Modulation of Dorsolateral Prefrontal Cortex Glutamate/Glutamine Levels Following Repetitive Transcranial Magnetic Stimulation in Young Adults With Autism

Iska Moxon-Emre, Zafiris J Daskalakis, Daniel M Blumberger, Paul E Croarkin, Rachael E Lyon, Natalie J Forde, Hideaki Tani, Peter Truong, Meng-Chuan Lai, Pushpal Desarkar, Napapon Sailasuta, Peter Szatmari, Stephanie H Ameis, Iska Moxon-Emre, Zafiris J Daskalakis, Daniel M Blumberger, Paul E Croarkin, Rachael E Lyon, Natalie J Forde, Hideaki Tani, Peter Truong, Meng-Chuan Lai, Pushpal Desarkar, Napapon Sailasuta, Peter Szatmari, Stephanie H Ameis

Abstract

Altered excitatory and inhibitory neurotransmission has been implicated in autism spectrum disorder (ASD). Interventions using repetitive transcranial magnetic stimulation (rTMS) to enhance or inhibit cortical excitability are under study for various targets, though the mechanistic effects of rTMS have yet to be examined in ASD. Here, we examined whether an excitatory rTMS treatment course modulates glutamatergic (Glx) or γ-aminobutyric acid (GABA) metabolite levels in emerging adults with ASD. Twenty-eight participants with ASD and executive function impairment [23.3 ± 4.69 years; seven-female] underwent two magnetic resonance spectroscopy (MRS) scans of the left dorsolateral prefrontal cortex (DLPFC). MRS scans were acquired before and after participants with ASD were randomized to receive a 20-session course of active or sham rTMS to the DLPFC. Baseline MRS data was available for 19 typically developing controls [23.8 ± 4.47 years; six-female]. Metabolite levels for Glx and GABA+ were compared between ASD and control groups, at baseline, and metabolite level change, pre-to-post-rTMS treatment, was compared in ASD participants that underwent active vs. sham rTMS. Absolute change in Glx was greater in the active vs. sham-rTMS group [F (1, 19) = 6.54, p = 0.02], though the absolute change in GABA+ did not differ between groups. We also examined how baseline metabolite levels related to pre/post-rTMS metabolite level change, in the active vs. sham groups. rTMS group moderated the relation between baseline Glx and pre-to-post-rTMS Glx change, such that baseline Glx predicted Glx change in the active-rTMS group only [b = 1.52, SE = 0.32, t (18) = 4.74, p < 0.001]; Glx levels increased when baseline levels were lower, and decreased when baseline levels were higher. Our results indicate that an interventional course of excitatory rTMS to the DLPFC may modulate local Glx levels in emerging adults with ASD, and align with prior reports of glutamatergic alterations following rTMS. Interventional studies that track glutamatergic markers may provide mechanistic insights into the therapeutic potential of rTMS in ASD. Clinical Trial Registration: Clinicaltrials.gov (ID: NCT02311751), https://ichgcp.net/clinical-trials-registry/NCT02311751?term=ameis&rank=1; NCT02311751.

Keywords: GABA; Glx; MEGA-PRESS; autism spectrum disorder; dorsolateral prefrontal cortex; magnetic resonance spectography; repetitive transcranial magnetic simulation.

Conflict of interest statement

ZJD received research support and in-kind equipment support for an investigator-initiated study from Brainsway Ltd. He has also received in-kind equipment support from Magventure for investigator-initiated research. DMB received research support and in-kind equipment support for an investigator-initiated study from Brainsway Ltd., and he is the site principal investigator for three sponsor-initiated studies for Brainsway Ltd. He receives in-kind equipment support from Magventure for investigator-initiated research. He received medication supplies for an investigator-initiated trial from Indivior. He has participated in an advisory board for Janssen. PEC has received research grant support from Pfizer Inc.; equipment support from Neuronetics Inc.; and received supplies and genotyping services from Assurex Health Inc., for investigator-initiated studies. He is the primary investigator for a multicenter study funded by Neuronetics Inc., and a site primary investigator for a study funded by NeoSync Inc. He has served as a paid consultant for Procter & Gamble Company and Myriad Neuroscience. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Moxon-Emre, Daskalakis, Blumberger, Croarkin, Lyon, Forde, Tani, Truong, Lai, Desarkar, Sailasuta, Szatmari and Ameis.

