Intermittent fasting two days versus one day per week, matched for total energy intake and expenditure, increases weight loss in overweight/obese men and women

Paul J Arciero, Karen M Arciero, Michelle Poe, Alex E Mohr, Stephen J Ives, Autumn Arciero, Molly Boyce, Jin Zhang, Melissa Haas, Emma Valdez, Delaney Corbet, Kaitlyn Judd, Annika Smith, Olivia Furlong, Marley Wahler, Eric Gumpricht, Paul J Arciero, Karen M Arciero, Michelle Poe, Alex E Mohr, Stephen J Ives, Autumn Arciero, Molly Boyce, Jin Zhang, Melissa Haas, Emma Valdez, Delaney Corbet, Kaitlyn Judd, Annika Smith, Olivia Furlong, Marley Wahler, Eric Gumpricht

Abstract

Background: Intermittent fasting (IF), consisting of either a one-day (IF1) or two consecutive days (IF2) per week, is commonly used for optimal body weight loss. Our laboratory has previously shown an IF1 diet combined with 6d/week of protein pacing (P; 4-5 meals/day evenly spaced, ~ 30% protein/day) significantly enhances weight loss, body composition, and cardiometabolic health in obese men and women. Whether an IF1-P or IF2-P, matched for weekly energy intake (EI) and expenditure (EE), is superior for weight loss, body composition, and cardiometabolic health is unknown.

Methods: This randomized control study directly compared an IF1-P (n = 10) versus an IF2-P (n = 10) diet on weight loss and body composition, cardiovascular (blood pressure and lipids), hormone, and hunger responses in 20 overweight men and women during a 4-week weight loss period. Participants received weekly dietary counseling and monitoring of compliance from a registered dietitian. All outcome variables were assessed pre (week 0) and post (week 5).

Results: Both groups significantly reduced body weight, waist circumference, percent body fat, fat mass, hunger, blood pressure, lipids, glucose, and increased percent fat-free mass (p < 0.05). However, IF2-P resulted in significantly greater reductions in body weight (-29%) and waist circumference (-38%) compared to IF1-P (p < 0.05), and showed a strong tendency for greater reductions in fat mass, glucose, and hunger levels (p < 0.10) despite similar weekly total EI (IF1-P, 9058 ± 692 vs. IF2-P, 8389 ± 438 kcals/week; p = 0.90), EE (~ 300 kcals/day; p = 0.79), and hormone responses (p > 0.10).

Conclusions: These findings support short-term IF1-P and IF2-P to optimize weight loss and improve body composition, cardiometabolic health, and hunger management, with IF2-P providing enhanced benefits in overweight women and men.

Trial registration: This trial was registered March 03, 2020 at www.

Clinicaltrials: gov as NCT04327141 .

Keywords: Fat mass; Fat-free mass; Hunger; Insulin-like growth factor -1 (IGF-1); Intermittent fasting; Protein pacing; Weight loss.

Conflict of interest statement

P.J.A. is a member of the scientific advisory board at Isagenix International LLC, the study’s sponsor. E.G. and A.E.M. are employed by Isagenix International LLC. No authors have financial interests regarding the outcomes of this investigation. All other authors declare no conflict of interest. The funder had no roles in the study design, data collection and analysis, and decision to publish.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
CONSORT flow diagram for the study
Fig. 2
Fig. 2
Study Timeline for testing during IF-P study.CON, conrol, week 0; Post-testing, week 5
Fig. 3
Fig. 3
Individual changes in body weight and waist circumference during WL between IF1-P and IF2-P

