Transpulmonary thermodilution: advantages and limits

Xavier Monnet, Jean-Louis Teboul, Xavier Monnet, Jean-Louis Teboul

Abstract

Background: For complex patients in the intensive care unit or in the operating room, many questions regarding their haemodynamic management cannot be answered with simple clinical examination. In particular, arterial pressure allows only a rough estimation of cardiac output. Transpulmonary thermodilution is a technique that provides a full haemodynamic assessment through cardiac output and other indices.

Main body: Through the analysis of the thermodilution curve recorded at the tip of an arterial catheter after the injection of a cold bolus in the venous circulation, transpulmonary thermodilution intermittently measures cardiac output. This measure allows the calibration of pulse contour analysis. This provides continuous and real time monitoring of cardiac output, which is not possible with the pulmonary artery catheter. Transpulmonary thermodilution provides several variables beyond cardiac output. It estimates the end-diastolic volume of the four cardiac cavities, which is a marker of cardiac preload. It provides an estimation of the systolic function of the combined ventricles. It is more direct than the pulmonary artery catheter, but does not allow the distinct estimation of right and left cardiac function. It is easier and faster to perform than echocardiography, but does not provide a full evaluation of the cardiac structure and function. Transpulmonary thermodilution has the unique advantage of being able to estimate at the bedside extravascular lung water, which quantifies the volume of pulmonary oedema, and pulmonary vascular permeability, which quantifies the degree of a pulmonary capillary leak. Both indices are helpful for guiding fluid strategy, especially in case of acute respiratory distress syndrome.

Conclusions: Transpulmonary thermodilution provides a full cardiovascular evaluation that allows one to answer many questions regarding haemodynamic management. It belongs to the category of "advanced" devices that are indicated for the most critically ill and/or complex patients.

Keywords: Cardiac output; Cardiac preload; Extravascular lung water; Fluid responsiveness; Haemodynamic monitoring.

Figures

Fig. 1
Fig. 1
Haemodynamic variables provided by transpulmonary thermodilution and calibrated pulse contour analysis, with their meaning, utility and normal values (N). ARDS acute respiratory distress syndrome
Fig. 2
Fig. 2
Assessment of intrathoracic volume by the PiCCO device. With the VolumeView device, the geometrical analysis of the thermodilution curve directly estimates the global end-diastolic volume. Dt downslope time, MTt mean transit time. For explanation, see the text
Fig. 3
Fig. 3
Indication for haemodynamic monitoring in the intensive care unit. A-line arterial line, CV-line central venous line. The choice also depends on team experience

References

    1. Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaeschke R, Mebazaa A, Pinsky MR, Teboul JL, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1795–815. doi: 10.1007/s00134-014-3525-z.
    1. Sakka SG, Reuter DA, Perel A. The transpulmonary thermodilution technique. J Clin Monit Comput. 2012;26(5):347–53. doi: 10.1007/s10877-012-9378-5.
    1. Teboul JL, Saugel B, Cecconi M, De Backer D, Hofer CK, Monnet X, Perel A, Pinsky MR, Reuter DA, Rhodes A, et al. Less invasive hemodynamic monitoring in critically ill patients. Intensive Care Med. 2016;42(9):1350–9. doi: 10.1007/s00134-016-4375-7.
    1. Monnet X, Persichini R, Ktari M, Jozwiak M, Richard C, Teboul JL. Precision of the transpulmonary thermodilution measurements. Crit Care. 2011;15(4):R204. doi: 10.1186/cc10421.
    1. Stetz CW, Miller RG, Kelly GE, Raffin TA. Reliability of the thermodilution method in the determination of cardiac output in clinical practice. Am Rev Respir Dis. 1982;126(6):1001–4.
    1. Tagami T, Kushimoto S, Tosa R, Omura M, Hagiwara J, Hirama H, Yokota H. The precision of PiCCO(R) measurements in hypothermic post-cardiac arrest patients. Anaesthesia. 2012;67(3):236–43. doi: 10.1111/j.1365-2044.2011.06981.x.
    1. Faybik P, Hetz H, Baker A, Yankovskaya E, Krenn CG, Steltzer H. Iced versus room temperature injectate for assessment of cardiac output, intrathoracic blood volume, and extravascular lung water by single transpulmonary thermodilution. J Crit Care. 2004;19(2):103–7. doi: 10.1016/j.jcrc.2004.04.002.
