Retinal Thickness Analysis in Progressive Multiple Sclerosis Patients Treated With Epigallocatechin Gallate: Optical Coherence Tomography Results From the SUPREMES Study

Katharina Klumbies, Rebekka Rust, Jan Dörr, Frank Konietschke, Friedemann Paul, Judith Bellmann-Strobl, Alexander U Brandt, Hanna G Zimmermann, Katharina Klumbies, Rebekka Rust, Jan Dörr, Frank Konietschke, Friedemann Paul, Judith Bellmann-Strobl, Alexander U Brandt, Hanna G Zimmermann

Abstract

Background: Epigallocatechin gallate (EGCG) is an anti-inflammatory agent and has proven neuroprotective properties in animal models of multiple sclerosis (MS). Optical coherence tomography (OCT) assessed retinal thickness analysis can reflect treatment responses in MS. Objective: To analyze the influence of EGCG treatment on retinal thickness analysis as secondary and exploratory outcomes of the randomized controlled Sunphenon in Progressive Forms of MS trial (SUPREMES, NCT00799890). Methods: SUPREMES patients underwent OCT with the Heidelberg Spectralis device at a subset of visits. We determined peripapillary retinal nerve fiber layer (pRNFL) thickness from a 12° ring scan around the optic nerve head and thickness of the ganglion cell/inner plexiform layer (GCIP) and inner nuclear layer (INL) within a 6 mm diameter grid centered on the fovea from a macular volume scan. Longitudinal OCT data were available for exploratory analysis from 31 SUPREMES participants (12/19 primary/secondary progressive MS (PPMS/SPMS); mean age 51 ± 7 years; 12 female; mean time since disease onset 16 ± 11 years). We tested the null hypothesis of no treatment*time interaction using nonparametric analysis of longitudinal data in factorial experiments. Results: After 2 years, there were no significant differences in longitudinal retinal thickness changes between EGCG treated and placebo arms in any OCT parameter (Mean change [confidence interval] ECGC vs. Placebo: pRNFL: -0.83 [1.29] μm vs. -0.64 [1.56] μm, p = 0.156; GCIP: -0.67 [0.67] μm vs. -0.14 [0.47] μm, p = 0.476; INL: -0.06 [0.58] μm vs. 0.22 [0.41] μm, p = 0.455). Conclusion: Retinal thickness analysis did not reveal a neuroprotective effect of EGCG. While this is in line with the results of the main SUPREMES trial, our study was probably underpowered to detect an effect. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT00799890.

Keywords: epigallocatechin gallate; optical coherence tomography; progressive multiple sclerosis; retina; treatment response.

Conflict of interest statement

RR received speaking honoraria from Roche. JD reports research support by Bayer and Novartis, honoraria for lectures and advisory by Bayer, Novartis, Sanofi-Aventis, Merck-Serono, Biogen and Roche and travel support by Bayer, Novartis, Biogen, and Merck-Serono. FP reports non-financial support from Taiyo International, grants from TEVA GmbH, other from German Research Council (DFG), during the conduct of the study; He serves on scientific advisory boards of Novartis's OCTIMS study steering committee and MedImmune/Viela Bio steering committee. He received funding for travel or speaker honoraria from Bayer, Novartis, Biogen Idec, Teva, Sanofi-Aventis/Genzyme, and Merck Serono, Alexion, Chugai, MedImmune, Shire, Roche, Actelion, Celgene and serves on editorial Boards at PLos ONE (academic editor) and Neurology Neuroimmunology and Neuroinflammation (Associate Editor). He provided consultancies for SanofiGenzyme, BiogenIdec, MedImmune, Shire, Alexion; He received research support from Bayer, Novartis, Biogen Idec, Teva, Sanofi-Aventis/Genzyme, Alexion and Merck Serono, German Research Council (DFG Exc 257), Werth Stiftung of the City of Cologne, German Ministry of Education and Research (BMBF Competence Network Multiple Sclerosis), Arthur Arnstein Stiftung Berlin, EU FP7 Framework Program (combims.eu) Guthy Jackson Charitable Foundation, and National Multiple Sclerosis Society of the USA. JB-S has received travel grants and speaking honoraria from Bayer Healthcare, Biogen Idec, Merck Serono, Sanofi Genzyme, Teva Pharmaceuticals, Roche, and Novartis all unrelated to this work. AB is cofounder and shareholder of technology startups Motognosis GmbH and Nocturne GmbH. He is named as inventor on several patent applications describing serum biomarkers for multiple sclerosis, perceptive computing for motor symptoms and retinal image analysis using optical coherence tomography. HZ received research grants from Novartis and speaking fees from Bayer, unrelated to this study. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Klumbies, Rust, Dörr, Konietschke, Paul, Bellmann-Strobl, Brandt and Zimmermann.

