. Chem. Lett. 2018;9:5778–5784. doi: 10.1021/acs.jpclett.8b01602.
    1. Salditt T, Aeffner S. X-ray structural investigations of fusion intermediates: Lipid model systems and beyond. Semin. Cell Dev. Biol. 2016;60:65–77. doi: 10.1016/j.semcdb.2016.06.014.
    1. Hay JC. Calcium: a fundamental regulator of intracellular membrane fusion? EMBO Rep. 2007;8:236–240. doi: 10.1038/sj.embor.7400921.
    1. Zakai N, Kulka RG, Loyter A. Membrane ultrastructural changes during calcium phosphate-induced fusion of human erythrocyte ghosts. Proc. Natl Acad. Sci. 1977;74:2417–2421. doi: 10.1073/pnas.74.6.2417.
    1. Ortiz A, Killian JA, Verkleij AJ, Wilschut J. Membrane fusion and the lamellar-to-inverted-hexagonal phase transition in cardiolipin vesicle systems induced by divalent cations. Biophys. J. 1999;77:2003–2014. doi: 10.1016/S0006-3495(99)77041-4.
    1. Parra E, et al. A combined action of pulmonary surfactant proteins sp-b and sp-c modulates permeability and dynamics of phospholipid membranes. Biochem. J. 2011;438:555–564. doi: 10.1042/BJ20110681.
    1. Seddon, J. & Templer, R. In Handbook of Biological Physics, (ed. Lipowsky, E. S.) 97–160 (Elsevier Science Amsterdam, 1995).
    1. de la Serna JB, et al. Segregated ordered lipid phases and protein-promoted membrane cohesivity are required for pulmonary surfactant films to stabilize and protect the respiratory surface. Faraday Discuss. 2013;161:535–548. doi: 10.1039/C2FD20096A.
    1. Abdulreda MH, Bhalla A, Chapman ER, Moy VT. Atomic force microscope spectroscopy reveals a hemifusion intermediate during soluble n-ethylmaleimide-sensitive factor-attachment protein receptors-mediated membrane fusion. Biophys. J. 2008;94:648–655. doi: 10.1529/biophysj.107.114298.
    1. Zuo YY, et al. Atomic force microscopy studies of functional and dysfunctional pulmonary surfactant films, I: micro-and nanostructures of functional pulmonary surfactant films and the effect of SP-a. Biophys. J. 2008;94:3549–3564. doi: 10.1529/biophysj.107.122648.
    1. Zuo YY, et al. Atomic force microscopy studies of functional and dysfunctional pulmonary surfactant films, II: albumin-inhibited pulmonary surfactant films and the effect of SP-a. Biophys. J. 2008;95:2779–2791. doi: 10.1529/biophysj.108.130732.
    1. Zhang H, Fan Q, Wang YE, Neal CR, Zuo YY. Comparative study of clinical pulmonary surfactants using atomic force microscopy. Biochim. Biophys. Acta—Biomembr. 2011;1808:1832–1842. doi: 10.1016/j.bbamem.2011.03.006.
    1. Hane F, Moores B, Amrein M, Leonenko Z. Effect of SP-c on surface potential distribution in pulmonary surfactant: Atomic force microscopy and kelvin probe force microscopy study. Ultramicroscopy. 2009;109:968–973. doi: 10.1016/j.ultramic.2009.03.046.
    1. Keating E, et al. Effect of cholesterol on the biophysical and physiological properties of a clinical pulmonary surfactant. Biophys. J. 2007;93:1391–1401. doi: 10.1529/biophysj.106.099762.
    1. Benson B, Williams M, Sueishi K, Goerke J, Sargeant T. Role of calcium ions in the structure and function of pulmonary surfactant. Biochim. Biophys. Acta—Lipids Lipid Metab. 1984;793:18–27. doi: 10.1016/0005-2760(84)90048-1.
    1. Eckenhoff RG, Somlyo AP. Rat lung type II cell and lamellar body: elemental composition in situ. Am. J. Physiol.: Cell Physiol. 1988;254:C614–C620. doi: 10.1152/ajpcell.1988.254.5.C614.
    1. Bernhard W, et al. Commercial versus native surfactants: surface activity, molecular components, and the effect of calcium. Am. J. Respir. Crit. Care Med. 2000;162:1524–1533. doi: 10.1164/ajrccm.162.4.9908104.
    1. Jürgens E, Höhne G, Sackmann E. Calorimetric study of the dipalmitoylphosphatidylcholine/water phase diagram. Ber Bunsenges Phys. Chem. 1983;87:95–104. doi: 10.1002/bbpc.19830870207.
    1. Ton-That C, Shard AG, Bradley RH. Thickness of spin-cast polymer thin films determined by angle-resolved XPS and AFM tip-scratch methods. Langmuir. 2000;16:2281–2284. doi: 10.1021/la990605c.

Source: PubMed

3
구독하다