    1. Huber W, Kraski T, Haller B, Mair S, Saugel B, Beitz A, Schmid RM, Malbrain ML. Room-temperature vs iced saline indicator injection for transpulmonary thermodilution. J Crit Care. 2014;29(6):1133.e7–1133.e14. doi: 10.1016/j.jcrc.2014.08.005.
    1. Schmidt S, Westhoff TH, Hofmann C, Schaefer JH, Zidek W, Compton F, van der Giet M. Effect of the venous catheter site on transpulmonary thermodilution measurement variables. Crit Care Med. 2007;35(3):783–6. doi: 10.1097/01.CCM.0000256720.11360.FB.
    1. Saugel B, Umgelter A, Schuster T, Phillip V, Schmid RM, Huber W. Transpulmonary thermodilution using femoral indicator injection: a prospective trial in patients with a femoral and a jugular central venous catheter. Crit Care. 2010;14(3):R95. doi: 10.1186/cc9030.
    1. Suria S, Wyniecki A, Eghiaian A, Monnet X, Weil G. Measurement of cardiac index by transpulmonary thermodilution using an implanted central venous access port: a prospective study in patients scheduled for oncologic high-risk surgery. PLoS One. 2014;9(8):e104369. doi: 10.1371/journal.pone.0104369.
    1. Sakka SG, Hanusch T, Thuemer O, Wegscheider K. The influence of venovenous renal replacement therapy on measurements by the transpulmonary thermodilution technique. Anesth Analg. 2007;105(4):1079–82. doi: 10.1213/01.ane.0000280440.08530.fb.
    1. Dufour N, Delville M, Teboul JL, Camous L, Favier du Noyer A, Richard C, Monnet X. Transpulmonary thermodilution measurements are not affected by continuous veno-venous hemofiltration at high blood pump flow. Intensive Care Med. 2012;38(7):1162–8. doi: 10.1007/s00134-012-2573-5.
    1. Heise D, Faulstich M, Morer O, Brauer A, Quintel M. Influence of continuous renal replacement therapy on cardiac output measurement using thermodilution techniques. Minerva Anestesiol. 2012;78(3):315–21.
    1. Pohl T, Kozieras J, Sakka SG. Influence of extravascular lung water on transpulmonary thermodilution-derived cardiac output measurement. Intensive Care Med. 2008;34(3):533–7. doi: 10.1007/s00134-007-0916-4.
    1. Monnet X, Teboul JL. Passive leg raising: five rules, not a drop of fluid! Crit Care. 2015;19:18. doi: 10.1186/s13054-014-0708-5.
    1. Monnet X, Osman D, Ridel C, Lamia B, Richard C, Teboul JL. Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med. 2009;37(3):951–6. doi: 10.1097/CCM.0b013e3181968fe1.
    1. Monnet X, Teboul JL. Minimally invasive monitoring. Crit Care Clin. 2015;31(1):25–42. doi: 10.1016/j.ccc.2014.08.002.
    1. Biais M, Nouette-Gaulain K, Cottenceau V, Vallet A, Cochard JF, Revel P, Sztark F. Cardiac output measurement in patients undergoing liver transplantation: pulmonary artery catheter versus uncalibrated arterial pressure waveform analysis. Anesth Analg. 2008;106(5):1480–6. doi: 10.1213/ane.0b013e318168b309.
    1. Monnet X, Anguel N, Naudin B, Jabot J, Richard C, Teboul JL. Arterial pressure-based cardiac output in septic patients: different accuracy of pulse contour and uncalibrated pressure waveform devices. Crit Care. 2010;14(3):R109. doi: 10.1186/cc9058.
    1. Monnet X, Lahner D. Can the “FloTrac” really track flow in septic patients? Intensive Care Med. 2011;37(2):183–5. doi: 10.1007/s00134-010-2109-9.
    1. Monnet X, Anguel N, Naudin B, Jabot J, Richard C, Teboul JL. Pulse contour-derived cardiac output in septic patients: different performance of calibrated and uncalibrated devices. Crit Care. 2010;14(3):R109.