Figures

Figure 1
Figure 1
CONSORT chart describing the enrolment process of OCT analysis and case numbers at each year of follow-up. PMS, progressive MS; OCT, Optical coherence tomography; pRNFL, peripapillary retinal nerve fiber layer; GCIP, ganglion cell and inner plexiform layer; INL, inner nuclear layer.
Figure 2
Figure 2
Longitudinal retinal layer changes in the EGCG treated and placebo group. Error bars indicate the standard error to the mean. EGCG, epigallocatechin-gallate; pRNFL, peripapillary retinal nerve fiber layer; GCIP, ganglion cell and inner plexiform layer; INL, inner nuclear layer.

References

    1. Reich DS, Lucchinetti CF, Calabresi PA. Multiple sclerosis. N Engl J Med. (2018) 378:169–80. 10.1056/NEJMra1401483
    1. Ransohoff RM, Hafler DA, Lucchinetti CF. Multiple sclerosis-a quiet revolution. Nat Rev Neurol. (2016) 11:134–42. 10.1038/nrneurol.2015.14
    1. Weinshenker BG, Bass B, Rice GPA, Noseworthy J, Carriere W, Baskerville J, et al. . The natural history of multiple sclerosis: a geographically based study: I. Clinical course and disability. Brain. (1989) 112:133–46. 10.1093/brain/112.1.133
    1. Krieger SC, Cook K, de Nino S, Fletcher M. The topographical model of multiple sclerosis: a dynamic visualization of disease course. Neurol Neuroimmunol NeuroInflammation. (2016) 3:e279. 10.1212/NXI.0000000000000279
    1. Faissner S, Plemel JR, Gold R, Yong VW. Progressive multiple sclerosis: from pathophysiology to therapeutic strategies. Nat Rev Drug Discov. (2019) 18:905–22. 10.1038/s41573-019-0035-2
    1. Miller DH, Leary SM. Primary-progressive multiple sclerosis. Lancet Neurol. (2007) 6:903–12. 10.1016/S1474-4422(07)70243-0
    1. Trapp BD, Nave K-A. Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci. (2008) 31:247–69. 10.1146/annurev.neuro.30.051606.094313
    1. Oberwahrenbrock T, Ringelstein M, Jentschke S, Deuschle K, Klumbies K, Bellmann-Strobl J, et al. . Retinal ganglion cell and inner plexiform layer thinning in clinically isolated syndrome. Mult Scler J. (2013) 19:1887–95. 10.1177/1352458513489757
    1. Azevedo CJ, Overton E, Khadka S, Buckley J, Liu S, Sampat M, et al. . Early CNS neurodegeneration in radiologically isolated syndrome. Neurol Neuroimmunol NeuroInflammation. (2015) 2:e102. 10.1212/NXI.0000000000000102
    1. Kuchling J, Paul F. Visualizing the central nervous system: imaging tools for multiple sclerosis and neuromyelitis optica spectrum disorders. Front Neurol. (2020) 11:450. 10.3389/fneur.2020.00450
    1. Wingerchuk DM, Weinshenker BG. Disease modifying therapies for relapsing multiple sclerosis. BMJ. (2016) 354:i3518. 10.1136/bmj.i3518
    1. Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. (2017) 376:209–20. 10.1056/NEJMoa1606468
    1. Ontaneda D, Fox RJ, Chataway J. Clinical trials in progressive multiple sclerosis: lessons learned and future perspectives. Lancet Neurol. (2015) 14:208–23. 10.1016/S1474-4422(14)70264-9
    1. Sato T, Miyata G. The nutraceutical benefit, part I: green tea. Nutrition. (2000) 16:315–7. 10.1016/S0899-9007(99)00301-9
    1. Bogdanski P, Suliburska J, Szulinska M, Stepien M, Pupek-Musialik D, Jablecka A. Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients. Nutr Res. (2012) 32:421–7. 10.1016/j.nutres.2012.05.007
    1. Syarifah-Noratiqah S-B, Naina-Mohamed I, Zulfarina MS, Qodriyah HM. Natural polyphenols in the treatment of Alzheimer's disease. Curr Drug Targets. (2017) 19:927–37. 10.2174/1389450118666170328122527
    1. Mähler A, Mandel S, Lorenz M, Ruegg U, Wanker EE, Boschmann M, et al. . Epigallocatechin-3-gallate: a useful, effective and safe clinical approach for targeted prevention and individualised treatment of neurological diseases? EPMA J. (2013) 4:1–17. 10.1186/1878-5085-4-5
