Arginine Vasopressin and Copeptin in Perinatology

Katrina Suzanne Evers, Sven Wellmann, Katrina Suzanne Evers, Sven Wellmann

Abstract

Arginine vasopressin (AVP) plays a major role in the homeostasis of fluid balance, vascular tonus, and the regulation of the endocrine stress response. The measurement of AVP levels is difficult due to its short half-life and laborious method of detection. Copeptin is a more stable peptide derived from the same precursor molecule, is released in an equimolar ratio to AVP, and has a very similar response to osmotic, hemodynamic, and stress-related stimuli. In fact, copeptin has been propagated as surrogate marker to indirectly determine circulating AVP concentrations in various conditions. Here, we present an overview of the current knowledge on AVP and copeptin in perinatology with a particular focus on the baby's transition from placenta to lung breathing. We performed a systematic review of the literature on fetal stress hormone levels, including norepinephrine, cortisol, AVP, and copeptin, in regard to birth stress. Finally, diagnostic and therapeutic options for copeptin measurement and AVP functions are discussed.

Keywords: HPA axis; antidiuretic hormone; asphyxia; cesarean section; neonate; pain; respiratory distress; stress.

Figures

Figure 1
Figure 1
Fold change of norepinephrine, cortisol, AVP, and copeptin between primary cesarean section and vaginal delivery. Study data were retrieved from the published literature and listed in chronologic order from oldest to newest on x-axis, corresponding references are given in Section “Surge in Fetal Stress Hormones” for all four hormones. The size of the diamonds reflects the study sample size: small corresponds to n = 0–50, middle n = 50–100, and large n = 100–170. Circles reflect the weighted mean values depending on sample size and are given at the final position of the x-axis.
Figure 2
Figure 2
Effects of AVP/ADH on various systems in the healthy and impaired newborn.

References

    1. Morgenthaler NG, Struck J, Alonso C, Bergmann A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem (2006) 52(1):112–9.10.1373/clinchem.2005.060038
    1. Koshimizu TA, Nakamura K, Egashira N, Hiroyama M, Nonoguchi H, Tanoue A. Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol Rev (2012) 92(4):1813–64.10.1152/physrev.00035.2011
    1. Rood BD, De Vries GJ. Vasopressin innervation of the mouse (Mus musculus) brain and spinal cord. J Comp Neurol (2011) 519(12):2434–74.10.1002/cne.22635
    1. Wellmann S, Buhrer C. Who plays the strings in newborn analgesia at birth, vasopressin or oxytocin? Front Neurosci (2012) 6:78.10.3389/fnins.2012.00078
    1. Morgenthaler NG, Struck J, Jochberger S, Dunser MW. Copeptin: clinical use of a new biomarker. Trends Endocrinol Metab (2008) 19(2):43–9.10.1016/j.tem.2007.11.001
    1. Preibisz JJ, Sealey JE, Laragh JH, Cody RJ, Weksler BB. Plasma and platelet vasopressin in essential hypertension and congestive heart failure. Hypertension (1983) 5(2 Pt 2):I129–38.10.1161/01.HYP.5.2_Pt_2.I129
    1. Baumann G, Dingman JF. Distribution, blood transport, and degradation of antidiuretic hormone in man. J Clin Invest (1976) 57(5):1109–16.10.1172/jci108377
    1. Robertson GL, Mahr EA, Athar S, Sinha T. Development and clinical application of a new method for the radioimmunoassay of arginine vasopressin in human plasma. J Clin Invest (1973) 52(9):2340–52.10.1172/jci107423
    1. Christ-Crain M, Fenske W. Copeptin in the diagnosis of vasopressin-dependent disorders of fluid homeostasis. Nat Rev Endocrinol (2016) 12(3):168–76.10.1038/nrendo.2015.224
    1. Hoppenstein JM, Miltenberger FW, Moran WH., Jr The increase in blood levels of vasopressin in infants during birth and surgical procedures. Surg Gynecol Obstet (1968) 127(5):966–74.
    1. Chard T, Hudson CN, Edwards CR, Boyd NR. Release of oxytocin and vasopressin by the human foetus during labour. Nature (1971) 234(5328):352–4.10.1038/234352a0
    1. Polin RA, Husain MK, James LS, Frantz AG. High vasopressin concentrations in human umbilical cord blood – lack of correlation with stress. J Perinat Med (1977) 5(3):114–9.10.1515/jpme.1977.5.3.114
    1. Czernichow P, Pattin AM. [Plasma vasopressin in paired maternal-cord sera (proceedings) (author’s transl)]. Ann Endocrinol (Paris) (1978) 39(3):225–6.
    1. Hadeed AJ, Leake RD, Weitzman RE, Fisher DA. Possible mechanisms of high blood levels of vasopressin during the neonatal period. J Pediatr (1979) 94(5):805–8.10.1016/S0022-3476(79)80162-6
    1. DeVane GW, Porter JC. An apparent stress-induced release or arginine vasopressin by human neonates. J Clin Endocrinol Metab (1980) 51(6):1412–6.10.1210/jcem-51-6-1412
    1. Leung AK, McArthur RG, McMillan DD, Ko D, Deacon JS, Parboosingh JT, et al. Circulating antidiuretic hormone during labour and in the newborn. Acta Paediatr Scand (1980) 69(4):505–10.10.1111/j.1651-2227.1980.tb07122.x
    1. Parboosingh J, Lederis K, Ko D, Singh N. Vasopressin concentration in cord blood: correlation with method of delivery and cord pH. Obstet Gynecol (1982) 60(2):179–83.