    1. Hamzaoui O, Monnet X, Richard C, Osman D, Chemla D, Teboul JL. Effects of changes in vascular tone on the agreement between pulse contour and transpulmonary thermodilution cardiac output measurements within an up to 6-hour calibration-free period. Crit Care Med. 2008;36(2):434–40. doi: 10.1097/01.CCM.OB013E318161FEC4.
    1. Kiefer N, Hofer CK, Marx G, Geisen M, Giraud R, Siegenthaler N, Hoeft A, Bendjelid K, Rex S. Clinical validation of a new thermodilution system for the assessment of cardiac output and volumetric parameters. Crit Care. 2012;16(3):R98. doi: 10.1186/cc11366.
    1. Bendjelid K, Giraud R, Siegenthaler N, Michard F. Validation of a new transpulmonary thermodilution system to assess global end-diastolic volume and extravascular lung water. Crit Care. 2010;14(6):R209. doi: 10.1186/cc9332.
    1. Michard F, Alaya S, Zarka V, Bahloul M, Richard C, Teboul JL. Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest. 2003;124(5):1900–8. doi: 10.1378/chest.124.5.1900.
    1. McLuckie A, Bihari D. Investigating the relationship between intrathoracic blood volume index and cardiac index. Intensive Care Med. 2000;26(9):1376–8. doi: 10.1007/s001340000600.
    1. Reuter DA, Kirchner A, Felbinger TW, Weis FC, Kilger E, Lamm P, Goetz AE. Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function. Crit Care Med. 2003;31(5):1399–404. doi: 10.1097/01.CCM.0000059442.37548.E1.
    1. Hofer CK, Ganter MT, Matter-Ensner S, Furrer L, Klaghofer R, Genoni M, Zollinger A. Volumetric assessment of left heart preload by thermodilution: comparing the PiCCO-VoLEF system with transoesophageal echocardiography. Anaesthesia. 2006;61(4):316–21. doi: 10.1111/j.1365-2044.2006.04537.x.
    1. Hofer CK, Furrer L, Matter-Ensner S, Maloigne M, Klaghofer R, Genoni M, Zollinger A. Volumetric preload measurement by thermodilution: a comparison with transoesophageal echocardiography. Br J Anaesth. 2005;94(6):748–55. doi: 10.1093/bja/aei123.
    1. Goedje O, Seebauer T, Peyerl M, Pfeiffer UJ, Reichart B. Hemodynamic monitoring by double-indicator dilution technique in patients after orthotopic heart transplantation. Chest. 2000;118(3):775–81. doi: 10.1378/chest.118.3.775.
    1. Kumar A, Anel R, Bunnell E, Habet K, Zanotti S, Marshall S, Neumann A, Ali A, Cheang M, Kavinsky C, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med. 2004;32(3):691–9. doi: 10.1097/01.CCM.0000114996.68110.C9.
    1. Huber W, Umgelter A, Reindl W, Franzen M, Schmidt C, von Delius S, Geisler F, Eckel F, Fritsch R, Siveke J, et al. Volume assessment in patients with necrotizing pancreatitis: a comparison of intrathoracic blood volume index, central venous pressure, and hematocrit, and their correlation to cardiac index and extravascular lung water index. Crit Care Med. 2008;36(8):2348–54. doi: 10.1097/CCM.0b013e3181809928.
    1. Staub NC. Pulmonary edema: physiologic approaches to management. Chest. 1978;74(5):559–64. doi: 10.1378/chest.74.5.559.
    1. Combes A, Berneau JB, Luyt CE, Trouillet JL. Estimation of left ventricular systolic function by single transpulmonary thermodilution. Intensive Care Med. 2004;30(7):1377–83. doi: 10.1007/s00134-004-2289-2.
    1. Jabot J, Monnet X, Lamia B, Chemla D, Richard C, Teboul JL. Cardiac function index provided by transpulmonary thermodilution behaves as an indicator of left ventricular systolic function. Crit Care Med. 2009;37:2913–8. doi: 10.1097/CCM.0b013e3181b01fd9.
    1. Reuter DA, Felbinger TW, Schmidt C, Kilger E, Goedje O, Lamm P, Goetz AE. Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med. 2002;28(4):392–8. doi: 10.1007/s00134-002-1211-z.
    1. Meybohm P, Gruenewald M, Renner J, Maracke M, Rossee S, Hocker J, Hagelstein S, Zacharowski K, Bein B. Assessment of left ventricular systolic function during acute myocardial ischemia: a comparison of transpulmonary thermodilution and transesophageal echocardiography. Minerva Anestesiol. 2011;77(2):132–41.
