New Anti-Chemokine Oral Drug XC8 in the Treatment of Asthma Patients with Poor Response to Corticosteroids: Results of a Phase 2A Randomized Controlled Clinical Trial

Julia Romanova, Elena Chikina, Anastasia Rydlovskaya, Wolfgang Pohl, Andreas Renner, Alexey Zeifman, Alexander Chuchalin, Vladimir Nebolsin, Julia Romanova, Elena Chikina, Anastasia Rydlovskaya, Wolfgang Pohl, Andreas Renner, Alexey Zeifman, Alexander Chuchalin, Vladimir Nebolsin

Abstract

Introduction: A significant number of patients with moderate asthma remain symptomatic despite treatment with inhaled corticosteroids (ICS). These patients do not yet meet the criteria for oral corticosteroids (OCS) and monoclonal antibodies. The new anti-chemokine oral drug XC8 could represent an alternative treatment option for these patients. The objective of this trial was to evaluate the effect of different doses of the XC8 in patients with partly controlled asthma in a phase 2a clinical trial.

Methods: A double-blind, parallel-group, randomized, multicenter, phase 2a trial was conducted at 12 sites in Russia. Patients with asthma were randomized into four groups (n = 30 each) to receive XC8 at 2 mg, 10 mg, 100 mg or placebo once-daily for 12 weeks in addition to low-dose ICS with or without LABA. Efficacy and safety parameters were evaluated at weeks 0, 2, 6, and 12.

Results: No statistically significant difference between the treatment arms in the number of patients with adverse events was observed. The primary endpoint, improvement of forced expiratory volume in 1 s (FEV1) % predicted over 12 weeks compared to placebo, was not statistically significant. The treatment of patients with XC8 (100 mg) resulted in statistically and clinically significant improvements in FEV1 compared to baseline (7.40% predicted, p < 0.001). Patients with elevated peripheral blood eosinophil count (PBEC, > 300 cells/μl) or serum interferon-γ (IFN-γ) level (> 100 pg/mL) treated with XC8 (100 mg) achieved a statistically significant improvement in FEV1 (11.33% predicted or 8.69% predicted, respectively, p < 0.05) as compared to the baseline versus the placebo. The strongest effect was observed in patients with both high PBEC and IFN-γ level. Pharmacodynamic engagement was demonstrated through the reduction of serum levels of C-C motif ligand 2 (CCL2) and C-X-C motif chemokine 10 (CXCL10). Treatment with XC8 (100 mg) alleviated resistance to maintenance ICS therapy in patients with elevated IFN-γ level.

Conclusions: Given the high safety, oral route of administration, and efficacy, XC8 may provide a promising treatment option for patients with mild-to-moderate asthma.

Trial registration: 795-30/12/2015 (Ministry of Health Russian Federation), NCT03450434 (ClinicalTrials.gov).

Keywords: Asthma; Chemokine; Corticosteroid resistance; Eosinophils; Interferon-gamma; XC8.

Figures

Fig. 1
Fig. 1
Subject disposition
Fig. 2
Fig. 2
Change in FEV1 (% predicted) at week 12 relative to baseline week 0. Data are presented as mean (M) with 95% confidence interval (CI)