    1. Ashihara H, Deng WW, Mullen W, Crozier A. Distribution and biosynthesis of flavan-3-ols in Camellia sinensis seedlings and expression of genes encoding biosynthetic enzymes. Phytochemistry. (2010) 71:559–66. 10.1016/j.phytochem.2010.01.010
    1. Wu D, Wang J, Pae M, Meydani SN. Green tea EGCG, T cells, and T cell-mediated autoimmune diseases. Mol Aspects Med. (2012) 33:107–18. 10.1016/j.mam.2011.10.001
    1. Pae M, Wu D. Immunomodulating effects of epigallocatechin-3-gallate from green tea: Mechanisms and applications. Food Funct. (2013) 4:1287–303. 10.1039/c3fo60076a
    1. Wu D. Green tea EGCG, T-cell function, and T-cell-mediated autoimmune encephalomyelitis. J Investig Med. (2016) 64:1213–9. 10.1136/jim-2016-000158
    1. Aktas O, Prozorovski T, Smorodchenko A, Savaskan NE, Lauster R, Kloetzel P-M, et al. . Green tea epigallocatechin-3-gallate mediates T cellular NF-κB inhibition and exerts neuroprotection in autoimmune encephalomyelitis. J Immunol. (2004) 173:5794–800. 10.4049/jimmunol.173.9.5794
    1. Wang J, Ren Z, Xu Y, Xiao S, Meydani SN, Wu D. Epigallocatechin-3-gallate ameliorates experimental autoimmune encephalomyelitis by altering balance among CD4 + T-cell subsets. Am J Pathol. (2012) 180:221–34. 10.1016/j.ajpath.2011.09.007
    1. Sun Q, Zheng Y, Zhang X. Novel immunoregulatory properties of EGCG on reducing inflammation in EAE. Front Biosci. (2013) 18:332–342. 10.2741/4104
    1. Herges K, Millward JM, Hentschel N, Infante-Duarte C, Aktas O, Zipp F. Neuroprotective effect of combination therapy of Glatiramer acetate and epigallocatechin-3-gallate in neuroinflammation. PLoS One. (2011) 6:e25456. 10.1371/journal.pone.0025456
    1. Mähler A, Steiniger J, Bock M, Klug L, Parreidt N, Lorenz M, et al. . Metabolic response to epigallocatechin-3-gallate in relapsing-remitting multiple sclerosis: a randomized clinical trial. Am J Clin Nutr. (2015) 101:487–95. 10.3945/ajcn.113.075309
    1. de la Torre R, de Sola S, Hernandez G, Farré M, Pujol J, Rodriguez J, et al. . Safety and efficacy of cognitive training plus epigallocatechin-3-gallate in young adults with Down's syndrome (TESDAD): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurol. (2016) 15:801–10. 10.1016/S1474-4422(16)30034-5
    1. de la Torre R, de Sola S, Farré M, Xicota L, Cuenca-Royo A, Rodriguez J, et al. . A phase 1, randomized double-blind, placebo controlled trial to evaluate safety and efficacy of epigallocatechin-3-gallate and cognitive training in adults with Fragile X syndrome. Clin Nutr. (2020) 39:378–87. 10.1016/j.clnu.2019.02.028
    1. Oberwahrenbrock T, Traber GL, Lukas S, Gabilondo I, Nolan R, Songster C, et al. . Multicenter reliability of semiautomatic retinal layer segmentation using OCT. Neurol Neuroimmunol Neuroinflammation. (2018) 5:e449. 10.1212/NXI.0000000000000449
    1. Nolan-Kenney RC, Liu M, Akhand O, Calabresi PA, Paul F, Petzold A, et al. . Optimal intereye difference thresholds by optical coherence tomography in multiple sclerosis: an international study. Ann Neurol. (2019) 85:618–29. 10.1002/ana.25462
    1. Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, et al. . Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. (2017) 16:797–812. 10.1016/S1474-4422(17)30278-8
    1. Oertel FC, Zimmermann HG, Brandt AU, Paul F. Novel uses of retinal imaging with optical coherence tomography in multiple sclerosis. Expert Rev Neurother. (2019) 19:31–43. 10.1080/14737175.2019.1559051
    1. Zimmermann HG, Knier B, Oberwahrenbrock T, Behrens J, Pfuhl C, Aly L, et al. . Association of retinal ganglion cell layer thickness with future disease activity in patients with clinically isolated syndrome. JAMA Neurol. (2018) 75:1071–9. 10.1001/jamaneurol.2018.1011