    1. Trepte CJ, Eichhorn V, Haas SA, Richter HP, Goepfert MS, Kubitz JC, Goetz AE, Reuter DA. Thermodilution-derived indices for assessment of left and right ventricular cardiac function in normal and impaired cardiac function. Crit Care Med. 2011;39(9):2106–12. doi: 10.1097/CCM.0b013e31821cb9ba.
    1. Perny J, Kimmoun A, Perez P, Levy B. Evaluation of cardiac function index as measured by transpulmonary thermodilution as an indicator of left ventricular ejection fraction in cardiogenic shock. Biomed Res Int. 2014;2014:598029. doi: 10.1155/2014/598029.
    1. Robotham JL, Takata M, Berman M, Harasawa Y. Ejection fraction revisited. Anesthesiology. 1991;74(1):172–83. doi: 10.1097/00000542-199101000-00026.
    1. Jozwiak M, Teboul JL, Monnet X. Extravascular lung water in critical care: recent advances and clinical applications. Ann Intensive Care. 2015;5(1):38. doi: 10.1186/s13613-015-0081-9.
    1. Sakka SG, Ruhl CC, Pfeiffer UJ, Beale R, McLuckie A, Reinhart K, Meier-Hellmann A. Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med. 2000;26(2):180–7. doi: 10.1007/s001340050043.
    1. Berkowitz DM, Danai PA, Eaton S, Moss M, Martin GS. Accurate characterization of extravascular lung water in acute respiratory distress syndrome. Crit Care Med. 2008;36(6):1803–9. doi: 10.1097/CCM.0b013e3181743eeb.
    1. Katzenelson R, Perel A, Berkenstadt H, Preisman S, Kogan S, Sternik L, Segal E. Accuracy of transpulmonary thermodilution versus gravimetric measurement of extravascular lung water. Crit Care Med. 2004;32(7):1550–4. doi: 10.1097/01.CCM.0000130995.18334.8B.
    1. Kirov MY, Kuzkov VV, Kuklin VN, Waerhaug K, Bjertnaes LJ. Extravascular lung water assessed by transpulmonary single thermodilution and postmortem gravimetry in sheep. Crit Care. 2004;8(6):R451–8. doi: 10.1186/cc2974.
    1. Tagami T, Kushimoto S, Yamamoto Y, Atsumi T, Tosa R, Matsuda K, Oyama R, Kawaguchi T, Masuno T, Hirama H, et al. Validation of extravascular lung water measurement by single transpulmonary thermodilution: human autopsy study. Crit Care. 2010;14(5):R162. doi: 10.1186/cc9250.
    1. Fernandez-Mondejar E, Rivera-Fernandez R, Garcia-Delgado M, Touma A, Machado J, Chavero J. Small increases in extravascular lung water are accurately detected by transpulmonary thermodilution. J Trauma. 2005;59(6):1420–3. doi: 10.1097/01.ta.0000198360.01080.42.
    1. Garcia-Delgado M, Touma-Fernandez A, Chamorro-Marin V, Ruiz-Aguilar A, Aguilar-Alonso E, Fernandez-Mondejar E. Alveolar fluid clearance in healthy pigs and influence of positive end-expiratory pressure. Crit Care. 2010;14(2):R36. doi: 10.1186/cc8914.
    1. Dres M, Teboul JL, Guerin L, Anguel N, Amilien V, Clair MP, Gruner A, Richard C, Monnet X. Transpulmonary thermodilution enables to detect small short-term changes in extravascular lung water induced by a bronchoalveolar lavage. Crit Care Med. 2014;42(8):1869–73. doi: 10.1097/CCM.0000000000000341.
    1. Dres M, Teboul JL, Anguel N, Guerin L, Richard C, Monnet X. Extravascular lung water, B-type natriuretic peptide, and blood volume contraction enable diagnosis of weaning-induced pulmonary edema. Crit Care Med. 2014;42(8):1882–9. doi: 10.1097/CCM.0000000000000295.