References

    1. de Cabo R, Mattson MP. Effects of intermittent fasting on health, aging, and disease. N Engl J Med. 2019;381:2541–2551. doi: 10.1056/NEJMra1905136.
    1. Yang F, Liu C, Liu X, Pan X, Li X, Tian L, Sun J, Yang S, Zhao R, An N, Yang X, Gao Y, Xing Y. Effect of epidemic intermittent fasting on cardiometabolic risk factors: a systematic review and meta-analysis of randomized controlled trials. Front Nutr. 2021;8:669325. doi: 10.3389/fnut.2021.669325.
    1. Queiroz JDN, Macedo RCO, Tinsley GM, Reischak-Oliveira A. Time-restricted eating and circadian rhythms: the biological clock is ticking. Crit Rev Food Sci Nutr. 2021;61:2863–2875. doi: 10.1080/10408398.2020.1789550.
    1. Parr EB, Heilbronn LK, Hawley JA. A time to eat and a time to exercise. Exerc Sport Sci Rev. 2020;48:4–10. doi: 10.1249/JES.0000000000000207.
    1. Anton, SD; Moehl, K; Donahoo, WT; Marosi, K; Lee, SA; Mainous, AG 3rd; Leeuwenburgh, C; Mattson, MP. Flipping the metabolic switch: understanding and applying the health benefits of fasting. Obesity 2018, 26, 254–268.
    1. Templeman I, Smith HA, Chowdhury E, Chen YC, Carroll H, Johnson-Bonson D, Hengist A, Smith R, Creighton J, Clayton D, Varley I, Karagounis LG, Wilhelmsen A, Tsintzas K, Reeves S, Walhin JP, Gonzalez JT, Thompson D, Betts JA. A randomized controlled trial to isolate the effects of fasting and energy restriction on weight loss and metabolic health in lean adults. Sci Transl Med. 2021;13:eabd8034. doi: 10.1126/scitranslmed.abd8034.
    1. Cioffi I, Evangelista A, Ponzo V, Ciccone G, Soldati L, Santarpia L, Contaldo F, Pasanisi F, Ghigo E, Bo S. Intermittent versus continuous energy restriction on weight loss and cardiometabolic outcomes: a systematic review and meta-analysis of randomized controlled trials. J Transl Med. 2018;16:371. doi: 10.1186/s12967-018-1748-4.
    1. Harris L, Hamilton S, Azevedo LB, Olajide J, De Brún C, Waller G, Whittaker V, Sharp T, Lean M, Hankey C, Ells L. Intermittent fasting interventions for treatment of overweight and obesity in adults: a systematic review and meta-analysis. JBI Database System Rev Implement Rep. 2018;16:507–547. doi: 10.11124/JBISRIR-2016-003248.
    1. Allaf M, Elghazaly H, Mohamed OG, Fareen MFK, Zaman S, Salmasi AM, Tsilidis K, Dehghan A. Intermittent fasting for the prevention of cardiovascular disease. Cochrane Database Syst Rev. 2021;1:CD013496.
    1. Jamshed H, Beyl RA, Della Manna DL, Yang ES, Ravussin E, Peterson CM. Early time-restricted feeding improves 24-hour glucose levels and affects markers of the circadian clock, aging, and autophagy in humans. Nutrients. 2019;11:1234. doi: 10.3390/nu11061234.
    1. Koutnik AP, Poff AM, Ward NP, DeBlasi JM, Soliven MA, Romero MA, Roberson PA, Fox CD, Roberts MD, D’Agostino DP. Ketone bodies attenuate wasting in models of atrophy. J Cachexia Sarcopenia Muscle. 2020;11:973–996. doi: 10.1002/jcsm.12554.
    1. Arciero PJ, Ormsbee MJ, Gentile CL, Nindl BC, Brestoff JR, Ruby M. Increased protein intake and meal frequency reduces abdominal fat during energy balance and energy deficit. Obesity. 2013;21:1357–1366. doi: 10.1002/oby.20296.
    1. Arciero PJ, Edmonds R, He F, Ward E, Gumpricht E, Mohr A, Ormsbee MJ, Astrup A. Protein-Pacing Caloric-restriction enhances body composition similarly in obese men and women during weight loss and sustains efficacy during long-term weight maintenance. Nutrients. 2016;8:476. doi: 10.3390/nu8080476.
