Critical periods after stroke study: translating animal stroke recovery experiments into a clinical trial

Alexander W Dromerick, Matthew A Edwardson, Dorothy F Edwards, Margot L Giannetti, Jessica Barth, Kathaleen P Brady, Evan Chan, Ming T Tan, Irfan Tamboli, Ruth Chia, Michael Orquiza, Robert M Padilla, Amrita K Cheema, Mark E Mapstone, Massimo S Fiandaca, Howard J Federoff, Elissa L Newport, Alexander W Dromerick, Matthew A Edwardson, Dorothy F Edwards, Margot L Giannetti, Jessica Barth, Kathaleen P Brady, Evan Chan, Ming T Tan, Irfan Tamboli, Ruth Chia, Michael Orquiza, Robert M Padilla, Amrita K Cheema, Mark E Mapstone, Massimo S Fiandaca, Howard J Federoff, Elissa L Newport

Abstract

Introduction: Seven hundred ninety-five thousand Americans will have a stroke this year, and half will have a chronic hemiparesis. Substantial animal literature suggests that the mammalian brain has much potential to recover from acute injury using mechanisms of neuroplasticity, and that these mechanisms can be accessed using training paradigms and neurotransmitter manipulation. However, most of these findings have not been tested or confirmed in the rehabilitation setting, in large part because of the challenges in translating a conceptually straightforward laboratory experiment into a meaningful and rigorous clinical trial in humans. Through presentation of methods for a Phase II trial, we discuss these issues and describe our approach.

Methods: In rodents there is compelling evidence for timing effects in rehabilitation; motor training delivered at certain times after stroke may be more effective than the same training delivered earlier or later, suggesting that there is a critical or sensitive period for strongest rehabilitation training effects. If analogous critical/sensitive periods can be identified after human stroke, then existing clinical resources can be better utilized to promote recovery. The Critical Periods after Stroke Study (CPASS) is a phase II randomized, controlled trial designed to explore whether such a sensitive period exists. We will randomize 64 persons to receive an additional 20 h of upper extremity therapy either immediately upon rehab admission, 2-3 months after stroke onset, 6 months after onset, or to an observation-only control group. The primary outcome measure will be the Action Research Arm Test (ARAT) at 1 year. Blood will be drawn at up to 3 time points for later biomarker studies.

Conclusion: CPASS is an example of the translation of rodent motor recovery experiments into the clinical setting; data obtained from this single site randomized controlled trial will be used to finalize the design of a Phase III trial.

Keywords: adaptive randomization; cerebrovascular disorders; critical period; motor recovery; multi-omics; stroke rehabilitation.

Figures

Figure 1
Figure 1
Study design. Baseline assessment (T1) occurs within the first month following stroke and subjects are randomized to one of four groups: early—additional 20 h of occupational therapy (OT) initiated <1 mo. from stroke onset, subacute—additional 20 h of OT initiated 2-3 mo. from stroke onset, chronic—additional 20 h of OT initiated 6-7 mo. from stroke onset, and control—no additional OT. All subjects are reassessed at 1 year (T2) to evaluate for durable change in study-related outcome measures.

