Deep learning workflow in radiology: a primer

Emmanuel Montagnon, Milena Cerny, Alexandre Cadrin-Chênevert, Vincent Hamilton, Thomas Derennes, André Ilinca, Franck Vandenbroucke-Menu, Simon Turcotte, Samuel Kadoury, An Tang, Emmanuel Montagnon, Milena Cerny, Alexandre Cadrin-Chênevert, Vincent Hamilton, Thomas Derennes, André Ilinca, Franck Vandenbroucke-Menu, Simon Turcotte, Samuel Kadoury, An Tang

Abstract

Interest for deep learning in radiology has increased tremendously in the past decade due to the high achievable performance for various computer vision tasks such as detection, segmentation, classification, monitoring, and prediction. This article provides step-by-step practical guidance for conducting a project that involves deep learning in radiology, from defining specifications, to deployment and scaling. Specifically, the objectives of this article are to provide an overview of clinical use cases of deep learning, describe the composition of multi-disciplinary team, and summarize current approaches to patient, data, model, and hardware selection. Key ideas will be illustrated by examples from a prototypical project on imaging of colorectal liver metastasis. This article illustrates the workflow for liver lesion detection, segmentation, classification, monitoring, and prediction of tumor recurrence and patient survival. Challenges are discussed, including ethical considerations, cohorting, data collection, anonymization, and availability of expert annotations. The practical guidance may be adapted to any project that requires automated medical image analysis.

Keywords: Cohorting; Convolutional neural network; Deep learning; Medical imaging; Review article.

Conflict of interest statement

Samuel Kadoury has an industry research grant from Elekta Ltd. and NuVasive inc. The other authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Potential clinical uses of deep learning techniques. Tasks such as monitoring of treatment response or prediction of survival, can be derived from lesion detection, classification, and longitudinal follow-up
Fig. 2
Fig. 2
Expertise of team members
Fig. 3
Fig. 3
Concept of case selection based on clinical indication (left), imaging (middle), or pathology (right) findings
Fig. 4
Fig. 4
Types of learning. With supervised learning, the number of inputs (CT images in this example) equals numbers of targets (malignancy status of a lesion here). With semi-supervised, the number of inputs is greater than the number of targets (dataset includes unlabeled samples). With unsupervised learning, none of the inputs are labeled (e.g., clustering, manifold learning, restricted Boltzmann machines). N.A. indicates not available information
Fig. 5
Fig. 5
Example of data visualization: projection on first two dimensions of linear discriminant analysis (LDA) applied to radiomics features extracted from various types of lesions [58]
Fig. 6
Fig. 6
Division of dataset into training, validation, and test datasets. It is recommended to perform splitting at the very beginning of the workflow, keeping test data unseen to the model until final performance evaluation
Fig. 7
Fig. 7
Data sampling strategies. a The whole dataset is split in two distinct subsets for training and testing purposes. Training dataset is subdivided to perform cross-validation, (b) k-fold cross-validation. The training dataset is divided in k subsets of equal size. Training is performed sequentially, considering at each iteration a specific subset as validation set
Fig. 8
Fig. 8
Commonly used deep learning architectures. a Fully connected neural networks. b Convolutional neural networks for detection or classification. c U-net, for segmentation. d Legend illustrating the building blocks in various deep learning architectures

