The effect of online multimedia psychoeducational interventions on the resilience and perceived stress of hospitalized patients with COVID-19: a pilot cluster randomized parallel-controlled trial

Maryam Shaygan, Zahra Yazdani, Adib Valibeygi, Maryam Shaygan, Zahra Yazdani, Adib Valibeygi

Abstract

Background: There is evidence suggesting that quarantine might have undesirable psychological impacts on the patients. Therefore, it is important to seek for ways to increase the resilience and alleviate the psychological pressure of the patients who are quarantined due to infection with COVID-19. The present study was conducted to assess an online multimedia psychoeducational intervention regarding the feasibility, adherence, patient satisfaction and effectiveness on resilience and perceived stress of patients hospitalized with confirmed COVID-19.

Method: This was a pilot cluster randomized parallel-controlled trial with hospital wards as the units of randomization. Participants in this fully online trial were 50 consecutive patients who were hospitalized in 2 hospitals in Shiraz, after being diagnosed with COVID-19. Before the beginning of the intervention, four inpatient wards inside two of the hospitals were randomly assigned to either intervention or control conditions. All eligible participants in the wards allocated to the intervention condition received online multimedia psychoeducational interventions during the 2 weeks, whilst the patients in the wards allocated to the control condition were offered the opportunity to receive telephone-based psychological counseling if needed. Psychoeducational interventions mainly included cognitive-behavioural techniques, stress management techniques, mindfulness-based stress reduction and positive psychotherapy. The patients were assessed regarding resilience and perceived stress at baseline and after two weeks.

Results: Of 27 patients starting multimedia psychoeducational interventions, 26 (96.29%) completed post-assessments. A high level of adherence (80.76%) and satisfaction (Mean = 29.42; SD = 4.18) with the online multimedia psychoeducational interventions was found. Compared with the control group, the patients who used online multimedia psychoeducational interventions reported greater resilience (Meanintervention = 81.74; Meancontrol = 72.86; adjusted t (46) = 2.10; p = 0.04; CI: 0.39 to 17.38; dppc2 = 0.83) and fewer perceived stress (Meanintervention = 22.15; Meancontrol = 29.45; adjusted t (46) = 2.66; p = 0.01; CI: - 12.81 to - 1.78; dppc2 = - 0.77) after 2 weeks.

Discussion: The findings of the present study provided a successful first attempt at implementing feasible online multimedia psychoeducational interventions to promote resilience and mitigate stress among the patients who were hospitalized due to infection with COVID-19. The present results could help mental health professionals to determine which psychological techniques should be emphasized to promote patients' resilience in the context of COVID-19 disease.

Trial registration: Iranian Registry of Clinical Trials, IRCT20201001048893N1 . Retrospectively registered, 29 Jan 2021.

Keywords: COVID-19; Online multimedia psychoeducational intervention; Perceived stress; Resilience.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
CONSORT Flow Diagram
Fig. 2
Fig. 2
Changes of adjusted mean scores of resilience scale before and after intervention
Fig. 3
Fig. 3
Changes of adjusted mean scores of perceived stress scale before and after intervention