    1. Feldman W, Drummond KN, Klein M. Hyponatremia following asphyxia neonatorum. Acta Paediatr Scand (1970) 59(1):52–7.10.1111/j.1651-2227.1970.tb15514.x
    1. Rees L, Forsling ML, Brook CG. Vasopressin concentrations in the neonatal period. Clin Endocrinol (Oxf) (1980) 12(4):357–62.10.1111/j.1365-2265.1980.tb02720.x
    1. Murphy BE. Does the human fetal adrenal play a role in parturition? Am J Obstet Gynecol (1973) 115(4):521–5.10.1016/0002-9378(73)90400-6
    1. Pokoly TB. The role of cortisol in human parturition. Am J Obstet Gynecol (1973) 117(4):549–53.10.1016/0002-9378(73)90119-1
    1. Talbert LM, Easterling WE, Jr, Potter HD. Maternal and fetal plasma levels of adrenal corticoids in spontaneous vaginal delivery and cesarean section. Am J Obstet Gynecol (1973) 117(4):554–9.10.1016/0002-9378(73)90120-8
    1. Cawson MJ, Anderson AB, Turnbull AC, Lampe L. Cortisol, cortisone, and 11-deoxycortisol levels in human umbilical and maternal plasma in relation to the onset of labour. J Obstet Gynaecol Br Commonw (1974) 81(10):737–45.10.1111/j.1471-0528.1974.tb00373.x
    1. Simmer HH, Frankland MV, Greipel M. Unbound unconjugated cortisol in umbilical cord and corresponding maternal plasma. Materno-fetal gradient: comparison of methods. Gynecol Invest (1974) 5(4):199–221.10.1159/000301652
    1. Toaff R, Toaff ME, Peyser MR, Ayalon D, Cordova T. Responsiveness of the human fetus to stress. Isr J Med Sci (1974) 10(12):1487–92.
    1. Goldkrand JW, Schulte RL, Messer RH. Maternal and fetal plasma cortisol levels at parturition. Obstet Gynecol (1976) 47(1):41–5.
    1. Ohrlander S, Gennser G, Eneroth P. Plasma cortisol levels in human fetus during parturition. Obstet Gynecol (1976) 48(4):381–7.
    1. Sybulski S, Maughan GB. Cortisol levels in umbilical cord plasma in relation to labor and delivery. Am J Obstet Gynecol (1976) 125(2):236–8.10.1016/0002-9378(76)90599-8
    1. Weekes AR, Wade AP, West CR. Umbilical vein cortisol after spontaneous and induced labour and at elective Caesarean section. Br J Obstet Gynaecol (1976) 83(11):870–2.10.1111/j.1471-0528.1976.tb00763.x
    1. Talbert LM, Pearlman WH, Potter HD. Maternal and fetal serum levels of total cortisol and cortisone, unbound cortisol, and corticosteroid-binding globulin in vaginal delivery and cesarean section. Am J Obstet Gynecol (1977) 129(7):781–7.10.1016/0002-9378(77)90397-0
    1. Kauppila A, Koivisto M, Pukka M, Tuimala R. Umbilical cord and neonatal cortisol levels. Effect of gestational and neonatal factors. Obstet Gynecol (1978) 52(6):666–72.
    1. Laatikainen T, Pelkonen J, Apter D, Ranta T. Fetal and maternal serum levels of steroid sulfates, unconjugated steroids, and prolactin at term pregnancy and in early spontaneous labor. J Clin Endocrinol Metab (1980) 50(3):489–94.10.1210/jcem-50-3-489
    1. Faxelius G, Hagnevik K, Lagercrantz H, Lundell B, Irestedt L. Catecholamine surge and lung function after delivery. Arch Dis Child (1983) 58(4):262–6.10.1136/adc.58.4.262
    1. Kohno H, Furuhashi N, Fukaya T, Tachibana Y, Shinkawa O, Suzuki M. Serum cortisol levels of maternal vein, umbilical artery, and umbilical vein classified by mode of delivery. Gynecol Obstet Invest (1984) 17(6):301–8.10.1159/000299167
    1. Pohjavuori M, Rovamo L, Laatikainen T. Plasma immunoreactive beta-endorphin and cortisol in the newborn infant after elective caesarean section and after spontaneous labour. Eur J Obstet Gynecol Reprod Biol (1985) 19(2):67–74.10.1016/0028-2243(85)90021-8
    1. Falconer AD, Poyser LM. Fetal sympatho-adrenal mediated metabolic responses to parturition. Br J Obstet Gynaecol (1986) 93(7):747–53.10.1111/j.1471-0528.1986.tb07976.x
    1. Lao TT, Chin RK, Swaminathan R, Mak YT. Plasma and erythrocyte zinc concentrations in pre-eclampsia. Eur J Obstet Gynecol Reprod Biol (1989) 30(2):117–22.10.1016/0028-2243(89)90057-9
    1. Okamoto E, Takagi T, Makino T, Sata H, Iwata I, Nishino E, et al. Immunoreactive corticotropin-releasing hormone, adrenocorticotropin and cortisol in human plasma during pregnancy and delivery and postpartum. Horm Metab Res (1989) 21(10):566–72.10.1055/s-2007-1009289
    1. Hercz P, Siklos P, Ungar L. Serum dehydroepiandrosterone and cortisol concentration in the maternal-fetoplacental hormonal system in elective caesarean section and spontaneous vaginal delivery in the 28th to 36th and 40th weeks of pregnancy. Gynecol Obstet Invest (1990) 29(2):112–4.10.1159/000293314
    1. Gasparoni A, Chirico G, De Amici D, Marconi M, Belloni C, Mingrat G, et al. Neutrophil chemotaxis in infants delivered by caesarean section. Eur J Pediatr (1991) 150(7):481–2.10.1007/BF01958427
    1. Ramin SM, Porter JC, Gilstrap LC, III, Rosenfeld CR. Stress hormones and acid-base status of human fetuses at delivery. J Clin Endocrinol Metab (1991) 73(1):182–6.10.1210/jcem-73-1-182
    1. Gasparoni A, Maccario R, Chirico G, Belloni C, Mingrat G, De Amici D, et al. Neonatal B lymphocyte subpopulations and method of delivery. Biol Neonate (1992) 61(3):137–41.10.1159/000243735
    1. Ruth V, Hallman M, Laatikainen T. Corticotropin-releasing hormone and cortisol in cord plasma in relation to gestational age, labor, and fetal distress. Am J Perinatol (1993) 10(2):115–8.10.1055/s-2007-994641
    1. Bird JA, Spencer JA, Mould T, Symonds ME. Endocrine and metabolic adaptation following caesarean section or vaginal delivery. Arch Dis Child Fetal Neonatal Ed (1996) 74(2):F132–4.10.1136/fn.74.2.F132
    1. Posaci C, Guney M, Erata YE, Demir N, Onvural A. Stress hormones and acid-base status in human fetuses at term delivery: the effect of delivery method. J Pak Med Assoc (1996) 46(6):123–6.