    1. Zuo L, He F, Tinsley GM, Pannell BK, Ward E, Arciero PJ. Comparison of high-protein, intermittent fasting low-calorie diet and heart healthy diet for vascular health of the obese. Front Physiol. 2016;7:350. doi: 10.3389/fphys.2016.00350.
    1. He F, Zuo L, Ward E, Arciero PJ. Serum Polychlorinated biphenyls increase and oxidative stress decreases with a protein-pacing caloric restriction diet in obese men and women. Int J Environ Res Public Health. 2017;14:59. doi: 10.3390/ijerph14010059.
    1. Klempel MC, Kroeger CM, Bhutani S, Trepanowski JF, Varady KA. Intermittent fasting combined with calorie restriction is effective for weight loss and cardio-protection in obese women. Nutr J. 2012;11:98. doi: 10.1186/1475-2891-11-98.
    1. Arciero PJ, Baur D, Connelly S, Ormsbee MJ. Timed-daily ingestion of whey protein and exercise training reduces visceral adipose tissue mass and improves insulin resistance: the PRISE study. J Appl Physiol. 2014;117:1–10. doi: 10.1152/japplphysiol.00152.2014.
    1. Laurens C, Grundler F, Damiot A, Chery I, Le Maho AL, Zahariev A, Le Maho Y, Bergouignan A, Gauquelin-Koch G, Simon C, Blanc S, Wilhelmi de Toledo F. Is muscle and protein loss relevant in long-term fasting in healthy men? a prospective trial on physiological adaptations. J Cachexia Sarcopenia Muscle. 2021;12(6):1690-703. 10.1002/jcsm.12766.
    1. Pasiakos SM, Vislocky LM, Carbone JW, Altieri N, Konopelski K, Freake HC, Anderson JM, Ferrando AA, Wolfe RR, Rodriguez NR. Acute energy deprivation affects skeletal muscle protein synthesis and associated intracellular signaling proteins in physically active adults. J Nutr. 2010;140:745–751. doi: 10.3945/jn.109.118372.
    1. Hector AJ, Marcotte GR, Churchward-Venne TA, Murphy CH, Breen L, von Allmen M, Baker SK, Phillips SMW. Whey protein supplementation preserves postprandial myofibrillar protein synthesis during short-term energy restriction in overweight and obese adults. J Nutr. 2015;145:246–252. doi: 10.3945/jn.114.200832.
    1. Murphy CH, Churchward-Venne TA, Mitchell CJ, Kolar NM, Kassis A, Karagounis LG, Burke LM, Hawley JA, Phillips SM. Hypoenergetic diet-induced reductions in myofibrillar protein synthesis are restored with resistance training and balanced daily protein ingestion in older men. Am J Physiol Endocrinol Metab. 2015;308:E734–E743. doi: 10.1152/ajpendo.00550.2014.
    1. Areta JL, Burke LM, Camera DM, West DW, Crawshay S, Moore DR, Stellingwerff T, Phillips SM, Hawley JA, Coffey VG. Reduced resting skeletal muscle protein synthesis is rescued by resistance exercise and protein ingestion following short-term energy deficit. Am J Physiol Endocrinol Metab. 2014;306:E989–E997. doi: 10.1152/ajpendo.00590.2013.
    1. Ludwig DS, Aronne LJ, Astrup A, de Cabo R, Cantley LC, Friedman MI, Heymsfield SB, Johnson JD, King JC, Krauss RM, Lieberman DE, Taubes G, Volek JS, Westman EC, Willett WC, Yancy WS, Ebbeling CB. The carbohydrate-insulin model: a physiological perspective on the obesity pandemic. Am J Clin Nutr. 2021;114:1873–1885. doi: 10.1093/ajcn/nqab270.