References

    1. Schimmenti A, Billieux J, Starcevic V. The four horsemen of fear: an integrated model of understanding fear experiences during the COVID-19 pandemic. Clin Neuropsychiatry. 2020;17(2):41–45.
    1. Reynolds D, Garay J, Deamond S, Moran M, Gold W, Styra R. Understanding, compliance and psychological impact of the SARS quarantine experience. Epidemiol Infect. 2008;136(7):997–1007. doi: 10.1017/S0950268807009156.
    1. Lee S, Chan LY, Chau AM, Kwok KP, Kleinman A. The experience of SARS-related stigma at Amoy gardens. Soc Sci Med. 2005;61(9):2038–2046. doi: 10.1016/j.socscimed.2005.04.010.
    1. Ornell F, Schuch JB, Sordi AO, Kessler FH. “Pandemic fear” and COVID-19: mental health burden and strategies. Braz J Psychiatry. 2020;42(3):232–5. doi: 10.1590/1516-4446-2020-0008.
    1. Mazza MG, De Lorenzo R, Conte C, Poletti S, Vai B, Bollettini I, Melloni EM, Furlan R, Ciceri F, Rovere-Querini P, Benedetti F. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav Immun. 2020;89:594–600. doi: 10.1016/j.bbi.2020.07.037.
    1. Dai L-L, Wang X, Jiang T-C, Li P-F, Wang Y, Wu S-J, et al. Anxiety and depressive symptoms among COVID-19 patients in Jianghan Fangcang shelter Hospital in Wuhan, China. PloS One. 2020;15(8):e0238416. doi: 10.1371/journal.pone.0238416.
    1. Zhang J, Wu W, Zhao X, Zhang W. Recommended psychological crisis intervention response to the 2019 novel coronavirus pneumonia outbreak in China: a model of West China hospital. Precision Clin Med. 2020;3(1):3–8. doi: 10.1093/pcmedi/pbaa006.
    1. Jeong H, Yim HW, Song Y-J, Ki M, Min J-A, Cho J, et al. Mental health status of people isolated due to Middle East respiratory syndrome. Epidemiol Health. 2016:38.
    1. Brooks SK, Webster RK, Smith LE, Woodland L, Wessely S, Greenberg N, Rubin GJ. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet. 2020;395(10227):912–20. doi: 10.1016/S0140-6736(20)30460-8.
    1. Robertson E, Hershenfield K, Grace SL, Stewart DE. The psychosocial effects of being quarantined following exposure to SARS: a qualitative study of Toronto health care workers. Can J Psychiatry. 2004;49(6):403–407. doi: 10.1177/070674370404900612.
    1. Zhou X, Snoswell CL, Harding LE, Bambling M, Edirippulige S, Bai X, et al. The role of telehealth in reducing the mental health burden from COVID-19. Telemed e-Health. 2020;26(4):377–379. doi: 10.1089/tmj.2020.0068.
    1. Zhang J, Yang Z, Wang X, Li J, Dong L, Wang F, Li Y, Wei R, Zhang J. The relationship between resilience, anxiety and depression among patients with mild symptoms of COVID-19 in China: A cross-sectional study. J Clin Nurs. 2020;29(21–22):4020–9. doi: 10.1111/jocn.15425.
    1. Ungar M. Resilience and culture: The diversity of protective processes and positive adaptation. Youth Resilience Cult. 2015:37–48.
    1. Connor KM, Davidson JR, Lee L-C. Spirituality, resilience, and anger in survivors of violent trauma: a community survey. J Trauma Stress. 2003;16(5):487–494. doi: 10.1023/A:1025762512279.
    1. van Breda AD. A critical review of resilience theory and its relevance for social work. Soc Work. 2018;54(1):1–18.
    1. de Terte I, Stephens C, Huddleston L. The development of a three part model of psychological resilience. Stress Health. 2014;30(5):416–424. doi: 10.1002/smi.2625.
    1. Parks AC, Williams AL, Tugade MM, Hokes KE, Honomichl RD, Zilca RD. Testing a scalable web and smartphone based intervention to improve depression, anxiety, and resilience: A randomized controlled trial. Int J Wellbeing. 2018;8:2. doi: 10.5502/ijw.v8i2.745.
    1. Campbell MK, Elbourne DR, Altman DG. CONSORT statement: extension to cluster randomised trials. BMJ. 2004;328(7441):702–708. doi: 10.1136/bmj.328.7441.702.
    1. Montgomery P, Grant S, Mayo-Wilson E, Macdonald G, Michie S, Hopewell S, et al. Reporting randomised trials of social and psychological interventions: the CONSORT-SPI 2018 extension. Trials. 2018;19(1):407. doi: 10.1186/s13063-018-2733-1.