    1. Kazda H, Taylor N, Healy D, Walker D. Maternal, umbilical, and amniotic fluid concentrations of tryptophan and kynurenine after labor or cesarean section. Pediatr Res (1998) 44(3):368–73.10.1203/00006450-199809000-00017
    1. Gasparoni A, De Amici D, Ciardelli L, Autelli M, Regazzi-Bonora M, Bartoli A, et al. Effect of lidocaine on neutrophil chemotaxis in newborn infants. J Clin Immunol (1998) 18(3):210–3.10.1023/A:1020583022614
    1. Chirico G, Gasparoni A, Ciardelli L, Martinotti L, Rondini G. Leukocyte counts in relation to the method of delivery during the first five days of life. Biol Neonate (1999) 75(5):294–9.10.1159/000014107
    1. De Amici D, Gasparoni A, Chirico G, Ceriana P, Bartoli A, Ramajoli I, et al. Natural killer cell activity and delivery: possible influence of cortisol and anesthetic agents. A study on newborn cord blood. Biol Neonate (1999) 76(6):348–54.10.1159/000014178
    1. Gitau R, Menson E, Pickles V, Fisk NM, Glover V, MacLachlan N. Umbilical cortisol levels as an indicator of the fetal stress response to assisted vaginal delivery. Eur J Obstet Gynecol Reprod Biol (2001) 98(1):14–7.10.1016/S0301-2115(01)00298-6
    1. Mears K, McAuliffe F, Grimes H, Morrison JJ. Fetal cortisol in relation to labour, intrapartum events and mode of delivery. J Obstet Gynaecol (2004) 24(2):129–32.10.1080/01443610410001645389
    1. Miller NM, Fisk NM, Modi N, Glover V. Stress responses at birth: determinants of cord arterial cortisol and links with cortisol response in infancy. BJOG (2005) 112(7):921–6.10.1111/j.1471-0528.2005.00620.x
    1. Marchini G, Hagenas L, Kocoska-Maras L, Berggren V, Hansson LO. Insulin-like growth factor binding protein-1 and interleukin-6 are markers of fetal stress during parturition at term gestation. J Pediatr Endocrinol Metab (2005) 18(8):777–83.10.1515/JPEM.2005.18.8.777
    1. Oh SY, Romero R, Shim SS, Park JS, Jun JK, Yoon BH. Fetal plasma cortisol and dehydroepiandrosterone sulfate concentrations in pregnancy and term parturition. J Matern Fetal Neonatal Med (2006) 19(9):529–36.10.1080/14767050600853179
    1. Vogl SE, Worda C, Egarter C, Bieglmayer C, Szekeres T, Huber J, et al. Mode of delivery is associated with maternal and fetal endocrine stress response. BJOG (2006) 113(4):441–5.10.1111/j.1471-0528.2006.00865.x
    1. Varvarigou AA, Petsali M, Vassilakos P, Beratis NG. Increased cortisol concentrations in the cord blood of newborns whose mothers smoked during pregnancy. J Perinat Med (2006) 34(6):466–70.10.1515/JPM.2006.091
    1. Yektaei-Karin E, Moshfegh A, Lundahl J, Berggren V, Hansson LO, Marchini G. The stress of birth enhances in vitro spontaneous and IL-8-induced neutrophil chemotaxis in the human newborn. Pediatr Allergy Immunol (2007) 18(8):643–51.10.1111/j.1399-3038.2007.00578.x
    1. Clifton VL, Bisits A, Zarzycki PK. Characterization of human fetal cord blood steroid profiles in relation to fetal sex and mode of delivery using temperature-dependent inclusion chromatography and principal component analysis (PCA). J Chromatogr B Analyt Technol Biomed Life Sci (2007) 855(2):249–54.10.1016/j.jchromb.2007.05.041
    1. Smith AK, Newport DJ, Ashe MP, Brennan PA, Laprairie JL, Calamaras M, et al. Predictors of neonatal hypothalamic-pituitary-adrenal axis activity at delivery. Clin Endocrinol (Oxf) (2011) 75(1):90–5.10.1111/j.1365-2265.2011.03998.x
    1. Yildiran A, Yurdakul E, Guloglu D, Dogu F, Arsan S, Arikan M, et al. The effect of mode of delivery on T regulatory (Treg) cells of cord blood. Indian J Pediatr (2011) 78(10):1234–8.10.1007/s12098-011-0400-6
    1. Ortega-Senovilla H, Schaefer-Graf U, Meitzner K, Graf K, Abou-Dakn M, Herrera E. Lack of relationship between cord serum angiopoietin-like protein 4 (ANGPTL4) and lipolytic activity in human neonates born by spontaneous delivery. PLoS One (2013) 8(12):e81201.10.1371/journal.pone.0081201
    1. Bagnoli F, Mori A, Fommei C, Coriolani G, Badii S, Tomasini B. ACTH and cortisol cord plasma concentrations in preterm and term infants. J Perinatol (2013) 33(7):520–4.10.1038/jp.2012.165
