Beta blocker use in traumatic brain injury based on the high-sensitive troponin status (BBTBBT): methodology and protocol implementation of a double-blind randomized controlled clinical trial

Ayman El-Menyar, Mohammad Asim, Ahmed Abdel-Aziz Bahey, Talat Chughtai, Abdulnasser Alyafai, Husham Abdelrahman, Sandro Rizoli, Ruben Peralta, Hassan Al-Thani, Ayman El-Menyar, Mohammad Asim, Ahmed Abdel-Aziz Bahey, Talat Chughtai, Abdulnasser Alyafai, Husham Abdelrahman, Sandro Rizoli, Ruben Peralta, Hassan Al-Thani

Abstract

Background: Beta-adrenergic receptor blockers (BB) play an important role in the protection of organs that are susceptible for secondary injury due to stress-induced adrenergic surge. However, the use of BB in traumatic brain injury (TBI) patients is not yet the standard of care which necessitates clear scientific evidence to be used. The BBTBBT study aims to determine whether early administration of propranolol based on the high-sensitive troponin T(HsTnT) status will improve the outcome of TBI patients. We hypothesized that early propranolol use is effective in reducing 10- and 30-day mortality in TBI patients. Secondary outcomes will include correlation between serum biomarkers (troponin, epinephrine, cytokines, enolase, S100 calcium binding protein B) and the severity of injury and the impact of BB use on the duration of hospital stay and functional status at a 3-month period.

Methods: The BBTBBT study is a prospective, randomized, double-blinded, placebo-controlled three-arm trial of BB use in mild-to-severe TBI patients based on the HsTnT status. All enrolled patients will be tested for HsTnT at the first 4 and 6 h post-injury. Patients with positive HsTnT will receive BB if there is no contraindication (group 1). Patients with negative HsTnT will be randomized to receive either propranolol (group 2) or placebo (group 3). The time widow for receiving the study treatment is the first 24 h post-injury.

Discussion: Early BB use may reduce the catecholamine storm and subsequently the cascade of immune and inflammatory changes associated with TBI. HsTnT could be a useful fast diagnostic and prognostic tool in TBI patients. This study will be of great clinical interest to improve survival and functional outcomes of TBI patients.

Trial registration: ClinicalTrials.gov NCT04508244. Registered on 7 August 2020. Recruitment started on 29 December 2020 and is ongoing.

Keywords: Beta blocker; Functional outcome; High-sensitive troponin; Randomized control trial; Traumatic brain injury.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
BBTBBT protocol