    1. González A, Hall MN, Lin SC, Hardie DG. AMPK and TOR: the yin and yang of cellular nutrient sensing and growth control. Cell Metab. 2020;31(3):472–492. doi: 10.1016/j.cmet.2020.01.015.
    1. Pinto AM, Bordoli C, Buckner LP, Kim C, Kaplan PC, Del Arenal IM, Jeffcock EJ, Hall WL. Intermittent energy restriction is comparable to continuous energy restriction for cardiometabolic health in adults with central obesity: a randomized controlled trial; the Met-IER study. Clin Nutr. 2020;39:1753–1763. doi: 10.1016/j.clnu.2019.07.014.
    1. Hu T, Mills KT, Yao L, Demanelis K, Eloustaz M, Yancy WS, Jr; Kelly, TN; He, J; Bazzano, LA. Effects of low-carbohydrate diets versus low-fat diets on metabolic risk factors: a meta-analysis of randomized controlled clinical trials. Am J Epidemiol. 2012;176(Suppl 7):S44–S54. doi: 10.1093/aje/kws264.
    1. Kalam F, Gabel K, Cienfuegos S, Wiseman E, Ezpeleta M, Steward M, Pavlou V, Varady KA. Alternate day fasting combined with a low-carbohydrate diet for weight loss, weight maintenance, and metabolic disease risk reduction. Obes Sci Pract. 2019;5:531–539. doi: 10.1002/osp4.367.
    1. Kroeger CM, Klempel MC, Bhutani S, Trepanowski JF, Tangney CC, Varady KA. Improvement in coronary heart disease risk factors during an intermittent fasting/calorie restriction regimen: relationship to adipokine modulations. Nutr Metab. 2012;9:98. doi: 10.1186/1743-7075-9-98.
    1. Harvie MN, Pegington M, Mattson MP, Frystyk J, Dillon B, Evans G, Cuzick J, Jebb SA, Martin B, Cutler RG, Son TG, Maudsley S, Carlson OD, Egan JM, Flyvbjerg A, Howell A. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int J Obes. 2011;35:714–727. doi: 10.1038/ijo.2010.171.
    1. Patterson RE, Sears DD. Metabolic effects of intermittent fasting. Annu Rev Nutr. 2017;37:371–393. doi: 10.1146/annurev-nutr-071816-064634.
    1. Tinsley GM, La Bounty PM. Effects of intermittent fasting on body composition and clinical health markers in humans. Nutr Rev. 2015;73:661–674. doi: 10.1093/nutrit/nuv041.
    1. Harvie M, Wright C, Pegington M, McMullan D, Mitchell E, Martin B, Cutler RG, Evans G, Whiteside S, Maudsley S, Camandola S, Wang R, Carlson OD, Egan JM, Mattson MP, Howell A. The effect of intermittent energy and carbohydrate restriction v daily energy restriction on weight loss and metabolic disease risk markers in overweight women. Br J Nutr. 2013;110:1534–1547. doi: 10.1017/S0007114513000792.
    1. Sundfør TM, Svendsen M, Tonstad S. Effect of intermittent versus continuous energy restriction on weight loss, maintenance and cardiometabolic risk: a randomized 1-year trial. Nutr Metab Cardiovasc Dis. 2018;28:698–706. doi: 10.1016/j.numecd.2018.03.009.
    1. Varady KA, Cienfuegos S, Ezpeleta M, Gabel K. Cardiometabolic benefits of intermittent fasting. Annu Rev Nutr. 2021;41:333–361. doi: 10.1146/annurev-nutr-052020-041327.
    1. Brennan IM, Seimon RV, Luscombe-Marsh ND, Otto B, Horowitz M, Feinle-Bisset C. Effects of acute dietary restriction on gut motor, hormone and energy intake responses to duodenal fat in obese men. Int J Obes. 2011;35:448–456. doi: 10.1038/ijo.2010.153.
    1. Deighton K, Batterham RL, Stensel DJ. Appetite and gut peptide responses to exercise and calorie restriction the effect of modest energy deficits. Appetite. 2014;81:52–59. doi: 10.1016/j.appet.2014.06.003.