    1. Wynne-Edwards KE, Edwards HE, Hancock TM. The human fetus preferentially secretes corticosterone, rather than cortisol, in response to intra-partum stressors. PLoS One (2013) 8(6):e63684.10.1371/journal.pone.0063684
    1. Olza Fernandez I, Marin Gabriel MA, Garcia Murillo L, Malalana Martinez AM, Costarelli V, Millan Santos I. Mode of delivery may influence neonatal responsiveness to maternal separation. Early Hum Dev (2013) 89(5):339–42.10.1016/j.earlhumdev.2012.11.005
    1. Janer C, Pitkanen OM, Suvari L, Turpeinen U, Palojarvi A, Andersson S, et al. Duration of gestation and mode of delivery affect the genes of transepithelial sodium transport in pulmonary adaptation. Neonatology (2015) 107(1):27–33.10.1159/000363729
    1. Elbay A, Celik U, Celik B, Ozer OF, Kilic G, Akkan JC, et al. Intraocular pressure in infants and its association with hormonal changes with vaginal birth versus cesarean section. Int Ophthalmol (2016).10.1007/s10792-016-0215-6
    1. Eliot RJ, Lam R, Leake RD, Hobel CJ, Fisher DA. Plasma catecholamine concentrations in infants at birth and during the first 48 hours of life. J Pediatr (1980) 96(2):311–5.10.1016/S0022-3476(80)80836-5
    1. Jones CM, III, Greiss FC, Jr. The effect of labor on maternal and fetal circulating catecholamines. Am J Obstet Gynecol (1982) 144(2):149–53.10.1016/0002-9378(82)90616-0
    1. Puolakka J, Kauppila A, Tuimala R, Jouppila R, Vuori J. The effect of parturition on umbilical blood plasma levels of norepinephrine. Obstet Gynecol (1983) 61(1):19–21.
    1. Faxelius G, Lagercrantz H, Yao A. Sympathoadrenal activity and peripheral blood flow after birth: comparison in infants delivered vaginally and by cesarean section. J Pediatr (1984) 105(1):144–8.10.1016/S0022-3476(84)80381-9
    1. Hagnevik K, Faxelius G, Irestedt L, Lagercrantz H, Lundell B, Persson B. Catecholamine surge and metabolic adaptation in the newborn after vaginal delivery and caesarean section. Acta Paediatr Scand (1984) 73(5):602–9.10.1111/j.1651-2227.1984.tb09982.x
    1. Jouppila R, Puolakka J, Kauppila A, Vuori J. Maternal and umbilical cord plasma noradrenaline concentrations during labour with and without segmental extradural analgesia, and during caesarean section. Br J Anaesth (1984) 56(3):251–5.10.1093/bja/56.3.251
    1. Lundell BP, Hagnevik K, Faxelius G, Irestedt L, Lagercrantz H. Neonatal left ventricular performance after vaginal delivery and cesarean section under general or epidural anesthesia. Am J Perinatol (1984) 1(2):152–7.10.1055/s-2007-999992
    1. Jones CR, McCullouch J, Butters L, Hamilton CA, Rubin PC, Reid JL. Plasma catecholamines and modes of delivery: the relation between catecholamine levels and in-vitro platelet aggregation and adrenoreceptor radioligand binding characteristics. Br J Obstet Gynaecol (1985) 92(6):593–9.10.1111/j.1471-0528.1985.tb01397.x
    1. Irestedt L, Dahlin I, Hertzberg T, Sollevi A, Lagercrantz H. Adenosine concentration in umbilical cord blood of newborn infants after vaginal delivery and cesarean section. Pediatr Res (1989) 26(2):106–8.10.1203/00006450-198908000-00007
    1. Otamiri G, Berg G, Ledin T, Leijon I, Lagercrantz H. Delayed neurological adaptation in infants delivered by elective cesarean section and the relation to catecholamine levels. Early Hum Dev (1991) 26(1):51–60.10.1016/0378-3782(91)90043-3
    1. Hirsimaki H, Kero P, Ekblad H, Scheinin M, Saraste M, Erkkola R. Mode of delivery, plasma catecholamines and Doppler-derived cardiac output in healthy term newborn infants. Biol Neonate (1992) 61(5):285–93.10.1159/000243756
    1. Agata Y, Hiraishi S, Misawa H, Han JH, Oguchi K, Horiguchi Y, et al. Hemodynamic adaptations at birth and neonates delivered vaginally and by Cesarean section. Biol Neonate (1995) 68(6):404–11.10.1159/000244263
    1. Moftaquir-Handaj A, Barbe F, Barbarino-Monnier P, Aunis D, Boutroy MJ. Circulating chromogranin A and catecholamines in human fetuses at uneventful birth. Pediatr Res (1995) 37(1):101–5.10.1203/00006450-199501000-00019
    1. Hata T, Manabe A, Makihara K, Hata K, Miyazaki K. Plasma catecholamines and Doppler-derived cardiac time intervals in vaginally and cesarean delivered neonates. Gynecol Obstet Invest (1997) 44(3):173–6.10.1159/000291513