    1. Waleed M, Kazim I, Abdul H, Farooq M, Karam F, Allgar VL, et al. Clustering by health professionals in individually randomised controlled trials. Eur Med J. 2019:53–61.
    1. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239–1242. doi: 10.1001/jama.2020.2648.
    1. WHO. Clinical management of COVID-19: WHO; 2020 [Available from: .
    1. Barillari MR, Bastiani L, Lechien JR, Mannelli G, Molteni G, Cantarella G, Coppola N, Costa G, Trecca EM, Grillo C, La Mantia I. A structural equation model to examine the clinical features of mild-to-moderate COVID-19: A multicenter Italian study. J Med Virol virology. 2021;93(2):983–94. doi: 10.1002/jmv.26354.
    1. Maher A, Bahadori M, Ravangard R, Zaboli R. Iran’s experience in establishing convalescent care facilities for patients with COVID-19. Disast Med Public Health Prepared. 2020;14(3):e34–ee5. doi: 10.1017/dmp.2020.209.
    1. Higgins J, Altman D, Lewis DM, Schulz K, Sterne J, Thompson S. Cochrane handbook (version 5) sections relating to new risk-of-bias tool. Notes. 2007. .
    1. Beck JS, Beck A. Cognitive behavior therapy. New York: Basics and beyond Guilford Publication; 2011.
    1. Kabat-Zinn J. Full catastrophe living: Using the wisdom of your body and mind to face stress, pain and illness (Rev. ed.) New York: Bantam. A Self-Determination Theory Perspective on Fostering Healthy Self-Regulation; 2013. p. 155.
    1. Stahl B, Goldstein E. A mindfulness-based stress reduction workbook: new harbinger publications; 2019.
    1. Villani D, Cipresso P, Gaggioli A, Riva G. Integrating technology in positive psychology practice. Hershey: Igi global; 2016.
    1. Seligman ME. Positive psychology: a personal history. Annu Rev Clin Psychol. 2019;15:1–23. doi: 10.1146/annurev-clinpsy-050718-095653.
    1. Connor KM, Davidson JR. Development of a new resilience scale: the Connor-Davidson resilience scale (CD-RISC) Depress Anxiety. 2003;18(2):76–82. doi: 10.1002/da.10113.
    1. Abdi F, Sh B, Ahadi H, Sh K. Psychometric properties of the Connor-Davidson Resilience scale (CD-RISC) among women with breast cancer. J Res Psychol Health. 2019;13(2):81–99.
    1. Derakhshanrad SA, Piven E, Rassafiani M, Hosseini SA, Mohammadi SF. Standardization of connor-Davidson resilience scale in iranian subjects with cerebrovascular accident. J Rehabil Sci Res. 2014;1(4):73–77.
    1. Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health Soc Behav. 1983:385–96.
    1. Maroufizadeh S, Zareiyan A, Sigari N. Psychometric properties of the 14, 10 and 4-item “perceived stress scale” among asthmatic patients in Iran. Payesh (Health Monitor) 2014;13(4):457–465.
    1. Yennurajalingam S, Kang D-H, Hwu W-J, Padhye NS, Masino C, Dibaj SS, et al. Cranial electrotherapy stimulation for the management of depression, anxiety, sleep disturbance, and pain in patients with advanced cancer: a preliminary study. J Pain Symptom Manag. 2018;55(2):198–206. doi: 10.1016/j.jpainsymman.2017.08.027.
    1. Boß L, Lehr D, Reis D, Vis C, Riper H, Berking M, et al. Reliability and validity of assessing user satisfaction with web-based health interventions. J Med Internet Res. 2016;18(8):e234. doi: 10.2196/jmir.5952.
    1. Leppink J. Analysis of covariance (ANCOVA) vs. moderated regression (MODREG): why the interaction matters. Health Professions Educ. 2018;4(3):225–232. doi: 10.1016/j.hpe.2018.04.001.
    1. Leyrat C, Morgan KE, Leurent B, Kahan BC. Cluster randomized trials with a small number of clusters: which analyses should be used? Int J Epidemiol. 2018;47(1):321–331. doi: 10.1093/ije/dyx169.
    1. Donner A, Klar N. Design and analysis of cluster randomization trials in health research. 2000.
    1. Campbell MK, Mollison J, Steen N, Grimshaw JM, Eccles M. Analysis of cluster randomized trials in primary care: a practical approach. Fam Pract. 2000;17(2):192–196. doi: 10.1093/fampra/17.2.192.
    1. Morris SB. Estimating effect sizes from pretest-posttest-control group designs. Organ Res Methods. 2008;11(2):364–386. doi: 10.1177/1094428106291059.