Figures

FIGURE 1
FIGURE 1
1H-MRS voxel position, tissue segmentation, and representative spectra from a single participant. (A) 20 mm × 40 mm × 30 mm voxel, placed in the left dorsolateral prefrontal cortex (DLPFC). (B) Segmentation of T1-weighted MRI, used to correct water-scaled metabolite concentrations for voxel tissue composition. Gray matter (blue), white matter (yellow), and CSF (red). (C) Sample output from the MEGA-PRESS sequence, with representative fits of GABA+ and Glx peaks shown in the edited spectrum.
FIGURE 2
FIGURE 2
Pre- and post-rTMS GABA+, Glx, and GABA+/Glx ratio, in the left dorsolateral prefrontal cortex (DLPFC). (A–C) Levels of pre- and post-rTMS metabolites (GABA+, Glx) and the GABA+/Glx ratio, in the full ASD sample with MRS data; active rTMS (pre: n = 16; post: n = 12), sham rTMS (pre: n = 12; post: n = 12). Black lines denote the group medians. (D–F) Each participant is indicated by a pre-/post-rTMS pair of points, connected by a line. Unconnected points are from participants with MRS scans at a single time point. Active rTMS (pre: n = 16; post: n = 12), sham rTMS (pre: n = 12; post: n = 12). (G–I) The absolute value of the change in metabolites from pre- to post-rTMS in the ASD sample with matched pre- and post-rTMS scans only; active rTMS (n = 12), sham rTMS (n = 10). Black lines denote the group medians. *The absolute value change in Glx level was greater in the active compared to the sham rTMS group [F(1,19) = 6.54, p = 0.02].
FIGURE 3
FIGURE 3
Active rTMS modulates Glx levels. (A) Associations between Glx levels at baseline, and change in Glx from pre- to post-rTMS in the left dorsolateral prefrontal cortex (DLPFC), in the active and sham rTMS groups; active rTMS (n = 12), sham rTMS (n = 10). Baseline Glx was associated with Glx change in the active rTMS group only: b = 1.49, SE = 0.31, t(18) = 4.77, p < 0.001. (B) To visually demonstrate that Glx level increased in participants with lower baseline Glx levels, and that Glx level decreased in participants with higher baseline Glx levels, in the active rTMS group only, participants were stratified according to the median split of the baseline Glx level (median Glx level for entire ASD sample = 0.12) and their pre-/post-rTMS pair of points were plotted.

References

    1. Aiken L. S., West S. G. (1991). Multiple Regression: Testing and Interpreting Interactions. Thousand Oaks: Sage Publications, Inc.
    1. Ajram L. A., Horder J., Mendez M. A., Galanopoulos A., Brennan L. P., Wichers R. H., et al. (2017). Shifting brain inhibitory balance and connectivity of the prefrontal cortex of adults with autism spectrum disorder. Transl. Psychiatry 7:e1137. 10.1038/tp.2017.104
    1. Ajram L. A., Pereira A. C., Durieux A. M. S., Velthius H. E., Petrinovic M. M., McAlonan G. M. (2019). The contribution of [1H] magnetic resonance spectroscopy to the study of excitation-inhibition in autism. Prog. Neuropsychopharmacol. Biol. Psychiatry 89 236–244. 10.1016/j.pnpbp.2018.09.010
    1. Ameis S. H., Blumberger D. M., Croarkin P. E., Mabbott D. J., Meng-Chuan L., Desarkar P., et al. (2020). Treatment of executive function deficits in autism spectrum disorder with repetitive transcranial magnetic stimulation: a double-blind, sham-controlled, pilot trial. Brain Stimul. 13 539–547.