    1. Wang L, Zhang W, Zhao Y. The study of maternal and fetal plasma catecholamines levels during pregnancy and delivery. J Perinat Med (1999) 27(3):195–8.10.1515/JPM.1999.027
    1. Pohjavuori M, Raivio KO. The effects of acute and chronic perinatal stress on plasma vasopressin concentration and renin activity at birth. Biol Neonate (1985) 47(5):259–64.10.1159/000242126
    1. Pochard JL, Lutz-Bucher B. Vasopressin and oxytocin levels in human neonates. Relationships with the evolution of labour and beta-endorphins. Acta Paediatr Scand (1986) 75(5):774–8.10.1111/j.1651-2227.1986.tb10289.x
    1. Ohno Y, Mizutani S, Kurauchi O, Nishida Y, Arii Y, Tomoda Y. Umbilical plasma concentration of endothelin-1 in intrapartum fetal stress: effect of fetal heart rate abnormalities. Obstet Gynecol (1995) 86(5):822–5.10.1016/0029-7844(95)00242-j
    1. Briana DD, Boutsikou M, Boutsikou T, Dodopoulos T, Gourgiotis D, Malamitsi-Puchner A. Plasma copeptin may not be a sensitive marker of perinatal stress in healthy full-term growth-restricted fetuses. J Matern Fetal Neonatal Med (2016):1–5.10.1080/14767058.2016.1183632
    1. Wellmann S, Benzing J, Cippa G, Admaty D, Creutzfeldt R, Mieth RA, et al. High copeptin concentrations in umbilical cord blood after vaginal delivery and birth acidosis. J Clin Endocrinol Metab (2010) 95(11):5091–6.10.1210/jc.2010-1331
    1. Schlapbach LJ, Frey S, Bigler S, Manh-Nhi C, Aebi C, Nelle M, et al. Copeptin concentration in cord blood in infants with early-onset sepsis, chorioamnionitis and perinatal asphyxia. BMC Pediatr (2011) 11:38.10.1186/1471-2431-11-38
    1. Foda AA, Abdel Aal IA. Maternal and neonatal copeptin levels at cesarean section and vaginal delivery. Eur J Obstet Gynecol Reprod Biol (2012) 165(2):215–8.10.1016/j.ejogrb.2012.08.012
    1. Smith J, Halse KG, Damm P, Lindegaard ML, Amer-Wahlin I, Hertel S, et al. Copeptin and MR-proADM in umbilical cord plasma reflect perinatal stress in neonates born to mothers with diabetes and MR-proANP reflects maternal diabetes. Biomark Med (2013) 7(1):139–46.10.2217/bmm.12.79
    1. Burckhardt MA, Wellmann M, Fouzas S, Lapaire O, Burkhardt T, Benzing J, et al. Sexual disparity of copeptin in healthy newborn infants. J Clin Endocrinol Metab (2014) 99(9):E1750–3.10.1210/jc.2014-2244
    1. Blohm ME, Arndt F, Sandig J, Diehl W, Zeller T, Mueller GC, et al. Cardiovascular biomarkers in paired maternal and umbilical cord blood samples at term and near term delivery. Early Hum Dev (2016) 94:7–12.10.1016/j.earlhumdev.2016.01.001
    1. Briana DD, Baka S, Boutsikou M, Boutsikou T, Xagorari M, Gourgiotis D, et al. Cord blood copeptin concentrations in fetal macrosomia. Metabolism (2016) 65(1):89–94.10.1016/j.metabol.2015.09.018
    1. Vuohelainen T, Ojala R, Virtanen A, Laatta J, Morsky P, Uotila J, et al. Predictors of AVP and TSH levels and the timing of first voiding in the newborn. Pediatr Res (2007) 62(1):106–10.10.1203/PDR.0b013e3180674d92
    1. Speer ME, Gorman WA, Kaplan SL, Rudolph AJ. Elevation of plasma concentrations of arginine vasopressin following perinatal asphyxia. Acta Paediatr Scand (1984) 73(5):610–4.10.1111/j.1651-2227.1984.tb09983.x
    1. Ruth V, Fyhrquist F, Clemons G, Raivio KO. Cord plasma vasopressin, erythropoietin, and hypoxanthine as indices of asphyxia at birth. Pediatr Res (1988) 24(4):490–4.10.1203/00006450-198810000-00015
    1. Liao JB, Buhimschi CS, Norwitz ER. Normal labor: mechanism and duration. Obstet Gynecol Clin North Am (2005) 32(2):145–164,vii.10.1016/j.ogc.2005.01.001
    1. Lopez Bernal A, Rivera J, Europe-Finner GN, Phaneuf S, Asboth G. Parturition: activation of stimulatory pathways or loss of uterine quiescence? Adv Exp Med Biol (1995) 395:435–51.
    1. Rooth G, Fall O, Huch A, Huch R. Integrated interpretation of fetal heart rate, intrauterine pressure and fetal transcutaneous pO2. Gynecol Obstet Invest (1979) 10(6):265–80.10.1159/000299977
    1. Klink F, Grosspietzsch R, Klitzing LV, Oberheuser F. Uterine contraction intervals and transcutaneous levels of fetal oxygen pressure. Obstet Gynecol (1981) 57(4):437–40.