    1. Cordemans C, De Laet I, Van Regenmortel N, Schoonheydt K, Dits H, Huber W, Malbrain ML. Fluid management in critically ill patients: the role of extravascular lung water, abdominal hypertension, capillary leak, and fluid balance. Ann Intensive Care. 2012;2(Suppl 1):S1. doi: 10.1186/2110-5820-2-S1-S1.
    1. Jozwiak M, Silva S, Persichini R, Anguel N, Osman D, Richard C, Teboul JL, Monnet X. Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Crit Care Med. 2013;41(2):472–80. doi: 10.1097/CCM.0b013e31826ab377.
    1. Tagami T, Nakamura T, Kushimoto S, Tosa R, Watanabe A, Kaneko T, Fukushima H, Rinka H, Kudo D, Uzu H, et al. Early-phase changes of extravascular lung water index as a prognostic indicator in acute respiratory distress syndrome patients. Ann Intensive Care. 2014;4:27. doi: 10.1186/s13613-014-0027-7.
    1. Martin GS, Eaton S, Mealer M, Moss M. Extravascular lung water in patients with severe sepsis: a prospective cohort study. Crit Care. 2005;9(2):R74–82. doi: 10.1186/cc3025.
    1. Sakka SG, Klein M, Reinhart K, Meier-Hellmann A. Prognostic value of extravascular lung water in critically ill patients. Chest. 2002;122(6):2080–6. doi: 10.1378/chest.122.6.2080.
    1. Schreiber T, Huter L, Schwarzkopf K, Schubert H, Preussler N, Bloos F, Gaser E, Karzai W. Lung perfusion affects preload assessment and lung water calculation with the transpulmonary double indicator method. Intensive Care Med. 2001;27(11):1814–8. doi: 10.1007/s00134-001-1122-4.
    1. Phillips CR, Chesnutt MS, Smith SM. Extravascular lung water in sepsis-associated acute respiratory distress syndrome: indexing with predicted body weight improves correlation with severity of illness and survival. Crit Care Med. 2008;36(1):69–73. doi: 10.1097/.
    1. Ryan D, Frohlich S, McLoughlin P. Pulmonary vascular dysfunction in ARDS. Ann Intensive Care. 2014;4:28. doi: 10.1186/s13613-014-0028-6.
    1. Patroniti N, Bellani G, Maggioni E, Manfio A, Marcora B, Pesenti A. Measurement of pulmonary edema in patients with acute respiratory distress syndrome. Crit Care Med. 2005;33(11):2547–54. doi: 10.1097/01.CCM.0000186747.43540.25.
    1. Roch A, Michelet P, D’Journo B, Brousse D, Blayac D, Lambert D, Auffray JP. Accuracy and limits of transpulmonary dilution methods in estimating extravascular lung water after pneumonectomy. Chest. 2005;128(2):927–33. doi: 10.1378/chest.128.2.927.
    1. Kuzkov VV, Suborov EV, Kirov MY, Kuklin VN, Sobhkhez M, Johnsen S, Waerhaug K, Bjertnaes LJ. Extravascular lung water after pneumonectomy and one-lung ventilation in sheep. Crit Care Med. 2007;35(6):1550–9. doi: 10.1097/01.CCM.0000265739.51887.2B.
    1. Haas SA, Trepte CJ, Nitzschke R, Jurgens TP, Goepfert MS, Goetz AE, Reuter DA. An assessment of global end-diastolic volume and extravascular lung water index during one-lung ventilation: is transpulmonary thermodilution usable? Anesth Analg. 2013;117(1):83–90. doi: 10.1213/ANE.0b013e31828f2c39.
    1. Roch A, Michelet P, Lambert D, Delliaux S, Saby C, Perrin G, Ghez O, Bregeon F, Thomas P, Carpentier JP, et al. Accuracy of the double indicator method for measurement of extravascular lung water depends on the type of acute lung injury. Crit Care Med. 2004;32(3):811–7. doi: 10.1097/01.CCM.0000114831.59185.02.
    1. Schuster DP, Anderson C, Kozlowski J, Lange N. Regional pulmonary perfusion in patients with acute pulmonary edema. J Nucl Med. 2002;43(7):863–70.
    1. Bigatello LM, Kistler EB, Noto A. Limitations of volumetric indices obtained by trans-thoracic thermodilution. Minerva Anestesiol. 2010;76(11):945–9.