    1. Costello F, Hodge W, Pan YI, Eggenberger E, Freedman MS. Using retinal architecture to help characterize multiple sclerosis patients. Can J Ophthalmol J Can dophtalmologie. (2010) 45:520–6. 10.3129/i10-063
    1. Wicki CA, Hanson JVM, Schippling S. Optical coherence tomography as a means to characterize visual pathway involvement in multiple sclerosis. Curr Opin Neurol. (2018) 31:662–8. 10.1097/WCO.0000000000000604
    1. Kaufhold F, Zimmermann H, Schneider E, Ruprecht K, Paul F, Oberwahrenbrock T, et al. . Optic neuritis is associated with inner nuclear layer thickening and microcystic macular edema independently of multiple sclerosis. PLoS One. (2013) 8:e71145. 10.1371/journal.pone.0071145
    1. Gelfand JM, Nolan R, Schwartz DM, Graves J, Green AJ. Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain. (2012) 135:1786–93. 10.1093/brain/aws098
    1. Saidha S, Sotirchos ES, Ibrahim Ma, Crainiceanu CM, Gelfand JM, Sepah YJ, Newsome SD, et al. . Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study. Lancet Neurol. (2012) 11:963–72. 10.1016/S1474-4422(12)70213-2
    1. Balk LJ, Coric D, Knier B, Zimmermann HG, Behbehani R, Alroughani R, et al. . Retinal inner nuclear layer volume reflects inflammatory disease activity in multiple sclerosis; a longitudinal OCT study. Mult Scler. (2019) 5:1–11. 10.1177/2055217319871582
    1. Brandt AU, Oberwahrenbrock T, Kadas EM, Lagrèze WA, Paul F. Dynamic formation of macular microcysts independent of vitreous traction changes. Neurology. (2014) 83:73–7. 10.1212/WNL.0000000000000545
    1. Green AJ, McQuaid S, Hauser SL, Allen I, V, Lyness R. Ocular pathology in multiple sclerosis: Retinal atrophy and inflammation irrespective of disease duration. Brain. (2010) 133:1591–601. 10.1093/brain/awq080
    1. Balk LJ, Cruz-Herranz A, Albrecht P, Arnow S, Gelfand JM, Tewarie P, et al. . Timing of retinal neuronal and axonal loss in MS: a longitudinal OCT study. J Neurol. (2016) 263:1323–31. 10.1007/s00415-016-8127-y
    1. Oberwahrenbrock T, Schippling S, Ringelstein M, Kaufhold F, Zimmermann H, Keser N, et al. . Retinal damage in multiple sclerosis disease subtypes measured by high-resolution optical coherence tomography. Mult Scler Int. (2012) 2012:530305. 10.1155/2012/530305
    1. Gelfand JM, Goodin DS, Boscardin WJ, Nolan R, Cuneo A, Green AJ. Retinal axonal loss begins early in the course of multiple sclerosis and is similar between progressive phenotypes. PLoS One. (2012) 7:e36847. 10.1371/journal.pone.0036847
    1. Button J, Al-Louzi O, Lang A, Bhargava P, Newsome SD, Frohman T, et al. . Disease-modifying therapies modulate retinal atrophy in multiple sclerosis: a retrospective study. Neurology. (2017) 88:525–2. 10.1212/WNL.0000000000003582
    1. Knier B, Schmidt P, Aly L, Buck D, Berthele A, Mühlau M, et al. . Retinal inner nuclear layer volume reflects response to immunotherapy in multiple sclerosis. Brain. (2016) 139:2855–63. 10.1093/brain/aww219
    1. Sotirchos ES, Gonzalez Caldito N, Filippatou A, Fitzgerald KC, Murphy OC, Lambe J, et al. . Progressive multiple sclerosis is associated with faster and specific retinal layer atrophy. Ann Neurol. (2020) 87:885–96. 10.1002/ana.25738
    1. Cordano C, Yiu HH, Oertel FC, Gelfand JM, Hauser SL, Cree BAC, et al. . Retinal INL Thickness in multiple sclerosis: a mere marker of neurodegeneration? Ann Neurol. (2021) 89:192–3. 10.1002/ana.25933
    1. Rust R, Chien C, Scheel M, Brandt AU, Dörr J, Wuerfel J, et al. . Epigallocatechin gallate in progressive MS: a randomized, placebo-controlled trial. Neurol Neuroimmunol NeuroInflammation. (2020) 8:e964. 10.1212/NXI.0000000000000964