    1. Schmidt S, Langner K, Dudenhausen JW, Saling E. Measurement of transcutaneous pCO2 and pO2 in the fetus during labor. Arch Gynecol (1985) 236(3):145–51.10.1007/BF02133957
    1. Pimentel G, Poore ER, Nathanielsz PW. The effect of continuous or pulsatile administration of oxytocin to ewes at 126 to 136 days’ gestation on myometrial activity and fetal oxygenation. Am J Obstet Gynecol (1989) 160(1):242–7.10.1016/0002-9378(89)90129-4
    1. Shinozuka N, Yen A, Nathanielsz PW. Alteration of fetal oxygenation and responses to acute hypoxemia by increased myometrial contracture frequency produced by pulse administration of oxytocin to the pregnant ewe from 96 to 131 days’ gestation. Am J Obstet Gynecol (1999) 180(5):1202–8.10.1016/S0002-9378(99)70617-4
    1. Alexander DP, Forsling ML, Martin MJ, Nixon DA, Ratcliffe JG, Redstone D, et al. The effect of maternal hypoxia on fetal pituitary hormone release in the sheep. Biol Neonate (1972) 21(3):219–28.10.1159/000240510
    1. Rurak DW. Plasma vasopressin levels during hypoxaemia and the cardiovascular effects of exogenous vasopressin in foetal and adult sheep. J Physiol (1978) 277:341–57.10.1113/jphysiol.1978.sp012275
    1. DeVane GW, Naden RP, Porter JC, Rosenfeld CR. Mechanism of arginine vasopressin release in the sheep fetus. Pediatr Res (1982) 16(6):504–7.10.1203/00006450-198206000-00021
    1. Durand P, Cathiard AM, Dacheux F, Naaman E, Saez JM. In vitro stimulation and inhibition of adrenocorticotropin release by pituitary cells from ovine fetuses and lambs. Endocrinology (1986) 118(4):1387–94.10.1210/endo-118-4-1387
    1. Levidiotis M, Oldfield B, Wintour EM. Corticotrophin-releasing factor and arginine vasopressin fibre projections to the median eminence of fetal sheep. Neuroendocrinology (1987) 46(5):453–6.10.1159/000124860
    1. Norman LJ, Challis JR. Synergism between systemic corticotropin-releasing factor and arginine vasopressin on adrenocorticotropin release in vivo varies as a function of gestational age in the ovine fetus. Endocrinology (1987) 120(3):1052–8.10.1210/endo-120-3-1052
    1. Faucher DJ, Laptook AR, Parker CR, Porter JC, Rosenfeld CR. Increased fetal secretion of ACTH and cortisol by arginine vasopressin. Am J Physiol (1988) 254(3 Pt 2):R410–6.
    1. Woudstra BR, Kim C, Aarnoudse JG, Nathanielsz PW. Myometrial contracture-related increases in plasma adrenocorticotropin in fetal sheep in the last third of gestation are abolished by maintaining fetal normoxemia. Endocrinology (1991) 129(4):1709–13.10.1210/endo-129-4-1709
    1. Forsling MLUEA. Non-osmotic stimulation of vasopressin release. Neurohypophysis (1977):128–35.
    1. L’Abate P, Wiegert S, Struck J, Wellmann S, Cannizzaro V. Determinants of plasma copeptin: a systematic investigation in a pediatric mechanical ventilation model. Respir Physiol Neurobiol (2013) 185(2):222–7.10.1016/j.resp.2012.10.011
    1. Ostergaard L, Rudiger A, Wellmann S, Gammella E, Beck-Schimmer B, Struck J, et al. Arginine-vasopressin marker copeptin is a sensitive plasma surrogate of hypoxic exposure. Hypoxia (2014) 2:143–51.10.2147/HP.S57894
    1. Wellmann S, Koslowski A, Spanaus K, Zimmermann R, Burkhardt T. Fetal release of copeptin in response to maternal oxytocin administration: a randomized controlled trial. Obstet Gynecol (2016).10.1097/AOG.0000000000001594
    1. Vuohelainen T, Ojala R, Virtanen A, Holm P, Tammela O. Predictors of delayed first voiding in newborn. Acta Paediatr (2008) 97(7):904–8.10.1111/j.1651-2227.2008.00809.x
    1. Flaherman VJ, Schaefer EW, Kuzniewicz MW, Li SX, Walsh EM, Paul IM. Early weight loss nomograms for exclusively breastfed newborns. Pediatrics (2015) 135(1):e16–23.10.1542/peds.2014-1532
    1. Wilbaux M, Kasser S, Wellmann S, Lapaire O, van den Anker JN, Pfister M. Characterizing and forecasting individual weight changes in term neonates. J Pediatr (2016) 173, 101–7.e110.10.1016/j.jpeds.2016.02.044
    1. Brown LA, Wood LH. Stimulation of surfactant secretion by vasopressin in primary cultures of adult rat type II pneumocytes. Biochim Biophys Acta (1989) 1001(1):76–81.10.1016/0005-2760(89)90309-3
    1. Brown LA, Chen M. Vasopressin signal transduction in rat type II pneumocytes. Am J Physiol (1990) 258(6 Pt 1):L301–7.
    1. Rios DR, Kaiser JR. Vasopressin versus dopamine for treatment of hypotension in extremely low birth weight infants: a randomized, blinded pilot study. J Pediatr (2015) 166(4):850–5.10.1016/j.jpeds.2014.12.027
    1. Glavind J, Uldbjerg N. Elective cesarean delivery at 38 and 39 weeks: neonatal and maternal risks. Curr Opin Obstet Gynecol (2015) 27(2):121–7.10.1097/gco.0000000000000158
    1. Albuquerque CA, Nijland MJ, Ross MG. Mechanism of arginine vasopressin suppression of ovine fetal lung fluid secretion: lack of V2-receptor effect. J Matern Fetal Med (1998) 7(4):177–82.10.1002/(SICI)1520-6661(199807/08)7:4<177::AID-MFM3>;2-Q
    1. Ross MG, Ervin G, Leake RD, Fu P, Fisher DA. Fetal lung liquid regulation by neuropeptides. Am J Obstet Gynecol (1984) 150(4):421–5.10.1016/S0002-9378(84)80151-9
    1. Perks AM, Kindler PM, Marshall J, Woods B, Craddock M, Vonder Muhll I. Lung liquid production by in vitro lungs from fetal guinea pigs: effects of arginine vasopressin and arginine vasotocin. J Dev Physiol (1993) 19(5):203–12.