    1. Saugel B, Phillip V, Ernesti C, Messer M, Meidert AS, Schmid RM, Huber W. Impact of large-volume thoracentesis on transpulmonary thermodilution-derived extravascular lung water in medical intensive care unit patients. J Crit Care. 2013;28(2):196–201. doi: 10.1016/j.jcrc.2012.05.002.
    1. Kushimoto S, Taira Y, Kitazawa Y, Okuchi K, Sakamoto T, Ishikura H, Endo T, Yamanouchi S, Tagami T, Yamaguchi J, et al. The clinical usefulness of extravascular lung water and pulmonary vascular permeability index to diagnose and characterize pulmonary edema: a prospective multicenter study on the quantitative differential diagnostic definition for acute lung injury/acute respiratory distress syndrome. Crit Care. 2012;16(6):R232. doi: 10.1186/cc11898.
    1. Monnet X, Anguel N, Osman D, Hamzaoui O, Richard C, Teboul JL. Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS. Intensive Care Med. 2007;33(3):448–53. doi: 10.1007/s00134-006-0498-6.
    1. Chew MS, Ihrman L, During J, Bergenzaun L, Ersson A, Unden J, Ryden J, Akerman E, Larsson M. Extravascular lung water index improves the diagnostic accuracy of lung injury in patients with shock. Crit Care. 2012;16(1):R1. doi: 10.1186/cc10599.
    1. ArdsDefinitionTaskForce. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526–33.
    1. LeTourneau JL, Pinney J, Phillips CR. Extravascular lung water predicts progression to acute lung injury in patients with increased risk. Crit Care Med. 2012;40(3):847–54. doi: 10.1097/CCM.0b013e318236f60e.
    1. Kushimoto S, Endo T, Yamanouchi S, Sakamoto T, Ishikura H, Kitazawa Y, Taira Y, Okuchi K, Tagami T, Watanabe A, et al. Relationship between extravascular lung water and severity categories of acute respiratory distress syndrome by the Berlin definition. Crit Care. 2013;17(4):R132. doi: 10.1186/cc12811.
    1. Schuster DP. Identifying patients with ARDS: time for a different approach. Intensive Care Med. 1997;23(12):1197–203. doi: 10.1007/s001340050486.
    1. Perel A. Extravascular lung water and the pulmonary vascular permeability index may improve the definition of ARDS. Crit Care. 2013;17(1):108. doi: 10.1186/cc11918.
    1. Monnet X, Marik PE, Teboul JL. Prediction of fluid responsiveness: an update. Ann Intensive Care. 2016;6(1):111. doi: 10.1186/s13613-016-0216-7.
    1. Eisenberg PR, Hansbrough JR, Anderson D, Schuster DP. A prospective study of lung water measurements during patient management in an intensive care unit. Am Rev Respir Dis. 1987;136(3):662–8. doi: 10.1164/ajrccm/136.3.662.
    1. Mitchell JP, Schuller D, Calandrino FS, Schuster DP. Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis. 1992;145(5):990–8. doi: 10.1164/ajrccm/145.5.990.
    1. Trof RJ, Beishuizen A, Cornet AD, de Wit RJ, Girbes AR, Groeneveld AB. Volume-limited versus pressure-limited hemodynamic management in septic and nonseptic shock. Crit Care Med. 2012;40(4):1177–85. doi: 10.1097/CCM.0b013e31823bc5f9.
    1. Zhang Z, Ni H, Qian Z. Effectiveness of treatment based on PiCCO parameters in critically ill patients with septic shock and/or acute respiratory distress syndrome: a randomized controlled trial. Intensive Care Med. 2015;41(3):444–51. doi: 10.1007/s00134-014-3638-4.
    1. Teboul JL, Monnet X, Perel A. Results of questionable management protocols are inherently questionable. Crit Care Med. 2012;40(8):2536. doi: 10.1097/CCM.0b013e3182545759.
    1. Huber W, Henschel B, Schmid RM, Haller B. Comments on Zhang et al.: Effectiveness of treatment based on PiCCO parameters in critically ill patients with septic shock and/or acute respiratory distress syndrome: a randomized controlled trial. Intensive Care Med. 2015;41(7):1389–90. doi: 10.1007/s00134-015-3819-9.
    1. Belda FJ, Aguilar G, Teboul JL, Pestana D, Redondo FJ, Malbrain M, Luis JC, Ramasco F, Umgelter A, Wendon J, et al. Complications related to less-invasive haemodynamic monitoring. Br J Anaesth. 2011;106(4):482–6. doi: 10.1093/bja/aeq377.