References

    1. Faul M, Xu L, Wald MM, Coronado VG. Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control: Atlanta, GA; 2010.
    1. Ma VY, Chan L, Carruthers KJ. Incidence, prevalence, costs, and impact on disability of common conditions requiring rehabilitation in the United States: stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pain. Arch Phys Med Rehabil. 2014;95:986–95.e1. doi: 10.1016/j.apmr.2013.10.032.
    1. Mock C, Lormand JD, Goosen J, Joshipura M, Peden M. Guidelines for essential trauma care. Geneva: World Health Organization; 2004.
    1. Al-Otaiby MA, Al-Amri HS, Al-Moghairi AM. The clinical significance of cardiac troponins in medical practice. J Saudi Heart Assoc. 2011;23(1):3–11. doi: 10.1016/j.jsha.2010.10.001.
    1. Mahmood I, El-Menyar A, Dabdoob W, Abdulrahman Y, Siddiqui T, Atique S, Arumugam SK, Latifi R, Al-Thani H. Troponin T in patients with traumatic chest injuries with and without cardiac involvement: insights from an observational study. N Am J Med Sci. 2016;8(1):17–24. doi: 10.4103/1947-2714.175188.
    1. Edouard AR, Felten ML, Hebert JL, Cosson C, Martin L, Benhamou D. Incidence and significance of cardiac troponin I release in severe trauma patients. Anesthesiology. 2004;101(6):1262–1268. doi: 10.1097/00000542-200412000-00004.
    1. Hasanin A, Kamal A, Amin S, Zakaria D, El Sayed R, Mahmoud K, Mukhtar A. Incidence and outcome of cardiac injury in patients with severe head trauma. Scand J Trauma Resusc Emerg Med. 2016;24(1):58. doi: 10.1186/s13049-016-0246-z.
    1. El-Menyar A. Beta blockers therapy in traumatic brain injury: is it the time to disclose the brain-cardiac interactions? J Trauma Acute Care Surg. 2018;85(3):646–648. doi: 10.1097/TA.0000000000001865.
    1. Freund Y, Chenevier-Gobeaux C, Bonnet P, et al. High-sensitivity versus conventional troponin in the emergency department for the diagnosis of acute myocardial infarction. Crit Care. 2011;15(3):R147. doi: 10.1186/cc10270.
    1. Smith A, John M, Trout R, Davis E, Moningi S. Elevated cardiac troponins in sepsis: what do they signify? W V Med J. 2009;105(4):29–32.
    1. Lim W, Cook DJ, Griffith LE, Crowther MA, Devereaux PJ. Elevated cardiac troponin levels in critically ill patients: prevalence, incidence, and outcome. Am J Crit Care. 2006;15(3):280–288. doi: 10.4037/ajcc2006.15.3.280.
    1. Poe S, Vandivier-Pletsch RH, Clay M, Wong HR, Haynes E, Rothenberg FG. Cardiac troponin measurement in the critically ill: potential for guiding clinical management. J Invest Med. 2015;63(8):905–915. doi: 10.1097/JIM.0000000000000239.
    1. Salim A, Hadjizacharia P, Brown C, Inaba K, Teixeira PGR, Chan L, Rhee P, Demetriades D. Significance of troponin elevation after severe traumatic brain injury. J Trauma. 2008;64(1):46–52. doi: 10.1097/TA.0b013e31815eb15a.
    1. Bukur M, Mohseni S, Ley E, Salim A, Margulies D, Talving P, Demetriades D, Inaba K. Efficacy of beta-blockade after isolated blunt head injury: does race matter? J Trauma Acute Care Surg. 2012;72(4):1013–1018. doi: 10.1097/TA.0b013e318241bc5b.
    1. Schroeppel TJ, Fischer PE, Zarzaur BL, Magnotti LJ, Clement LP, Fabian TC, Croce MA. Beta-adrenergic blockade and traumatic brain injury: protective? J Trauma. 2010;69(4):776–780. doi: 10.1097/TA.0b013e3181e981b8.
    1. Martin M, Mullenix P, Rhee P, Belzberg H, Demetriades D, Salim A. Troponin increases in the critically injured patient: mechanical trauma or physiologic stress? J Trauma. 2005;59:1086–1091. doi: 10.1097/01.ta.0000190249.19668.37.
    1. Cai SS, Bonds BW, Hu PF, Stein DM. The role of cardiac troponin I in prognostication of patients with isolated severe traumatic brain injury. J Trauma Acute Care Surg. 2016;80(3):477–483. doi: 10.1097/TA.0000000000000916.
    1. Lippi G, Cervellin G, Lui YW. Role of biomarkers in the diagnosis of mild traumatic brain injury. Radiology. 2013;268(2):611–612. doi: 10.1148/radiol.13130643.
    1. El-Menyar A, Sathian B, Wahlen BM, Al-Thani H. Serum cardiac troponins as prognostic markers in patients with traumatic and non-traumatic brain injuries: a meta-analysis. Am J Emerg Med. 2019;37(1):133–142. doi: 10.1016/j.ajem.2018.10.002.
    1. El-Menyar A, Asim M, Latifi R, Bangdiwala SI, Al-Thani H. Predictive value of positive high-sensitivity troponin T in intubated traumatic brain injury patients. J Neurosurg. 2018;5(6):1–9. doi: 10.3171/2017.7.JNS17675.
    1. Komisarow J, Laskowitz DT, Mathew JP, Hernandez A, James ML, Vavilala MS, et al. TRACK-TBI Investigators. Incidence and clinical impact of myocardial injury following traumatic brain injury: a pilot TRACK-TBI study. J Neurosurg Anesthesiol. 2021;23. 10.1097/ANA.0000000000000772.