    1. Cummings JJ, Carlton DP, Poulain FR, Fike CD, Keil LC, Bland RD. Vasopressin effects on lung liquid volume in fetal sheep. Pediatr Res (1995) 38(1):30–5.10.1203/00006450-199507000-00006
    1. Schorscher-Petcu A, Sotocinal S, Ciura S, Dupre A, Ritchie J, Sorge RE, et al. Oxytocin-induced analgesia and scratching are mediated by the vasopressin-1A receptor in the mouse. J Neurosci (2010) 30(24):8274–84.10.1523/jneurosci.1594-10.2010
    1. Juif PE, Poisbeau P. Neurohormonal effects of oxytocin and vasopressin receptor agonists on spinal pain processing in male rats. Pain (2013) 154(8):1449–56.10.1016/j.pain.2013.05.003
    1. Mavani GP, DeVita MV, Michelis MF. A review of the nonpressor and nonantidiuretic actions of the hormone vasopressin. Front Med (2015) 2:19.10.3389/fmed.2015.00019
    1. Iwamoto HS, Rudolph AM, Keil LC, Heymann MA. Hemodynamic responses of the sheep fetus to vasopressin infusion. Circ Res (1979) 44(3):430–6.10.1161/01.RES.44.3.430
    1. Altura BM, Altura BT. Actions of vasopressin, oxytocin, and synthetic analogs on vascular smooth muscle. Fed Proc (1984) 43(1):80–6.
    1. Holmes CL, Patel BM, Russell JA, Walley KR. Physiology of vasopressin relevant to management of septic shock. Chest (2001) 120(3):989–1002.10.1378/chest.120.3.989
    1. Svensson PJ, Bergqvist PB, Juul KV, Berntorp E. Desmopressin in treatment of haematological disorders and in prevention of surgical bleeding. Blood Rev (2014) 28(3):95–102.10.1016/j.blre.2014.03.001
    1. Echtler K, Stark K, Lorenz M, Kerstan S, Walch A, Jennen L, et al. Platelets contribute to postnatal occlusion of the ductus arteriosus. Nat Med (2010) 16(1):75–82.10.1038/nm.2060
    1. Sallmon H, Weber SC, von Gise A, Koehne P, Hansmann G. Ductal closure in neonates: a developmental perspective on platelet–endothelial interactions. Blood Coagul Fibrinolysis (2011) 22(3):242–4.10.1097/MBC.0b013e328344c5ed
    1. Szinnai G, Morgenthaler NG, Berneis K, Struck J, Muller B, Keller U, et al. Changes in plasma copeptin, the c-terminal portion of arginine vasopressin during water deprivation and excess in healthy subjects. J Clin Endocrinol Metab (2007) 92(10):3973–8.10.1210/jc.2007-0232
    1. Bhandari SS, Loke I, Davies JE, Squire IB, Struck J, Ng LL. Gender and renal function influence plasma levels of copeptin in healthy individuals. Clin Sci (Lond) (2009) 116(3):257–63.10.1042/cs20080140
    1. Meijer E, de Jong PE, Gansevoort RT. Vasopressin and microalbuminuria: is it vasopressin per se or is it salt intake? Kidney Int (2010) 77(9):832–3.10.1038/ki.2010.46
    1. Schnabel RB, Wild PS, Schulz A, Zeller T, Sinning CR, Wilde S, et al. Multiple endothelial biomarkers and noninvasive vascular function in the general population: the Gutenberg Health Study. Hypertension (2012) 60(2):288–95.10.1161/hypertensionaha.112.191874
    1. Blanchard A, Steichen O, De Mota N, Curis E, Gauci C, Frank M, et al. An abnormal apelin/vasopressin balance may contribute to water retention in patients with the syndrome of inappropriate antidiuretic hormone (SIADH) and heart failure. J Clin Endocrinol Metab (2013) 98(5):2084–9.10.1210/jc.2012-3794
    1. Lupton BA, Hill A, Roland EH, Whitfield MF, Flodmark O. Brain swelling in the asphyxiated term newborn: pathogenesis and outcome. Pediatrics (1988) 82(2):139–46.