References

    1. Atkinson A. C. (1982). Optimal biased coin designs for sequential clinical trials with prognostic factors. Biometrika 69, 61–67 10.1093/biomet/69.1.61
    1. Baum C. M., Edwards D. (2008). Activity Card Sort, 2nd Edn. Bethesda, MD: AOTA Press.
    1. Bavelier D., Levi D. M., Li R. W., Dan Y., Hensch T. K. (2010). Removing brakes on adult brain plasticity: from molecular to behavioral interventions. J. Neurosci. 30, 14964–14971. 10.1523/JNEUROSCI.4812-10.2010
    1. Bernhardt J., Dewey H., Thrift A., Collier J., Donnan G. (2008). A very early rehabilitation trial for stroke (AVERT): phase II safety and feasibility. Stroke 39, 390–396. 10.1161/STROKEAHA.107.492363
    1. Biernaskie J., Chernenko G., Corbett D. (2004). Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J. Neurosci. 24, 1245–1254. 10.1523/JNEUROSCI.3834-03.2004
    1. Bland S. T., Schallert T., Strong R., Aronowski J., Grotta J. C., Feeney D. M. (2000). Early exclusive use of the affected forelimb after moderate transient focal ischemia in rats: functional and anatomic outcome. Stroke 31, 1144–1152. 10.1161/01.STR.31.5.1144
    1. Brott T., Adams H. P., Jr., Olinger C. P., Marler J. R., Barsan W. G., Biller J., et al. . (1989). Measurements of acute cerebral infarction: a clinical examination scale. Stroke 20, 864–870. 10.1161/01.STR.20.7.864
    1. Carey L. M., Crewther S., Salvado O., Linden T., Connelly A., Wilson W., et al. . (2013). STroke imAging pRevention and treatment (START): a longitudinal stroke cohort study: clinical trials protocol. Int. J. Stroke. [Epub ahead of print]. 10.1111/ijs.12190
    1. Carmichael S. T. (2003). Gene expression changes after focal stroke, traumatic brain and spinal cord injuries. Curr. Opin. Neurol. 16, 699–704. 10.1097/00019052-200312000-00009
    1. Carmichael S. T. (2006). Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann. Neurol. 59, 735–742. 10.1002/ana.20845
    1. Carr. (1992). Motor Assesment Scale, in Measurements in Neurological Rehabilitation, ed Wade D. T. (New York, NY: Oxford University Press; ), 155–157.
    1. Carter A. R., Connor L. T., Dromerick A. W. (2010). Rehabilitation after stroke: current state of the science. Curr. Neurol. Neurosci. Rep. 10, 158–166. 10.1007/s11910-010-0091-9
    1. Charlson M. E., Pompei P., Ales K. L., MacKenzie C. R. (1987). A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J. Chronic Dis. 40, 373–383. 10.1016/0021-9681(87)90171-8
    1. Collen. (1992). The Motricity Index, in Measurements in Neurological Rehabilitation, ed Wade D. T. (New York, NY: Oxford University Press; ), 154–157.
    1. Cramer S. C. (2008). Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann. Neurol. 63, 272–287. 10.1002/ana.21393
    1. Cramer S. C., Chopp M. (2000). Recovery recapitulates ontogeny. Trends Neurosci. 23, 265–271. 10.1016/S0166-2236(00)01562-9
    1. Deweert W., Harrison M. A. (1985). Measuring recovery of arm-hand function in stroke patients: a comparison of the Brunnstrom-Fugl-Meyer Test and the Action Research Arm Test. Physiother. Can. 37, 65–70 10.3138/ptc.37.2.065
    1. Diaz-Arrastia R., Wang K. K., Papa L., Sorani M. D., Yue J. K., Puccio A. M., et al. . (2014). Acute biomarkers of traumatic brain injury: relationship between plasma levels of ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein. J. Neurotrauma 31, 19–25. 10.1089/neu.2013.3040
    1. Dromerick A. W., Lang C. E., Birkenmeier R. L., Wagner J. M., Miller J. P., Videen T. O., et al. . (2009). Very early constraint-induced movement during stroke rehabilitation (VECTORS): a single-center RCT. Neurology 73, 195–201. 10.1212/WNL.0b013e3181ab2b27
    1. Dromerick A. W., Lum P. S., Hidler J. (2006). Activity-based therapies. NeuroRx 3, 428–438. 10.1016/j.nurx.2006.07.004