References

    1. Braman SS. The global burden of asthma. Chest. 2006;130(1 Suppl):4S–12S. doi: 10.1378/chest.130.1_suppl.4S.
    1. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2015. . Accessed 30 Dec 2015.
    1. Lommatzsch M, Stoll P. Novel strategies for the treatment of asthma. Allergo J Int. 2016;25:11–17. doi: 10.1007/s40629-016-0093-5.
    1. Akenroye A, McCormack M, Keet C. Severe Asthma in the US Population and Eligibility for Monoclonal Antibody Therapy. J Allergy Clin Immunol. 2020;145(4):1295–1297.e6. doi: 10.1016/j.jaci.2019.12.009.
    1. Norman P. Update on the status of DP2 receptor antagonists; from proof of concept through clinical failures to promising new drugs. Expert Opin Investig Drugs. 2014;23(1):55–66. doi: 10.1517/13543784.2013.839658.
    1. Douwes J, Gibson P, Pekkanen J, Pearce N. Non-eosinophilic asthma: importance and possible mechanisms. Thorax. 2002;57(7):643–648. doi: 10.1136/thorax.57.7.643.
    1. de Groot JC, Ten Brinke A, Bel EH. Management of the patient with eosinophilic asthma: a new era begins. ERJ Open Res. 2015;1(1):1–11. doi: 10.1183/23120541.00024-2015.
    1. Casciano J, Krishnan J, Dotiwala Z, Li C, Sun SX. Clinical and economic burden of elevated blood eosinophils in patients with and without uncontrolled asthma. J Manag Care Spec Pharm. 2017;23(1):85–91.
    1. Zeiger RS, Schatz M, Li Q, Chen W, Khatry DB, Gossage D, et al. High blood eosinophil count is a risk factor for future asthma exacerbations in adult persistent asthma. J Allergy Clin Immunol Pract. 2014;2(6):741–750. doi: 10.1016/j.jaip.2014.06.005.
    1. Lawrence MG, Steinke JW, Borish L. Cytokine-targeting biologics for allergic diseases. Ann Allergy Asthma Immunol. 2018;120(4):376–381. doi: 10.1016/j.anai.2018.01.009.
    1. Ramonell RP, Iftikhar IH. Effect of Anti-IL5, Anti-IL5R, Anti-IL13 therapy on asthma exacerbations: a network meta-analysis. Lung. 2020;198:95–103. doi: 10.1007/s00408-019-00310-8.
    1. Edris A, De Feyter S, Maes T, Joos G, Lahousse L. Monoclonal antibodies in type 2 asthma: a systematic review and network meta-analysis. Respir Res. 2019;20(1):179. doi: 10.1186/s12931-019-1138-3.
    1. Park HS, Kim MK, Imai N, Nakanishi T, Adachi M, Ohta K, et al. A phase 2a study of benralizumab for patients with eosinophilic asthma in South Korea and Japan. Int Arch Allergy Immunol. 2016;169(3):135–145. doi: 10.1159/000444799.
    1. Chupp GL, Bradford ES, Albers FC, Bratton DJ, Wang-Jairaj J, Nelsen LM, et al. Efficacy of mepolizumab add-on therapy on health-related quality of life and markers of asthma control in severe eosinophilic asthma (MUSCA): a randomised, double-blind, placebo-controlled, parallel-group, multicentre, phase 3b trial. Lancet Respir Med. 2017;5(5):390–400. doi: 10.1016/S2213-2600(17)30125-X.
    1. Castro M, Zangrilli J, Wechsler ME, Bateman ED, Brusselle GG, Bardin P, et al. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir Med. 2015;3(5):355–366. doi: 10.1016/S2213-2600(15)00042-9.
    1. Yancey SW, Ortega HG, Keene ON, Mayer B, Gunsoy NB, Brightling CE, et al. Meta-analysis of asthma-related hospitalization in mepolizumab studies of severe eosinophilic asthma. J Allergy Clin Immunol. 2017;139(4):1167–1175. doi: 10.1016/j.jaci.2016.08.008.
    1. Rathinam KK, Abraham JJ, Vijayakumar TM. Dupilumab in the treatment of moderate to severe asthma: an evidence-based review. Curr Ther Res Clin Exp. 2019;91:45–51. doi: 10.1016/j.curtheres.2019.100571.
    1. Skolnik NS, Carnahan SP. Primary care of asthma: new options for severe eosinophilic asthma. Curr Med Res Opin. 2019;35(7):1309–1318. doi: 10.1080/03007995.2019.1595966.
    1. Rabe KF, Nair P, Brusselle G, Maspero JF, Castro M, Sher L, et al. Efficacy and Safety of Dupilumab in Glucocorticoid-Dependent Severe Asthma. N Engl J Med. 2018;378(26):2475–2485. doi: 10.1056/NEJMoa1804093.
    1. Nebol'sin VE, Zheltukhina GA, Krzhechkovskaia VV, Kovaleva VL, Evstigneeva RP. The effect of gamma-L-glutamylhistamine analogues on the severity of experimental anaphylactic reaction, hormonal status and liver cytochrome P450 system. Vopr Med Khim. 2001;47(3):301–307.
    1. Kovaleva VL, Nebol'sin VE, Makarova OV, Noseikina EM, Mikhailova LP. The effect of a potential drug ingamine on a model of noninfectious pneumonia. Eksp Klin Farmakol. 2004;67(4):30–34.
    1. Kovaleva VL, Nebol'sin VE, Karabinenko AA, Zheltukhina GA, Uteshev DB. The protector properties of a pseudopeptide drug ingamine studied on a model of bronchospasm in guinea pigs. Eksp Klin Farmakol. 2005;68(2):21–24.