    1. Lam TI, Wise PM, O’Donnell ME. Cerebral microvascular endothelial cell Na/H exchange: evidence for the presence of NHE1 and NHE2 isoforms and regulation by arginine vasopressin. Am J Physiol Cell Physiol (2009) 297(2):C278–89.10.1152/ajpcell.00093.2009
    1. Pearlmutter AF, Szkrybalo M, Kim Y, Harik SI. Arginine vasopressin receptors in pig cerebral microvessels, cerebral cortex and hippocampus. Neurosci Lett (1988) 87(1–2):121–6.10.1016/0304-3940(88)90156-5
    1. Ostrowski NL, Lolait SJ, Bradley DJ, O’Carroll AM, Brownstein MJ, Young WS, III. Distribution of V1a and V2 vasopressin receptor messenger ribonucleic acids in rat liver, kidney, pituitary and brain. Endocrinology (1992) 131(1):533–5.10.1210/endo.131.1.1535312
    1. Ostrowski NL, Lolait SJ, Young WS, III. Cellular localization of vasopressin V1a receptor messenger ribonucleic acid in adult male rat brain, pineal, and brain vasculature. Endocrinology (1994) 135(4):1511–28.10.1210/endo.135.4.7925112
    1. Zeynalov E, Jones SM, Seo JW, Snell LD, Elliott JP. Arginine-vasopressin receptor blocker conivaptan reduces brain edema and blood-brain barrier disruption after experimental stroke in mice. PLoS One (2015) 10(8):e0136121.10.1371/journal.pone.0136121
    1. Nakayama S, Amiry-Moghaddam M, Ottersen OP, Bhardwaj A. Conivaptan, a selective arginine vasopressin V and V Receptor antagonist attenuates global cerebral edema following experimental cardiac arrest via perivascular pool of aquaporin-4. Neurocrit Care (2016) 24(2):273–82.10.1007/s12028-015-0236-4
    1. Shuaib A, Xu Wang C, Yang T, Noor R. Effects of nonpeptide V(1) vasopressin receptor antagonist SR-49059 on infarction volume and recovery of function in a focal embolic stroke model. Stroke (2002) 33(12):3033–7.10.1161/01.STR.0000039405.31526.06
    1. Zhao XY, Zhang QS, Yang J, Sun FJ, Wang DX, Wang CH, et al. The role of arginine vasopressin in electroacupuncture treatment of primary sciatica in human. Neuropeptides (2015) 52:61–5.10.1016/j.npep.2015.06.002
    1. Dickinson LD, Betz AL. Attenuated development of ischemic brain edema in vasopressin-deficient rats. J Cereb Blood Flow Metab (1992) 12(4):681–90.10.1038/jcbfm.1992.93
    1. Kaplan SL, Feigin RD. Inappropriate secretion of antidiuretic hormone complicating neonatal hypoxic-ischemic encephalopathy. J Pediatr (1978) 92(3):431–3.10.1016/S0022-3476(78)80437-5
    1. Oh W. Renal function and fluid therapy in high risk infants. Biol Neonate (1988) 53(4):230–6.10.1159/000242795
    1. Kojima T, Isozaki Y, Hirata Y, Matsuzaki S, Kobayashi Y. Urinary arginine vasopressin excretion and hyponatremia in the sick neonates. Am J Perinatol (1992) 9(5–6):329–33.10.1055/s-2007-999257
    1. Gupta BD, Sharma P, Bagla J, Parakh M, Soni JP. Renal failure in asphyxiated neonates. Indian Pediatr (2005) 42(9):928–34.
    1. Basu P, Som S, Das H, Choudhuri N. Electrolyte status in birth asphyxia. Indian J Pediatr (2010) 77(3):259–62.10.1007/s12098-010-0034-0
    1. Buckingham JC, Loxley HD, Christian HC, Philip JG. Activation of the HPA axis by immune insults: roles and interactions of cytokines, eicosanoids, glucocorticoids. Pharmacol Biochem Behav (1996) 54(1):285–98.10.1016/0091-3057(95)02127-2
    1. Turnbull AV, Rivier CL. Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol Rev (1999) 79(1):1–71.
    1. Oosterbaan HP, Swaab DF, Boer GJ. Increased amniotic vasopressin levels in experimentally growth-retarded rat fetuses. J Dev Physiol (1985) 7(2):89–97.
    1. Burkhardt T, Schwabe S, Morgenthaler NG, Natalucci G, Zimmermann R, Wellmann S. Copeptin: a marker for stress reaction in fetuses with intrauterine growth restriction. Am J Obstet Gynecol (2012) 207(6):.e491–5.10.1016/j.ajog.2012.09.024
    1. Benzing J, Wellmann S, Achini F, Letzner J, Burkhardt T, Beinder E, et al. Plasma copeptin in preterm infants: a highly sensitive marker of fetal and neonatal stress. J Clin Endocrinol Metab (2011) 96(6):E982–5.10.1210/jc.2010-2858
    1. Shivanna B, Rios D, Rossano J, Fernandes CJ, Pammi M. Vasopressin and its analogues for the treatment of refractory hypotension in neonates. Cochrane Database Syst Rev (2013) 3:Cd009171.10.1002/14651858.CD009171.pub2
    1. Scheurer MA, Bradley SM, Atz AM. Vasopressin to attenuate pulmonary hypertension and improve systemic blood pressure after correction of obstructed total anomalous pulmonary venous return. J Thorac Cardiovasc Surg (2005) 129(2):464–6.10.1016/j.jtcvs.2004.06.043
    1. Papoff P, Caresta E, Versacci P, Grossi R, Midulla F, Moretti C. The role of terlipressin in the management of severe pulmonary hypertension in congenital diaphragmatic hernia. Paediatr Anaesth (2009) 19(8):805–6.10.1111/j.1460-9592.2009.03078.x
    1. Bidegain M, Greenberg R, Simmons C, Dang C, Cotten CM, Smith PB. Vasopressin for refractory hypotension in extremely low birth weight infants. J Pediatr (2010) 157(3):502–4.10.1016/j.jpeds.2010.04.038
    1. Mohamed A, Nasef N, Shah V, McNamara PJ. Vasopressin as a rescue therapy for refractory pulmonary hypertension in neonates: case series. Pediatr Crit Care Med (2014) 15(2):148–54.10.1097/PCC.0b013e31829f5fce

Source: PubMed

3
구독하다