    1. Bender M, Stein M, Schoof B, Kolodziej MA, Uhl E, Schöller K. Troponin I as an early biomarker of cardiopulmonary parameters during the first 24 h of intensive care unit treatment in isolated traumatic brain injury patients. Injury. 2020;51(5):1189–1195. doi: 10.1016/j.injury.2020.01.002.
    1. Mohammad Ismail A, Borg T, Sjolin G, et al. β-adrenergic blockade is associated with a reduced risk of 90-day mortality after surgery for hip fractures. Trauma Surg Acute Care Open. 2020;5(1):e000533. doi: 10.1136/tsaco-2020-000533.
    1. Chen Z, Tang L, Xu X, Wei X, Wen L, Xie Q. Therapeutic effect of beta-blocker in patients with traumatic brain injury: a systematic review and meta-analysis. J Crit Care. 2017;41:240–246. doi: 10.1016/j.jcrc.2017.05.035.
    1. Ko A, Harada MY, Barmparas G, Thomsen GM, Alban RF, Bloom MB, Chung R, Melo N, Margulies DR, Ley EJ. Early propranolol after traumatic brain injury is associated with lower mortality. J Trauma Acute Care Surg. 2016;80(4):637–642. doi: 10.1097/TA.0000000000000959.
    1. Khalili H, Ahl R, Paydar S, Sjolin G, Cao Y, Abdolrahimzadeh Fard H, Niakan A, Hanna K, Joseph B, Mohseni S. Beta-blocker therapy in severe traumatic brain injury: a prospective randomized controlled trial. World J Surg. 2020;44(6):1844–1853. doi: 10.1007/s00268-020-05391-8.
    1. Murry JS, Hoang DM, Barmparas G, Harada MY, Bukur M, Bloom MB, Inaba K, Margulies DR, Salim A, Ley EJ. Prospective evaluation of early propranolol after traumatic brain injury. J Surg Res. 2016;200(1):221–226. doi: 10.1016/j.jss.2015.06.045.
    1. Alali AS, McCredie VA, Golan E, Shah PS, Nathens AB. Beta blockers for acute traumatic brain injury: a systematic review and meta-analysis. Neurocrit Care. 2014;20(3):514–523. doi: 10.1007/s12028-013-9903-5.
    1. Bible LE, Pasupuleti LV, AlzateWD GAV, Song KJ, Sifri ZC, Livingston DH, Mohr AM. Early Propranolol administration to severely injured patients can improve bone marrow dysfunction. J Trauma Acute Care Surg. 2014;77(1):54–60. doi: 10.1097/TA.0000000000000264.
    1. Alali AS, Mukherjee K, McCredie VA, et al. Beta-blockers and traumatic brain injury: a systematic review, meta-analysis, and eastern association for the surgery of trauma guideline. Ann Surg. 2017;266(6):952–961. doi: 10.1097/SLA.0000000000002286.
    1. Neil-Dwyer G, Bartlett J, McAinsh J, Cruickshank JM. Beta-adrenoceptor blockers and the blood-brain barrier. Br J Clin Pharmacol. 1981;11(6):549–553. doi: 10.1111/j.1365-2125.1981.tb01169.x.
    1. . Accessed on 25 Sept 2021
    1. Bhatia PM, Daniels LB. Highly sensitive cardiac troponins: the evidence behind sex-specific cutoffs. J Am Heart Assoc. 2020;9(10):e015272. doi: 10.1161/JAHA.119.015272.
    1. Poldermans D, Boersma E, Bax JJ, Thomson IR, van de Ven LLM, Blankensteijn JD, Baars HF, Yo TI, Trocino G, Vigna C, Roelandt JRTC, Fioretti PM, Paelinck B, van Urk H. The effect of bisoprolol on peri-operative mortality and myocardial infarction in high-risk patients undergoing vascular surgery. NEJM. 1999;341(24):1789–1794. doi: 10.1056/NEJM199912093412402.
    1. Ding H, Liao L, Zheng X, Wang Q, Liu Z, Xu G, Li X, Liu L. β-Blockers for traumatic brain injury: a systematic review and meta-analysis. J Trauma Acute Care Surg. 2021;90(6):1077–1085. doi: 10.1097/TA.0000000000003094.
    1. Cotton BA, Snodgrass KB, Fleming SB, Carpenter RO, Kemp CD, Arbogast PG, Morris JA., Jr Beta-blocker exposure is associated with improved survival after severe traumatic brain injury. J Trauma. 2007;62(1):26–33. doi: 10.1097/TA.0b013e31802d02d0.
    1. Arbabi S, Campion EM, Hemmila MR, Barker M, Dimo M, Ahrns KS, Niederbichler AD, Ipaktchi K, Wahl WL. Beta-blocker use is associated with improved outcomes in adult trauma patients. J Trauma. 2007;62(1):56–62. doi: 10.1097/TA.0b013e31802d972b.
    1. Inaba K, Teixeira PGR, David J-S, Chan LS, Salim A, Brown C, Browder T, Beale E, Rhee P, Demetriades D. Beta-blockers in isolated blunt head injury. J Am Coll Surg. 2008;206(3):432–438. doi: 10.1016/j.jamcollsurg.2007.10.005.
    1. Ley EJ, Leonard SD, Barmparas G, Dhillon NK, Inaba K, Salim A. et al; Beta Blockers TBI Study Group Collaborators. Beta blockers in critically ill patients with traumatic brain injury: results from a multicenter, prospective, observational American Association for the Surgery of Trauma study. J Trauma Acute Care Surg. 2018;84(2):234–244. doi: 10.1097/TA.0000000000001747.
    1. El-Menyar A, Goyal A, Latifi R, Al-Thani H, Frishman W. Brain-heart interactions in traumatic brain injury. Cardiol Rev. 2017;25(6):279–288. doi: 10.1097/CRD.0000000000000167.
    1. Patel MB, McKenna JW, Alvarez JM, Sugiura A, Jenkins JM, Guillamondegui OD, Pandharipande PP. Decreasing adrenergic or sympathetic hyperactivity after severe traumatic brain injury using propranolol and clonidine (DASH After TBI Study): study protocol for a randomized controlled trial. Trials. 2012;13(1):177. doi: 10.1186/1745-6215-13-177.

Source: PubMed

3
구독하다