    1. Liu K, Chen Y, Wu D, Lin R, Wang Z, Pan L. Effects of progressive muscle relaxation on anxiety and sleep quality in patients with COVID-19. Complement Ther Clin Pract. 2020:101132.
    1. Campbell MK, Fayers PM, Grimshaw JM. Determinants of the intracluster correlation coefficient in cluster randomized trials: the case of implementation research. Clin Trials. 2005;2(2):99–107. doi: 10.1191/1740774505cn071oa.
    1. Knowles E, O'Donnell C, Lynch A, Snethen G. Providing opportunities for meaningful activities for Covid-19 patients: a community response. CommonHealth. 2020;1(3):132–137. doi: 10.15367/ch.v1i3.418.
    1. Li J, Li X, Jiang J, Xu X, Wu J, Xu Y, et al. The effect of cognitive behavioral therapy on depression, anxiety, and stress in patients with COVID-19: a randomized controlled trial. Front Psychiatr. 2020;11.
    1. Wei N, Huang B-C, Lu S-J, Hu J-B, Zhou X-Y, Hu C-C, et al. Efficacy of internet-based integrated intervention on depression and anxiety symptoms in patients with COVID-19. J Zhejiang Univ Sci B. 2020:1.
    1. Folkman S, Lazarus RS. Stress, appraisal, and coping. New York: Springer publishing company; 1984.
    1. Mancini AD, Bonanno GA. Predictors and parameters of resilience to loss: toward an individual differences model. J Pers. 2009;77(6):1805–1832. doi: 10.1111/j.1467-6494.2009.00601.x.
    1. Alizadeh S, Khanahmadi S, Vedadhir A, Barjasteh S. The relationship between resilience with self-compassion, social support and sense of belonging in women with breast cancer. Asian Pac J Cancer Prevent. 2018;19(9):2469.
    1. Scott JL, Dawkins S, Quinn MG, Sanderson K, Elliott K-EJ, Stirling C, et al. Caring for the carer: a systematic review of pure technology-based cognitive behavioral therapy (TB-CBT) interventions for dementia carers. Aging Ment Health. 2016;20(8):793–803. doi: 10.1080/13607863.2015.1040724.
    1. Herrero R, Mira A, Cormo G, Etchemendy E, Baños R, García-Palacios A, et al. An internet based intervention for improving resilience and coping strategies in university students: study protocol for a randomized controlled trial. Internet Interv. 2019;16:43–51. doi: 10.1016/j.invent.2018.03.005.
    1. Mamashli L, Ardebili FM, Ghezeljeh TN, Manafi F, Bozorgnejad M. Investigating the psychosocial empowerment interventions through multimedia education in burn patients. World J Plastic Surg. 2019;8(3):372.
    1. Golită S, Băban A. A systematic review of the effects of internet-based psychological interventions on emotional distress and quality of life in adult Cancer patients. J Evid-Based Psychother. 2019;19(2):47–78. doi: 10.24193/jebp.2019.2.13.
    1. Zhu C, Van Winkel L. A virtual learning environment for the continuation of education and its relationship with the mental well-being of chronically ill adolescents. Educ Psychol. 2016;36(8):1429–1442. doi: 10.1080/01443410.2014.992393.
    1. Davis FD, Bagozzi RP, Warshaw PR. User acceptance of computer technology: a comparison of two theoretical models. Manag Sci. 1989;35(8):982–1003. doi: 10.1287/mnsc.35.8.982.
    1. Beatty L, Binnion C. A systematic review of predictors of, and reasons for, adherence to online psychological interventions. Int J Behav Med. 2016;23(6):776–794. doi: 10.1007/s12529-016-9556-9.
    1. Mannheimer S, Friedland G, Matts J, Child C, Chesney M. AIDS TBCPfCRo. The consistency of adherence to antiretroviral therapy predicts biologic outcomes for human immunodeficiency virus—infected persons in clinical trials. Clin Infect Dis. 2002;34(8):1115–1121. doi: 10.1086/339074.
    1. Mudhune V, Gvetadze R, Girde S, Ndivo R, Angira F, Zeh C, et al. Correlation of adherence by pill count, self-report, MEMS and plasma drug levels to treatment response among women receiving ARV therapy for PMTCT in Kenya. AIDS Behav. 2018;22(3):918–928. doi: 10.1007/s10461-017-1724-7.
    1. Shi L, Liu J, Koleva Y, Fonseca V, Kalsekar A, Pawaskar M. Concordance of adherence measurement using self-reported adherence questionnaires and medication monitoring devices. Pharmacoeconomics. 2010;28(12):1097–1107. doi: 10.2165/11537400-000000000-00000.

Source: PubMed

3
구독하다