References

    1. Chartrand G, Cheng PM, Vorontsov E, et al. Deep learning: a primer for radiologists. Radiographics. 2017;37:2113–2131. doi: 10.1148/rg.2017170077.
    1. Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform. 2017;19:1236–1246. doi: 10.1093/bib/bbx044.
    1. Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88. doi: 10.1016/j.media.2017.07.005.
    1. Luo W, Phung D, Tran T, et al. Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view. J Med Internet Res. 2016;18:e323. doi: 10.2196/jmir.5870.
    1. Ben-Cohen Avi, Diamant Idit, Klang Eyal, Amitai Michal, Greenspan Hayit. Deep Learning and Data Labeling for Medical Applications. Cham: Springer International Publishing; 2016. Fully Convolutional Network for Liver Segmentation and Lesions Detection; pp. 77–85.
    1. Roth HR, Lu L, Liu J, et al. Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans Med Imaging. 2016;35:1170–1181. doi: 10.1109/TMI.2015.2482920.
    1. Yasaka K, Akai H, Abe O, Kiryu S. Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study. Radiology. 2017;286:887–896. doi: 10.1148/radiol.2017170706.
    1. Summers RM (2016) Progress in fully automated abdominal CT interpretation. AJR Am J Roentgenol. 10.2214/AJR.15.15996:1-13
    1. Vorontsov E, Cerny M, Régnier P et al (2019) Deep learning for automated segmentation of liver lesions at ct in patients with colorectal cancer liver metastases. Radiol Artif Intell 1:180014
    1. Yamashita R, Nishio M, Do RKG, Togashi K (2018) Convolutional neural networks: an overview and application in radiology. Insights Imaging:1–19
    1. Drozdzal M, Chartrand G, Vorontsov E, et al. Learning normalized inputs for iterative estimation in medical image segmentation. Med Image Anal. 2018;44:1–13. doi: 10.1016/j.media.2017.11.005.
    1. He K, Gkioxari G, Dollár P, Girshick RB (2017) Mask R-CNN. CoRR abs/1703.06870 (2017). Available via .
    1. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2015;278:563–577. doi: 10.1148/radiol.2015151169.
    1. Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–446. doi: 10.1016/j.ejca.2011.11.036.
    1. Sun J, Li H, Xu Z (2016) Deep ADMM-Net for compressive sensing MRI. Advances In Neural Information Processing Systems, pp 10-18
    1. Yang Q, Yan P, Zhang Y, et al. Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans Med Imaging. 2018;37:1348–1357. doi: 10.1109/TMI.2018.2827462.
    1. Higaki Toru, Nakamura Yuko, Tatsugami Fuminari, Nakaura Takeshi, Awai Kazuo. Improvement of image quality at CT and MRI using deep learning. Japanese Journal of Radiology. 2018;37(1):73–80. doi: 10.1007/s11604-018-0796-2.
    1. Li X, Chen H, Qi X, Dou Q, Fu C-W, Heng PA (2017) H-DenseUNet: hybrid densely connected UNet for liver and liver tumor segmentation from CT volumes. Available via . Accessed 15 Aug 2019
    1. Christ PF, Ettlinger F, Grün F et al (2017) Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks. Available via . Accessed 10 Aug 2019
    1. Prasad SR, Jhaveri KS, Saini S, Hahn PF, Halpern EF, Sumner JE. CT tumor measurement for therapeutic response assessment: comparison of unidimensional, bidimensional, and volumetric techniques initial observations. Radiology. 2002;225:416–419. doi: 10.1148/radiol.2252011604.
    1. Hayano K, Lee SH, Sahani DV. Imaging for assessment of treatment response in hepatocellular carcinoma: current update. Indian J Radiol Imaging. 2015;25:121–128. doi: 10.4103/0971-3026.155835.
    1. Gotra A, Sivakumaran L, Chartrand G, et al. Liver segmentation: indications, techniques and future directions. Insights Imaging. 2017;8:377–392. doi: 10.1007/s13244-017-0558-1.
    1. Henze J, Maintz D, Persigehl T (2016) RECIST 1.1, irRECIST 1.1, and mRECIST: How to Do. Curr Radiol Rep 4:48
    1. Gruber N, Antholzer S, Jaschke W, Kremser C, Haltmeier M (2019) A joint deep learning approach for automated liver and tumor segmentation. Available via . Accessed 18 Nov 2019
    1. Nancarrow SA, Booth A, Ariss S, Smith T, Enderby P, Roots A. Ten principles of good interdisciplinary team work. Hum Resour Health. 2013;11:19. doi: 10.1186/1478-4491-11-19.
    1. Rubbia-Brandt L, Giostra E, Brezault C, et al. Importance of histological tumor response assessment in predicting the outcome in patients with colorectal liver metastases treated with neo-adjuvant chemotherapy followed by liver surgery. Ann Oncol. 2006;18:299–304. doi: 10.1093/annonc/mdl386.