    1. Vincent JL, Rhodes A, Perel A, Martin GS, Rocca GD, Vallet B, Pinsky MR, Hofer CK, Teboul JL, de Boode WP, et al. Clinical review: Update on hemodynamic monitoring - a consensus of 16. Crit Care. 2011;15(4):229. doi: 10.1186/cc10291.
    1. Benes J, Giglio M, Brienza N, Michard F. The effects of goal-directed fluid therapy based on dynamic parameters on post-surgical outcome: a meta-analysis of randomized controlled trials. Crit Care. 2014;18(5):584. doi: 10.1186/s13054-014-0584-z.
    1. Monnet X, Letierce A, Hamzaoui O, Chemla D, Anguel N, Osman D, Richard C, Teboul JL. Arterial pressure allows monitoring the changes in cardiac output induced by volume expansion but not by norepinephrine. Crit Care Med. 2011;39:1394–9. doi: 10.1097/CCM.0b013e31820edcf0.
    1. Pierrakos C, Velissaris D, Scolletta S, Heenen S, De Backer D, Vincent JL. Can changes in arterial pressure be used to detect changes in cardiac index during fluid challenge in patients with septic shock? Intensive Care Med. 2012;38(3):422–8. doi: 10.1007/s00134-011-2457-0.
    1. Perel A, Saugel B, Teboul JL, Malbrain ML, Belda FJ, Fernandez-Mondejar E, Kirov M, Wendon J, Lussmann R, Maggiorini M. The effects of advanced monitoring on hemodynamic management in critically ill patients: a pre and post questionnaire study. J Clin Monit Comput. 2016;30(5):511–8. doi: 10.1007/s10877-015-9811-7.
    1. Cecconi M, Hofer C, Teboul JL, Pettila V, Wilkman E, Molnar Z, Della Rocca G, Aldecoa C, Artigas A, Jog S, et al. Fluid challenges in intensive care: the FENICE study: A global inception cohort study. Intensive Care Med. 2015;41(9):1529–37. doi: 10.1007/s00134-015-3850-x.
    1. Bendjelid K, Marx G, Kiefer N, Simon TP, Geisen M, Hoeft A, Siegenthaler N, Hofer CK. Performance of a new pulse contour method for continuous cardiac output monitoring: validation in critically ill patients. Br J Anaesth. 2013;111(4):573–9. doi: 10.1093/bja/aet116.
    1. Huber W, Phillip V, Hollthaler J, Schultheiss C, Saugel B, Schmid RM. Femoral indicator injection for transpulmonary thermodilution using the EV1000/VolumeView((R)): do the same criteria apply as for the PiCCO((R))? J Zhejiang Univ Sci B. 2016;17(7):561–7. doi: 10.1631/jzus.B1500244.
    1. Levy B, Bastien O, Karim B, Cariou A, Chouihed T, Combes A, Mebazaa A, Megarbane B, Plaisance P, Ouattara A, et al. Experts’ recommendations for the management of adult patients with cardiogenic shock. Ann Intensive Care. 2015;5(1):52. doi: 10.1186/s13613-015-0094-4.
    1. Haller M, Zollner C, Briegel J, Forst H. Evaluation of a new continuous thermodilution cardiac output monitor in critically ill patients: a prospective criterion standard study. Crit Care Med. 1995;23(5):860–6. doi: 10.1097/00003246-199505000-00014.
    1. Balik M, Pachl J, Hendl J. Effect of the degree of tricuspid regurgitation on cardiac output measurements by thermodilution. Intensive Care Med. 2002;28(8):1117–21. doi: 10.1007/s00134-002-1352-0.
    1. Jozwiak M, Monnet X, Cinotti R, Bontemps F, Reignier J, Belliard G. Prospective assessment of a score for assessing basic critical-care transthoracic echocardiography skills in ventilated critically ill patients. Ann Intensive Care. 2014;4:12. doi: 10.1186/2110-5820-4-12.
    1. Michard F. Hemodynamic monitoring in the era of digital health. Ann Intensive Care. 2016;6(1):15. doi: 10.1186/s13613-016-0119-7.

Source: PubMed

3
구독하다