    1. Ameis S. H., Daskalakis Z. J., Blumberger D. M., Desarkar P., Drmic I., Mabbott D. J., et al. (2017). Repetitive transcranial magnetic stimulation for the treatment of executive function deficits in autism spectrum disorder: clinical trial approach. J. Child Adolesc. Psychopharmacol. 27 413–421. 10.1089/cap.2016.0146
    1. Aoki Y., Abe O., Yahata N., Kuwabara H., Natsubori T., Iwashiro N., et al. (2012). Absence of age-related prefrontal NAA change in adults with autism spectrum disorders. Transl. Psychiatry 2:e178. 10.1038/tp.2012.108
    1. Baeken C., Lefaucheur J. P., Van Schuerbeek P. (2017). The impact of accelerated high frequency rTMS on brain neurochemicals in treatment-resistant depression: insights from (1)H MR spectroscopy. Clin. Neurophysiol. 128 1664–1672. 10.1016/j.clinph.2017.06.243
    1. Bak L. K., Schousboe A., Waagepetersen H. S. (2006). The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J. Neurochem. 98 641–653. 10.1111/j.1471-4159.2006.03913.x
    1. Barahona-Correa J. B., Velosa A., Chainho A., Lopes R., Oliveira-Maia A. J. (2018). repetitive transcranial magnetic stimulation for treatment of autism spectrum disorder: a systematic review and meta-analysis. Front. Integr. Neurosci. 12:27. 10.3389/fnint.2018.00027
    1. Barr M. S., Farzan F., Rajji T. K., Voineskos A. N., Blumberger D. M., Arenovich T., et al. (2013). Can repetitive magnetic stimulation improve cognition in schizophrenia? Pilot data from a randomized controlled trial. Biol. Psychiatry 73 510–517. 10.1016/j.biopsych.2012.08.020
    1. Baruth J. M., Casanova M. F., El-Baz A., Horrell T., Mathai G., Sears L., et al. (2010). Low-frequency repetitive transcranial magnetic stimulation (rTMS) modulates evoked-gamma frequency oscillations in autism spectrum disorder (ASD). J. Neurother. 14 179–194. 10.1080/10874208.2010.501500
    1. Benjamini Y., Hochberg Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B (Methodol.) 57 289–300.
    1. Benson N., Hulac D. M., Kranzler J. H. (2010). Independent examination of the wechsler adult intelligence scale-fourth edition (WAIS-IV): what does the WAIS-IV measure? Psychol. Assess. 22 121–130. 10.1037/a0017767
    1. Bernardi S., Anagnostou E., Shen J., Kolevzon A., Buxbaum J. D., Hollander E., et al. (2011). In vivo 1H-magnetic resonance spectroscopy study of the attentional networks in autism. Brain Res. 1380 198–205. 10.1016/j.brainres.2010.12.057
    1. Brix M. K., Ersland L., Hugdahl K., Gruner R., Posserud M. B., Hammar A., et al. (2015). Brain MR spectroscopy in autism spectrum disorder-the GABA excitatory/inhibitory imbalance theory revisited. Front. Hum. Neurosci. 9:365. 10.3389/fnhum.2015.00365
    1. Brown M. S., Singel D., Hepburn S., Rojas D. C. (2013). Increased glutamate concentration in the auditory cortex of persons with autism and first-degree relatives: a (1)H-MRS study. Autism Res. 6 1–10. 10.1002/aur.1260
    1. Carvalho Pereira A., Violante I. R., Mouga S., Oliveira G., Castelo-Branco M. (2018). Medial frontal lobe neurochemistry in autism spectrum disorder is marked by reduced N-Acetylaspartate and unchanged gamma-aminobutyric acid and glutamate + glutamine levels. J. Autism Dev. Disord. 48 1467–1482. 10.1007/s10803-017-3406-8
    1. Casanova M. F., Baruth J. M., El-Baz A., Tasman A., Sears L., Sokhadze E. (2012). Repetitive transcranial magnetic stimulation (rTMS) modulates event-related potential (ERP) indices of attention in autism. Transl. Neurosci. 3 170–180. 10.2478/s13380-012-0022-0
    1. Choi I. Y., Lee S. P., Merkle H., Shen J. (2006). In vivo detection of gray and white matter differences in GABA concentration in the human brain. Neuroimage 33 85–93. 10.1016/j.neuroimage.2006.06.016