    1. Whitney CW, Lind BK, Wahl PW. Quality assurance and quality control in longitudinal studies. Epidemiol Rev. 1998;20:71–80. doi: 10.1093/oxfordjournals.epirev.a017973.
    1. Knatterud Genell L., Rockhold Frank W., George Stephen L., Barton Franca B., Davis C.E., Fairweather William R., Honohan Tom, Mowery Richard, O’Neill Robert. Guidelines for Quality Assurance in Multicenter Trials. Controlled Clinical Trials. 1998;19(5):477–493. doi: 10.1016/S0197-2456(98)00033-6.
    1. Nosowsky R, Giordano TJ. The Health Insurance Portability and Accountability Act of 1996 (HIPAA) privacy rule: implications for clinical research. Annu Rev Med. 2006;57:575–590. doi: 10.1146/annurev.med.57.121304.131257.
    1. Custers B, Dechesne F, Sears AM, Tani T, van der Hof S. A comparison of data protection legislation and policies across the EU. Comput Law Security Rev. 2018;34:234–243. doi: 10.1016/j.clsr.2017.09.001.
    1. Canadian Institute of Health Research (2018) Tri-council policy statement: Ethical Conduct for Research Involving Humans. Available via . Accessed 15 Nov 2019
    1. Ballantyne Angela, Schaefer G Owen. Consent and the ethical duty to participate in health data research. Journal of Medical Ethics. 2018;44(6):392–396. doi: 10.1136/medethics-2017-104550.
    1. Texas Cancer Research Biobank. Available via . Accessed 09-09-2019
    1. Manchester Cancer research Centre. Available via . Accessed 09-09-2019
    1. Cancer Research Network. Available via . Accessed 09-09-2019
    1. Jaremko JL, Azar M, Bromwich R et al (2019) Canadian Association of Radiologists White Paper on Ethical and Legal Issues Related to Artificial Intelligence in Radiology. Can Assoc Radiol J. 10.1016/j.carj.2019.03.001
    1. Pesapane F, Volonté C, Codari M, Sardanelli F. Artificial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the United States. Insights Imaging. 2018;9:745–753. doi: 10.1007/s13244-018-0645-y.
    1. Murphy J, Scott J, Kaufman D, Geller G, LeRoy L, Hudson K. Public perspectives on informed consent for biobanking. Am J Public Health. 2009;99:2128–2134. doi: 10.2105/AJPH.2008.157099.
    1. Nelson G (2015) Practical implications of sharing data: a primer on data privacy, anonymization, and de-identification. SAS Global Forum Proceedings
    1. Neubauer T, Heurix J. A methodology for the pseudonymization of medical data. Int J Med Inform. 2011;80:190–204. doi: 10.1016/j.ijmedinf.2010.10.016.
    1. Academy of Medical Sciences (2006) Personal data for public good: using health information in medical research. Available via . Accessed 4 Sept 2019
    1. Tang A, Tam R, Cadrin-Chênevert A et al (2018) Canadian Association of Radiologists white paper on artificial intelligence in radiology. Can Assoc Radiol J
    1. Aryanto K, Oudkerk M, van Ooijen P. Free DICOM de-identification tools in clinical research: functioning and safety of patient privacy. Eur Radiol. 2015;25:3685–3695. doi: 10.1007/s00330-015-3794-0.
    1. DICOM Library. Available via . Accessed 04-09-2019
    1. Medical Imaging Resource Center Radiological Society of North America Association. Available via . Accessed 04-09-2019
    1. Chennubhotla C., Clarke L. P., Fedorov A., Foran D., Harris G., Helton E., Nordstrom R., Prior F., Rubin D., Saltz J. H., Shalley E., Sharma A. An Assessment of Imaging Informatics for Precision Medicine in Cancer. Yearbook of Medical Informatics. 2017;26(01):110–119. doi: 10.15265/IY-2017-041.
    1. Gebru T, Morgenstern J, Vecchione B et al (2018) Datasheets for datasets. Available via . Accessed 22 Aug 2019
    1. Thirumuruganathan S, Tang N, Ouzzani M (2018) Data Curation with Deep Learning [Vision]: Towards Self Driving Data Curation. Available via . Accessed 12 Aug 2019
    1. Channin DS, Mongkolwat P, Kleper V, Rubin DL. The Annotation and Image Mark-up Project. Radiology. 2009;253:590–592. doi: 10.1148/radiol.2533090135.
    1. Wolf I, Vetter M, Wegner I et al (2004) The medical imaging interaction toolkit (MITK): a toolkit facilitating the creation of interactive software by extending VTK and ITK. Proc. SPIE 5367, Medical Imaging 2004: Visualization, Image-Guided Procedures, and Display, pp 16-27
    1. Zhu X, Goldberg AB (2009) Introduction to semi-supervised learning (synthesis lectures on artificial intelligence and machine learning). Morgan and Claypool Publishers 14
    1. Hinton GE, Sejnowski TJ, Poggio TA (1999) Unsupervised learning: foundations of neural computation. MIT press
    1. Bengio Y. Learning Deep Architectures for AI. Foundations and Trends® in. Machine Learning. 2009;2:1–127. doi: 10.1561/2200000006.