    1. Ferko B, Romanova J, Rydlovskaya AV, Kromova TA, Proskurina OV, Amelina AN, et al. A novel oral glutarimide derivative XC8 suppresses Sephadex-induced lung inflammation in rats and ovalbumin-induced acute and chronic asthma in Guinea pigs. Curr Pharm Biotechnol. 2019;20(2):146–156. doi: 10.2174/1389201020666190215103505.
    1. Proudfoot AE. Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol. 2002;2(2):106–115. doi: 10.1038/nri722.
    1. Dunzendorfer S, Kaneider NC, Kaser A, Woell E, Frade JM, Mellado M, et al. Functional expression of chemokine receptor 2 by normal human eosinophils. J Allergy Clin Immunol. 2001;108(4):581–587. doi: 10.1067/mai.2001.118518.
    1. Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res. 2009;29(6):313–326. doi: 10.1089/jir.2008.0027.
    1. Renner A, Romanova J, Ferko B, Schmutz H, Nebolsin V, Muller M, et al. Safety, pharmacokinetics and pharmacodynamics of a novel anti-asthmatic drug, XC8, in healthy probands. Pulm Pharmacol Ther. 2019;59:101852. doi: 10.1016/j.pupt.2019.101852.
    1. Santanello NC, Zhang J, Seidenberg B, Reiss TF, Barber BL. What are minimal important changes for asthma measures in a clinical trial? Eur Respir J. 1999;14(1):23–27. doi: 10.1034/j.1399-3003.1999.14a06.x.
    1. Reddel HK, Taylor DR, Bateman ED, Boulet LP, Boushey HA, Busse WW, et al. An official American Thoracic Society/European Respiratory Society statement: asthma control and exacerbations: standardizing endpoints for clinical asthma trials and clinical practice. Am J Respir Crit Care Med. 2009;180(1):59–99. doi: 10.1164/rccm.200801-060ST.
    1. Cynis H, Hoffmann T, Friedrich D, Kehlen A, Gans K, Kleinschmidt M, et al. The isoenzyme of glutaminyl cyclase is an important regulator of monocyte infiltration under inflammatory conditions. EMBO Mol Med. 2011;3(9):545–558. doi: 10.1002/emmm.201100158.
    1. Lee JS, Yang EJ, Kim IS. The roles of MCP-1 and protein kinase C delta activation in human eosinophilic leukemia EoL-1 cells. Cytokine. 2009;48(3):186–195. doi: 10.1016/j.cyto.2009.07.008.
    1. Lloyd CM, Hessel EM. Functions of T cells in asthma: more than just T(H)2 cells. Nat Rev Immunol. 2010;10(12):838–848. doi: 10.1038/nri2870.
    1. Hens G, Vanaudenaerde BM, Bullens DM, Piessens M, Decramer M, Dupont LJ, et al. Sinonasal pathology in nonallergic asthma and COPD: 'united airway disease' beyond the scope of allergy. Allergy. 2008;63(3):261–267. doi: 10.1111/j.1398-9995.2007.01545.x.
    1. Magnan AO, Mely LG, Camilla CA, Badier MM, Montero-Julian FA, Guillot CM, et al. Assessment of the Th1/Th2 paradigm in whole blood in atopy and asthma Increased IFN-gamma-producing CD8(+) T cells in asthma. Am J Respir Crit Care Med. 2000;161(6):1790–1796. doi: 10.1164/ajrccm.161.6.9906130.
    1. Litonjua AA, Sparrow D, Guevarra L, O'Connor GT, Weiss ST, Tollerud DJ. Serum interferon-gamma is associated with longitudinal decline in lung function among asthmatic patients: the Normative Aging Study. Ann Allergy Asthma Immunol. 2003;90(4):422–428. doi: 10.1016/S1081-1206(10)61827-3.
    1. Bentley AM, Hamid Q, Robinson DS, Schotman E, Meng Q, Assoufi B, et al. Prednisolone treatment in asthma. Reduction in the numbers of eosinophils, T cells, tryptase-only positive mast cells, and modulation of IL-4, IL-5, and interferon-gamma cytokine gene expression within the bronchial mucosa. Am J Respir Crit Care Med. 1996;153(2):551–556. doi: 10.1164/ajrccm.153.2.8564096.
    1. Kaur M, Smyth LJ, Cadden P, Grundy S, Ray D, Plumb J, et al. T lymphocyte insensitivity to corticosteroids in chronic obstructive pulmonary disease. Respir Res. 2012;13:20. doi: 10.1186/1465-9921-13-20.
    1. O'Connell D, Bouazza B, Kokalari B, Amrani Y, Khatib A, Ganther JD, et al. IFN-gamma-induced JAK/STAT, but not NF-kappaB, signaling pathway is insensitive to glucocorticoid in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2015;309(4):L348–L359. doi: 10.1152/ajplung.00099.2015.
    1. Piper E, Brightling C, Niven R, Oh C, Faggioni R, Poon K, et al. A phase II placebo-controlled study of tralokinumab in moderate-to-severe asthma. Eur Respir J. 2013;41(2):330–338. doi: 10.1183/09031936.00223411.
    1. Castro M, Mathur S, Hargreave F, Boulet LP, Xie F, Young J, et al. Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am J Respir Crit Care Med. 2011;184(10):1125–1132. doi: 10.1164/rccm.201103-0396OC.
    1. Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A, et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med. 2009;360(10):973–984. doi: 10.1056/NEJMoa0808991.

Source: PubMed

3
구독하다