    1. Croarkin P. E., Nakonezny P. A., Wall C. A., Murphy L. L., Sampson S. M., Frye M. A., et al. (2016). Transcranial magnetic stimulation potentiates glutamatergic neurotransmission in depressed adolescents. Psychiatry Res. Neuroimaging 247 25–33. 10.1016/j.pscychresns.2015.11.005
    1. Da Silva T., Hafizi S., Rusjan P. M., Houle S., Wilson A. A., Prce I., et al. (2019). GABA levels and TSPO expression in people at clinical high risk for psychosis and healthy volunteers: a PET-MRS study. J. Psychiatry Neurosci. 44 111–119. 10.1503/jpn.170201
    1. Daskalakis Z. J., Moller B., Christensen B. K., Fitzgerald P. B., Gunraj C., Chen R. (2006). The effects of repetitive transcranial magnetic stimulation on cortical inhibition in healthy human subjects. Exp. Brain Res. 174 403–412. 10.1007/s00221-006-0472-0
    1. Dayan E., Censor N., Buch E. R., Sandrini M., Cohen L. G. (2013). Noninvasive brain stimulation: from physiology to network dynamics and back. Nat. Neurosci. 16 838–844. 10.1038/nn.3422
    1. Dlabac-de Lange J. J., Liemburg E. J., Bais L., van de Poel-Mustafayeva A. T., de Lange-de Klerk E. S. M., Knegtering H., et al. (2017). Effect of Bilateral Prefrontal rTMS on left prefrontal NAA and Glx levels in schizophrenia patients with predominant negative symptoms: an exploratory study. Brain Stimul. 10 59–64. 10.1016/j.brs.2016.08.002
    1. Dubin M. J., Mao X., Banerjee S., Goodman Z., Lapidus K. A., Kang G., et al. (2016). Elevated prefrontal cortex GABA in patients with major depressive disorder after TMS treatment measured with proton magnetic resonance spectroscopy. J. Psychiatry Neurosci. 41 E37–E45. 10.1503/jpn.150223
    1. Edden R. A., Puts N. A., Harris A. D., Barker P. B., Evans C. J. (2014). Gannet: a batch-processing tool for the quantitative analysis of gamma-aminobutyric acid-edited MR spectroscopy spectra. J. Magn. Reson Imaging 40 1445–1452. 10.1002/jmri.24478
    1. Endres D., Tebartz, van Elst L., Meyer S. A., Feige B., Nickel K., et al. (2017). Glutathione metabolism in the prefrontal brain of adults with high-functioning autism spectrum disorder: an MRS study. Mol. Autism 8:10. 10.1186/s13229-017-0122-3
    1. Enticott P. G., Fitzgibbon B. M., Kennedy H. A., Arnold S. L., Elliot D., Peachey A., et al. (2014). A double-blind, randomized trial of deep repetitive transcranial magnetic stimulation (rTMS) for autism spectrum disorder. Brain Stimul. 7 206–211. 10.1016/j.brs.2013.10.004
    1. Ferland M. C., Therrien-Blanchet J. M., Lefebvre G., Klees-Themens G., Proulx S., Theoret H. (2019). Longitudinal assessment of (1)H-MRS (GABA and Glx) and TMS measures of cortical inhibition and facilitation in the sensorimotor cortex. Exp. Brain Res. 237 3461–3474. 10.1007/s00221-019-05691-z
    1. Ford T. C., Crewther D. P. (2016). A comprehensive review of the (1)H-MRS metabolite spectrum in autism spectrum disorder. Front. Mol. Neurosci. 9:14. 10.3389/fnmol.2016.00014
    1. Gasparovic C., Song T., Devier D., Bockholt H. J., Caprihan A., Mullins P. G., et al. (2006). Use of tissue water as a concentration reference for proton spectroscopic imaging. Magn. Reson. Med. 55 1219–1226. 10.1002/mrm.20901
    1. George M. S., Padberg F., Schlaepfer T. E., O’Reardon J. P., Fitzgerald P. B., Nahas Z. H., et al. (2009). Controversy: repetitive transcranial magnetic stimulation or transcranial direct current stimulation shows efficacy in treating psychiatric diseases (depression, mania, schizophrenia, obsessive-complusive disorder, panic, posttraumatic stress disorder). Brain Stimul. 2 14–21. 10.1016/j.brs.2008.06.001
    1. Gioia G. A., Isquith P. K., Retzlaff P. D., Espy K. A. (2002). Confirmatory factor analysis of the behavior rating inventory of executive function (BRIEF) in a clinical sample. Child Neuropsychol. 8 249–257. 10.1076/chin.8.4.249.13513