    1. Pedregosa F, Varoquaux G, Gramfort A et al (2012) Scikit-learn: machine learning in Python. Available via . Accessed 10 Apr 2019
    1. Papandreou G, Chen L-C, Murphy KP, Yuille AL (2015) Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation. Proceedings of the IEEE international conference on computer vision, pp 1742-1750
    1. Ratner A, Bach S, Varma P, Ré C (2017) Weak supervision: the new programming paradigm for machine learning. Hazy Research. Available via . Accessed 05-09-2019
    1. Wang Y, Yao Q, Kwok J, Ni LM (2019) Few-shot learning: A survey. Available via . Accessed 12 Aug 2019
    1. Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp 249-256
    1. Rodriguez JD, Perez A, Lozano JA. Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans Pattern Anal Mach Intell. 2009;32:569–575. doi: 10.1109/TPAMI.2009.187.
    1. Goodfellow I, Bengio Y, Courville A. Deep Learning. 1. Cambridge: MIT Press; 2016.
    1. Erickson BJ, Korfiatis P, Akkus Z, Kline T, Philbrick K. Toolkits and libraries for deep learning. J Digit Imaging. 2017;30:400–405. doi: 10.1007/s10278-017-9965-6.
    1. Abadi M, Agarwal A, Barham P et al (2015) TensorFlow: large-scale machine learning on heterogeneous distributed systems. Preliminary White Paper, November 9, 2015
    1. Paszke A, Gross S, Chintala S, Chanan G (2017) Pytorch: tensors and dynamic neural networks in python with strong GPU acceleration. Pytorch: tensors and dynamic neural networks in python with strong gpu acceleration 6
    1. Chollet F (2015) Keras. Available via . Accessed 7 Jan 2019
    1. Dieleman S, Schlüter J, Raffel C et al (2015) Lasagne. Available via 10.5281/zenodo.27878. 10.5281/zenodo.27878
    1. Jia Y, Shelhamer E, Donahue J et al (2014) Caffe: Convolutional architecture for fast feature embedding. Proceedings of the 22nd ACM international conference on Multimedia. ACM, pp 675-678
    1. Soffer S, Ben-Cohen A, Shimon O, Amitai MM, Greenspan H, Klang E. Convolutional neural networks for radiologic images: a radiologist’s guide. Radiology. 2019;290:590–606. doi: 10.1148/radiol.2018180547.
    1. Krizhevesky A, Sutskever I, Hinton G (2012) ImageNet classification with deep convolutional neural networks. Advances in neural information processing systems 25 (NIPS 2012)
    1. Summers RM. Progress in fully automated abdominal CT interpretation. AJR Am J Roentgenol. 2016;207:67–79. doi: 10.2214/AJR.15.15996.
    1. Otter DW, Medina JR, Kalita JK (2018) A survey of the usages of deep learning in natural language processing. Available via . Accessed 10 Aug 2019
    1. Thrun S, Pratt L (2012) Learning to learn. Springer Science & Business Media
    1. Walter S. D. The partial area under the summary ROC curve. Statistics in Medicine. 2005;24(13):2025–2040. doi: 10.1002/sim.2103.
    1. Raina R, Madhavan A, Ng AY (2009) Large-scale deep unsupervised learning using graphics processors. Proceedings of the 26th Annual International Conference on Machine Learning. ACM, Montreal, Quebec, Canada, pp 873–880
    1. Wei G-Y, Brooks D (2019) Benchmarking TPU, GPU, and CPU platforms for deep learning. Available via . Accessed 18 Nov 2019
    1. Kaleeswari C, Maheswari P, Kuppusamy K, Jeyabalu M (2018) A brief review on cloud security scenarios. International Journal of Scientific Research in Science and Technology
    1. Cho J, Lee K, Shin E, Choy G, Do S (2015) How much data is needed to train a medical image deep learning system to achieve necessary high accuracy? Available via . Accessed 5 Aug 2019
    1. Bernstein D. Containers and cloud: from LXC to Docker to Kubernetes. IEEE Cloud Comput. 2014;1:81–84. doi: 10.1109/MCC.2014.51.
    1. Boettiger C (2015) An introduction to Docker for reproducible research. Available via . Accessed 24 Mar 2019
    1. Hightower K, Burns B, Beda J (2017) Kubernetes: up and running dive into the future of infrastructure. O'Reilly Media, Inc.
    1. Spanou D (2013) Software as a Medical Device (SaMD): key definitions. IMDRF SaMD Working Group
    1. Forum IMDR (2017) Software as a Medical Device (SaMD): clinical evaluation. Available via . Accessed 22 Nov 2019
    1. IEC I (2006) 62304: 2006 Medical device software–software life cycle processes. International Electrotechnical Commission, Geneva
    1. US Food and Drug Administration (2019) Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-based Software as a Medical Device (SaMD). Available via . Accessed 2019 Nov 15

Source: PubMed

3
구독하다