    1. Seimon RV, Taylor P, Little TJ, Noakes M, Standfield S, Clifton PM, Horowitz M, Feinle-Bisset C. Effects of acute and longer-term dietary restriction on upper gut motility, hormone, appetite, and energy-intake responses to duodenal lipid in lean and obese men. Am J Clin Nutr. 2014;99:24–34. doi: 10.3945/ajcn.113.067090.
    1. Dorling JL, Das SK, Racette SB, Apolzan JW, Zhang D, Pieper CF, Martin CK, CALERIE Study Group Changes in body weight, adherence, and appetite during 2 years of calorie restriction the CALERIE 2 randomized clinical trial. Eur J Clin Nutr. 2020;74:1210–1220. doi: 10.1038/s41430-020-0593-8.
    1. Raubenheimer D, Simpson SJ. Protein leverage: theoretical foundations and ten points of clarification. Obesity. 2019;27:1225–1238. doi: 10.1002/oby.22531.
    1. Amini S, Mansoori A, Maghsumi-Norouzabad L. The effect of acute consumption of resistant starch on appetite in healthy adults; a systematic review and meta-analysis of the controlled clinical trials. Clin Nutr ESPEN. 2021;41:42–48. doi: 10.1016/j.clnesp.2020.12.006.
    1. Hassanzadeh-Rostami Z, Faghih S. Effect of dietary fiber on serum leptin level: a systematic review and meta-analysis of randomized controlled trials. Exp Clin Endocrinol Diabetes. 2021;129:322–333. doi: 10.1055/a-0998-3883.
    1. Klempel MC, Bhutani S, Fitzgibbon M, Freels S, Varady KA. Dietary and physical activity adaptations to alternate day modified fasting: implications for optimal weight loss. Nutr J. 2010;9:35. doi: 10.1186/1475-2891-9-35.
    1. Bhutani S, Klempel MC, Kroeger CM, Aggour E, Calvo Y, Trepanowski JF, Hoddy KK, Varady KA. Effect of exercising while fasting on eating behaviors and food intake. J Int Soc Sports Nutr. 2013;10:50. doi: 10.1186/1550-2783-10-50.
    1. Johnson JB, Summer W, Cutler RG, Martin B, Hyun DH, Dixit VD, Pearson M, Nassar M, Telljohann R, Maudsley S, Carlson O, John S, Laub DR, Mattson MPA. Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free RadicBiol Med. 2007;42:665–674. doi: 10.1016/j.freeradbiomed.2006.12.005.
    1. Hoddy KK, Gibbons C, Kroeger CM, Trepanowski JF, Barnosky A, Bhutani S, Gabel K, Finlayson G, Varady KA. Changes in hunger and fullness in relation to gut peptides before and after 8 weeks of alternate day fasting. Clin Nutr. 2016;35:1380–1385. doi: 10.1016/j.clnu.2016.03.011.
    1. Paoli A, Bosco G, Camporesi EM, Mangar D. Ketosis, ketogenic diet and food intake control: a complex relationship. Front Psychol. 2015;2(6):27. doi: 10.3389/fpsyg.2015.00027.PMID:25698989;PMCID:PMC4313585.
    1. Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF. The microbiota-gut-brain axis in obesity. Lancet Gastroenterol Hepatol. 2017;2:747–756. doi: 10.1016/S2468-1253(17)30147-4.
    1. Mohr AE, Gumpricht E, Sears DD, Sweazea KL. Recent advances and health implications of dietary fasting regimens on the gut microbiome. Am J Physiol Gastrointest Liver Physiol. 2021;320:G847–G863. doi: 10.1152/ajpgi.00475.2020.
    1. Bennett G, Young E, Butler I, Coe S. The impact of lockdown during the COVID-19 outbreak on dietary habits in various population groups: a scoping review. Front Nutr. 2021;8:626432. doi: 10.3389/fnut.2021.626432.
    1. Westerterp KR. Lockdown induced change in energy balance. Eur J Clin Nutr. 2021;75:1416–1417. doi: 10.1038/s41430-021-00954-x.

Source: PubMed

3
구독하다