    1. Guse B., Falkai P., Wobrock T. (2010). Cognitive effects of high-frequency repetitive transcranial magnetic stimulation: a systematic review. J. Neural Transm. (Vienna) 117 105–122. 10.1007/s00702-009-0333-7
    1. Gwynette M. F., Lowe D. W., Henneberry E. A., Sahlem G. L., Wiley M. G., Alsarraf H., et al. (2020). Treatment of adults with autism and major depressive disorder using transcranial magnetic stimulation: an open label pilot study. Autism Res. 13 346–351. 10.1002/aur.2266
    1. Hancu I., Port J. (2011). The case of the missing glutamine. NMR Biomed. 24 529–535. 10.1002/nbm.1620
    1. Harada M., Taki M. M., Nose A., Kubo H., Mori K., Nishitani H., et al. (2011). Non-invasive evaluation of the GABAergic/glutamatergic system in autistic patients observed by MEGA-editing proton MR spectroscopy using a clinical 3 tesla instrument. J. Autism Dev. Disord. 41 447–454. 10.1007/s10803-010-1065-0
    1. Harris A. D., Puts N. A., Edden R. A. (2015). Tissue correction for GABA-edited MRS: considerations of voxel composition, tissue segmentation, and tissue relaxations. J. Magn. Reson. Imaging 42 1431–1440. 10.1002/jmri.24903
    1. Horder J., Lavender T., Mendez M. A., O’Gorman R., Daly E., Craig M. C., et al. (2013). Reduced subcortical glutamate/glutamine in adults with autism spectrum disorders: a [(1)H]MRS study. Transl. Psychiatry 3:e279. 10.1038/tp.2013.53
    1. Horder J., Petrinovic M. M., Mendez M. A., Bruns A., Takumi T., Spooren W., et al. (2018). Glutamate and GABA in autism spectrum disorder-a translational magnetic resonance spectroscopy study in man and rodent models. Transl. Psychiatry 8:106. 10.1038/s41398-018-0155-1
    1. Huang Y. Z., Chen R. S., Rothwell J. C., Wen H. Y. (2007). The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin. Neurophysiol. 118 1028–1032. 10.1016/j.clinph.2007.01.021
    1. Kearney-Ramos T. E., Dowdle L. T., Mithoefer O. J., Devries W., George M. S., Hanlon C. A. (2019). State-dependent effects of ventromedial prefrontal cortex continuous thetaburst stimulation on cocaine cue reactivity in chronic cocaine users. Front. Psychiatry 10:317. 10.3389/fpsyt.2019.00317
    1. Kirkovski M., Suo C., Enticott P. G., Yucel M., Fitzgerald P. B. (2018). Short communication: sex-linked differences in gamma-aminobutyric acid (GABA) are related to social functioning in autism spectrum disorder. Psychiatry Res. Neuroimaging 274 19–22. 10.1016/j.pscychresns.2018.02.004
    1. Kubas B., Kulak W., Sobaniec W., Tarasow E., Lebkowska U., Walecki J. (2012). Metabolite alterations in autistic children: a 1H MR spectroscopy study. Adv. Med. Sci. 57 152–156. 10.2478/v10039-012-0014-x
    1. Lai M. C., Anagnostou E., Wiznitzer M., Allison C., Baron-Cohen S. (2020). Evidence-based support for autistic people across the lifespan: maximising potential, minimising barriers, and optimising the person-environment fit. Lancet Neurol. 19 434–451. 10.1016/S1474-4422(20)30034-X
    1. Leuchter A. F., Cook I. A., Jin Y., Phillips B. (2013). The relationship between brain oscillatory activity and therapeutic effectiveness of transcranial magnetic stimulation in the treatment of major depressive disorder. Front. Hum. Neurosci. 7:37. 10.3389/fnhum.2013.00037
    1. Levitt J. G., Kalender G., O’Neill J., Diaz J. P., Cook I. A., Ginder N., et al. (2019). Dorsolateral prefrontal gamma-aminobutyric acid in patients with treatment-resistant depression after transcranial magnetic stimulation measured with magnetic resonance spectroscopy. J. Psychiatry Neurosci. 44 386–394. 10.1503/jpn.180230
    1. Lord C., Risi S., Lambrecht L., Cook E. H., Jr., Leventhal B. L., DiLavore P. C., et al. (2000). The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J. Autism Dev. Disord. 30 205–223.