    1. Duncan P. W., Sullivan K. J., Behrman A. L., Azen S. P., Wu S. S., Nadeau S. E., et al. . (2011). Body-weight-supported treadmill rehabilitation after stroke. N. Engl. J. Med. 364, 2026–2036. 10.1056/NEJMoa1010790
    1. Duncan P. W., Wallace D., Lai S. M., Johnson D., Embretson S., Laster L. J. (1999). The stroke impact scale version 2.0. Evaluation of reliability, validity, and sensitivity to change. Stroke 30, 2131–2140. 10.1161/01.STR.30.10.2131
    1. Feigenson J. S., McDowell F. H., Meese P., McCarthy M. L., Greenberg S. D. (1977). Factors influencing outcome and length of stay in a stroke rehabilitation unit. Part 1. Analysis of 248 unscreened patients—medical and functional prognostic indicators. Stroke 8, 651–656. 10.1161/01.STR.8.6.651
    1. Fiandaca M. S., Kapogiannis D., Mapstone M., Boxer A., Eitan E., Schwartz J. B., et al. . (2014). Identification of preclinical Alzheimer's disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimers Dement. [Epub ahead of print]. 10.1016/j.jalz.2014.06.008
    1. Fugl-Meyer A. R., Jaasko L., Leyman I., Olsson S., Steglind S. (1975). The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand. J. Rehabil. Med. 7, 13–31.
    1. Gagnon D., Nadeau S., Tam V. (2006). Ideal timing to transfer from an acute care hospital to an interdisciplinary inpatient rehabilitation program following a stroke: an exploratory study. BMC Health Serv. Res. 6:151. 10.1186/1472-6963-6-151
    1. Granger C. V., Hamilton B. B., Linacre J. M., Heinemann A. W., Wright B. D. (1993). Performance profiles of the functional independence measure. Am. J. Phys. Med. Rehabil. 72, 84–89. 10.1097/00002060-199304000-00005
    1. Han C., Wang Q., Meng P. P., Qi M. Z. (2013). Effects of intensity of arm training on hemiplegic upper extremity motor recovery in stroke patients: a randomized controlled trial. Clin. Rehabil. 27, 75–81. 10.1177/0269215512447223
    1. Hensch T. K. (2005). Critical period mechanisms in developing visual cortex. Curr. Top. Dev. Biol. 69, 215–237. 10.1016/S0070-2153(05)69008-4
    1. Hess E. H. (1973). Imprinting: Early experience and the Developmental Psychobiology of Attachment. New York, NY: Van Nostrand Reinhold.
    1. Hsieh C. L., Hsueh I. P., Chiang F. M., Lin P. H. (1998). Inter-rater reliability and validity of the action research arm test in stroke patients. Age Ageing 27, 107–113. 10.1093/ageing/27.2.107
    1. Hubbard I. J., Carey L. M., Budd T. W., Levi C., McElduff P., Hudson S., et al. . (2014). A randomized controlled trial of the effect of early upper-limb training on stroke recovery and brain activation. Neurorehabil. Neural Repair. [Epub ahead of print]. 10.1177/1545968314562647
    1. Hubel D. H., Wiesel T. N. (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. 206, 419–436. 10.1113/jphysiol.1970.sp009022
    1. Humm J. L., Kozlowski D. A., James D. C., Gotts J. E., Schallert T. (1998). Use-dependent exacerbation of brain damage occurs during an early post-lesion vulnerable period. Brain Res. 783, 286–292. 10.1016/S0006-8993(97)01356-5
    1. Ingvaldsen R. P. (1997). Modern views on motor skill learning are not “representative”. Hum. Mov. Sci. 16, 705–732 10.1016/S0167-9457(97)00022-5
    1. Johnson J. S., Newport E. L. (1989). Critical period effects in second language learning: the influence of maturational state on the acquisition of English as a second language. Cogn. Psychol. 21, 60–99. 10.1016/0010-0285(89)90003-0
    1. Jorgensen H. S., Nakayama H., Raaschou H. O., Vive-Larsen J., Stoier M., Olsen T. S. (1995a). Outcome and time course of recovery in stroke. Part I: Outcome. The Copenhagen Stroke Study. Arch. Phys. Med. Rehabil. 76, 399–405. 10.1016/S0003-9993(95)80567-2