    1. Polman CH, Reingold SC, Edan G, Filippi M, Hartung H-P, Kappos L, et al. . Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria.” Ann Neurol. (2005) 58:840–6. 10.1002/ana.20703
    1. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. (1983) 33:1444–52. 10.1212/WNL.33.11.1444
    1. Motamedi S, Gawlik K, Ayadi N, Zimmermann HG, Asseyer S, Bereuter C, et al. . Normative data and minimally detectable change for inner retinal layer thicknesses using a semi-automated OCT image segmentation pipeline. Front Neurol. (2019) 10:1117. 10.3389/fneur.2019.01117
    1. Tewarie P, Balk L, Costello F, Green A, Martin R, Schippling S, et al. . The OSCAR-IB consensus criteria for retinal OCT quality assessment. PLoS One. (2012) 7:e34823. 10.1371/journal.pone.0034823
    1. Schippling S, Balk LJ, Costello F, Albrecht P, Balcer L, Calabresi PA, et al. . Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria. Mult Scler J. (2015) 21:163–70. 10.1177/1352458514538110
    1. Cruz-Herranz A, Balk LJ, Oberwahrenbrock T, Saidha S, Martinez-Lapiscina EH, Lagreze WA, et al. . The APOSTEL recommendations for reporting quantitative optical coherence tomography studies. Neurology. (2016) 86:2303–9. 10.1212/WNL.0000000000002774
    1. Noguchi K, Gel YR, Brunner E, Konietschke F. nparLD : an R Software Package for the nonparametric analysis of longitudinal data in factorial experiments. J Stat Softw. (2012) 50:1–23. 10.18637/jss.v050.i12
    1. R Core Team . R: A Language and Environment for Statistical Computing (2014).
    1. Moccia M, de Stefano N, Barkhof F. Imaging outcome measures for progressive multiple sclerosis trials. Mult Scler. (2017) 23:1614–26. 10.1177/1352458517729456
    1. De Stefano N, Arnold DL. Towards a better understanding of pseudoatrophy in the brain of multiple sclerosis patients. Mult Scler. (2015) 21:675–6. 10.1177/1352458514564494
    1. Vidal-Jordana A, Sastre-Garriga J, Pérez-Miralles F, Tur C, Tintoré M, Horga A, et al. . Early brain pseudoatrophy while on natalizumab therapy is due to white matter volume changes. Mult Scler J. (2013) 19:1175–81. 10.1177/1352458512473190
    1. Azevedo CJ, Cen SY, Jaberzadeh A, Zheng L, Hauser SL, Pelletier D. Contribution of normal aging to brain atrophy in MS. Neurol Neuroimmunol neuroinflammation. (2019) 6:e616. 10.1212/NXI.0000000000000616
    1. Syc SB, Saidha S, Newsome SD, Ratchford JN, Levy M, Ford E, et al. . Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis. Brain. (2012) 135:521–33. 10.1093/brain/awr264
    1. Bellmann-Strobl J, Paul F, Wuerfel J, Dörr J, Infante-Duarte C, Heidrich E, et al. . Epigallocatechin gallate in relapsing-remitting multiple sclerosis: a randomized, placebo-controlled trial. Neurol Neuroimmunol NeuroInflammation. (2021) 8:e981. 10.1212/NXI.0000000000000981
    1. Levin J, Maaß S, Schuberth M, Giese A, Oertel WH, Poewe W, et al. . Safety and efficacy of epigallocatechin gallate in multiple system atrophy (PROMESA): a randomised, double-blind, placebo-controlled trial. Lancet Neurol. (2019) 18:724–35. 10.1016/S1474-4422(19)30141-3
    1. Ullmann U, Haller J, Decourt JD, Girault J, Spitzer V, Weber P. Plasma-kinetic characteristics of purified and isolated green tea catechin epigallocatechin gallate (EGCG) after 10 days repeated dosing in healthy volunteers. Int J Vitam Nutr Res. (2004) 74:269–78. 10.1024/0300-9831.74.4.269
    1. Chakrawarti L, Agrawal R, Dang S, Gupta S, Gabrani R. Therapeutic effects of EGCG: a patent review. Expert Opin Ther Pat. (2016) 26:907–16. 10.1080/13543776.2016.1203419
    1. Dietrich M, Koska V, Hecker C, Göttle P, Hilla AM, Heskamp A, et al. . Protective effects of 4-aminopyridine in experimental optic neuritis and multiple sclerosis. Brain. (2020) 143:1127–42. 10.1093/brain/awaa062

Source: PubMed

3
구독하다