    1. Low R. N., Francis I. R., Herfkens R. J., Jeffrey R. B., Jr., Glazer G. M., Foo T. K., et al. (1993). Fast multiplanar spoiled gradient-recalled imaging of the liver: pulse sequence optimization and comparison with spin-echo MR imaging. AJR Am. J. Roentgenol. 160 501–509. 10.2214/ajr.160.3.8381572
    1. Luborzewski A., Schubert F., Seifert F., Danker-Hopfe H., Brakemeier E. L., Schlattmann P., et al. (2007). Metabolic alterations in the dorsolateral prefrontal cortex after treatment with high-frequency repetitive transcranial magnetic stimulation in patients with unipolar major depression. J. Psychiatr. Res. 41 606–615. 10.1016/j.jpsychires.2006.02.003
    1. Lujan R., Shigemoto R., Lopez-Bendito G. (2005). Glutamate and GABA receptor signalling in the developing brain. Neuroscience 130 567–580. 10.1016/j.neuroscience.2004.09.042
    1. Michael N., Gosling M., Reutemann M., Kersting A., Heindel W., Arolt V., et al. (2003). Metabolic changes after repetitive transcranial magnetic stimulation (rTMS) of the left prefrontal cortex: a sham-controlled proton magnetic resonance spectroscopy (1H MRS) study of healthy brain. Eur. J. Neurosci. 17 2462–2468. 10.1046/j.1460-9568.2003.02683.x
    1. Mikkelsen M., Rimbault D. L., Barker P. B., Bhattacharyya P. K., Brix M. K., Buur P. F., et al. (2019). Big GABA II: water-referenced edited MR spectroscopy at 25 research sites. Neuroimage 191 537–548. 10.1016/j.neuroimage.2019.02.059
    1. Oberman L., Eldaief M., Fecteau S., Ifert-Miller F., Tormos J. M., Pascual-Leone A. (2012). Abnormal modulation of corticospinal excitability in adults with Asperger’s syndrome. Eur. J. Neurosci. 36 2782–2788. 10.1111/j.1460-9568.2012.08172.x
    1. Oberman L. M., Ifert-Miller F., Najib U., Bashir S., Heydrich J. G., Picker J., et al. (2016). Abnormal mechanisms of plasticity and metaplasticity in autism spectrum disorders and fragile X syndrome. J. Child. Adolesc. Psychopharmacol. 26 617–624. 10.1089/cap.2015.0166
    1. Page L. A., Daly E., Schmitz N., Simmons A., Toal F., Deeley Q., et al. (2006). In vivo 1H-magnetic resonance spectroscopy study of amygdala-hippocampal and parietal regions in autism. Am. J. Psychiatry 163 2189–2192. 10.1176/appi.ajp.163.12.2189
    1. Plewnia C., Lotze M., Gerloff C. (2003). Disinhibition of the contralateral motor cortex by low-frequency rTMS. Neuroreport 14 609–612. 10.1097/00001756-200303240-00017
    1. Polania R., Nitsche M. A., Ruff C. C. (2018). Studying and modifying brain function with non-invasive brain stimulation. Nat. Neurosci. 21 174–187. 10.1038/s41593-017-0054-4
    1. Pretzsch C. M., Freyberg J., Voinescu B., Lythgoe D., Horder J., Mendez M. A., et al. (2019a). Effects of cannabidiol on brain excitation and inhibition systems; a randomised placebo-controlled single dose trial during magnetic resonance spectroscopy in adults with and without autism spectrum disorder. Neuropsychopharmacology 44 1398–1405. 10.1038/s41386-019-0333-8
    1. Pretzsch C. M., Voinescu B., Lythgoe D., Horder J., Mendez M. A., Wichers R., et al. (2019b). Effects of cannabidivarin (CBDV) on brain excitation and inhibition systems in adults with and without Autism Spectrum Disorder (ASD): a single dose trial during magnetic resonance spectroscopy. Transl. Psychiatry 9:313. 10.1038/s41398-019-0654-8
    1. Provencher S. W. (1993). Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson Med. 30 672–679. 10.1002/mrm.1910300604
    1. Rae C. D. (2014). A guide to the metabolic pathways and function of metabolites observed in human brain 1H magnetic resonance spectra. Neurochem. Res. 39 1–36. 10.1007/s11064-013-1199-5
    1. Sheehan D. V., Lecrubier Y., Sheehan K. H., Amorim P., Janavs J., Weiller E., et al. (1998). The mini-international neuropsychiatric interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 59(Suppl. 20) 22–33;quiz 34-57.,
    1. Silvanto J., Muggleton N., Walsh V. (2008). State-dependency in brain stimulation studies of perception and cognition. Trends Cogn. Sci. 12 447–454. 10.1016/j.tics.2008.09.004
    1. Simpson R., Devenyi G. A., Jezzard P., Hennessy T. J., Near J. (2017). Advanced processing and simulation of MRS data using the FID appliance (FID-A)-An open source, MATLAB-based toolkit. Magn. Reson. Med. 77 23–33. 10.1002/mrm.26091
    1. Smith S. A., Levante T. O., Meier B. H., Ernst R. R. (1994). Computer simulations in magnetic resonance. An object-oriented programming approach. J. Magn. Reson. A 106 75–105.
    1. Smith-Hicks C. L. (2013). GABAergic dysfunction in pediatric neuro-developmental disorders. Front. Cell Neurosci. 7:269. 10.3389/fncel.2013.00269
    1. Sokhadze E. M., Baruth J. M., Sears L., Sokhadze G. E., El-Baz A. S., Casanova M. F. (2012). Prefrontal neuromodulation using rTMS improves error monitoring and correction function in autism. Appl. Psychophysiol. Biofeedback 37 91–102. 10.1007/s10484-012-9182-5
    1. Sokhadze E. M., El-Baz A., Baruth J., Mathai G., Sears L., Casanova M. F. (2009). Effects of low frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism. J. Autism Dev. Disord. 39 619–634. 10.1007/s10803-008-0662-7
    1. Sokhadze E. M., El-Baz A. S., Sears L. L., Opris I., Casanova M. F. (2014). rTMS neuromodulation improves electrocortical functional measures of information processing and behavioral responses in autism. Front. Syst. Neurosci. 8:134. 10.3389/fnsys.2014.00134
    1. Sparrow S. S., Cicchetti D. V. (1985). Diagnostic uses of the vineland adaptive behavior scales. J. Pediatr. Psychol. 10 215–225. 10.1093/jpepsy/10.2.215
    1. Stagg C. J., Wylezinska M., Matthews P. M., Johansen-Berg H., Jezzard P., Rothwell J. C., et al. (2009). Neurochemical effects of theta burst stimulation as assessed by magnetic resonance spectroscopy. J. Neurophysiol. 101 2872–2877. 10.1152/jn.91060.2008
    1. Tebartz van Elst L., Maier S., Fangmeier T., Endres D., Mueller G. T., et al. (2014). Disturbed cingulate glutamate metabolism in adults with high-functioning autism spectrum disorder: evidence in support of the excitatory/inhibitory imbalance hypothesis. Mol. Psychiatry 19 1314–1325. 10.1038/mp.2014.62
    1. Trakoshis S., Martinez-Canada P., Rocchi F., Canella C., You W., Chakrabarti B., et al. (2020). Intrinsic excitation-inhibition imbalance affects medial prefrontal cortex differently in autistic men versus women. Elife 9:e55684. 10.7554/eLife.55684
    1. Yip J., Soghomonian J. J., Blatt G. J. (2007). Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropathol. 113 559–568. 10.1007/s00401-006-0176-3
    1. Zhang Y., Brady M., Smith S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20 45–57. 10.1109/42.906424
    1. Zheng H., Zhang L., Li L., Liu P., Gao J., Liu X., et al. (2010). High-frequency rTMS treatment increases left prefrontal myo-inositol in young patients with treatment-resistant depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 34 1189–1195. 10.1016/j.pnpbp.2010.06.009

Source: PubMed

3
구독하다