    1. Jorgensen H. S., Nakayama H., Raaschou H. O., Vive-Larsen J., Stoier M., Olsen T. S. (1995b). Outcome and time course of recovery in stroke. Part II: time course of recovery. The copenhagen stroke study. Arch. Phys. Med. Rehabil. 76, 406–412. 10.1016/S0003-9993(95)80568-0
    1. Katzman R., Brown T., Fuld P., Peck A., Schechter R., Schimmel H. (1983). Validation of a short orientation-memory-concentration test of cognitive impairment. Am. J. Psychiatry 140, 734–739. 10.1176/ajp.140.6.734
    1. Kleim J. A., Jones T. A. (2008). Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J. Speech Lang. Hear. Res. 51, S225–S239. 10.1044/1092-4388(2008/018)
    1. Kollen B. J., Lennon S., Lyons B., Wheatley-Smith L., Scheper M., Buurke J. H., et al. . (2009). The effectiveness of the Bobath concept in stroke rehabilitation: what is the evidence? Stroke 40, e89–e97. 10.1161/STROKEAHA.108.533828
    1. Kotila M., Waltimo O., Niemi M. L., Laaksonen R., Lempinen M. (1984). The profile of recovery from stroke and factors influencing outcome. Stroke 15, 1039–1044. 10.1161/01.STR.15.6.1039
    1. Kozlowski D. A., James D. C., Schallert T. (1996). Use-dependent exaggeration of neuronal injury after unilateral sensorimotor cortex lesions. J. Neurosci. 16, 4776–4786.
    1. Lang C. E., Macdonald J. R., Reisman D. S., Boyd L., Jacobson Kimberley T., Schindler-Ivens S. M., et al. . (2009). Observation of amounts of movement practice provided during stroke rehabilitation. Arch. Phys. Med. Rehabil. 90, 1692–1698. 10.1016/j.apmr.2009.04.005
    1. Lang C. E., Wagner J. M., Dromerick A. W., Edwards D. F. (2006). Measurement of upper-extremity function early after stroke: properties of the action research arm test. Arch. Phys. Med. Rehabil. 87, 1605–1610. 10.1016/j.apmr.2006.09.003
    1. Lawson R., Watson L. (1963). Learning in the rat (Rattus Norvegicus) under positive vs. negative reinforcement with incentive conditions controlled. Ohio J. Sci. 63, 87–91.
    1. Levin M. F., Kleim J. A., Wolf S. L. (2009). What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil. Neural Repair 23, 313–319. 10.1177/1545968308328727
    1. Lin J. H., Hsu M. J., Sheu C. F., Wu T. S., Lin R. T., Chen C. H., et al. . (2009). Psychometric comparisons of 4 measures for assessing upper-extremity function in people with stroke. Phys. Ther. 89, 840–850. 10.2522/ptj.20080285
    1. Liu N., Cadilhac D. A., Andrew N. E., Zeng L., Li Z., Li J., et al. . (2014). Randomized controlled trial of early rehabilitation after intracerebral hemorrhage stroke: difference in outcomes within 6 months of stroke. Stroke 45, 3502–3507. 10.1161/STROKEAHA.114.005661
    1. Lum P. S., Burgar C. G., Shor P. C. (2004). Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 186–194. 10.1109/TNSRE.2004.827225
    1. Lum P. S., Mulroy S., Amdur R. L., Requejo P., Prilutsky B. I., Dromerick A. W. (2009). Gains in upper extremity function after stroke via recovery or compensation: potential differential effects on amount of real-world limb use. Top. Stroke Rehabil. 16, 237–253. 10.1310/tsr1604-237
    1. Mapstone M., Cheema A. K., Fiandaca M. S., Zhong X., Mhyre T. R., Macarthur L. H., et al. . (2014). Plasma phospholipids identify antecedent memory impairment in older adults. Nat. Med. 20, 415–418. 10.1038/nm.3466
    1. Marler P. (1970). Birdsong and speech development: could there be parallels? Am. Sci. 58, 669–673.
    1. Mathiowetz V., Volland G., Kashman N., Weber K. (1992). The nine-hole peg test, in Measurement in Neurological Rehabilitation, ed Wade D. T. (New York, NY: Oxford University Press; ), 171.
    1. Maulden S. A., Gassaway J., Horn S. D., Smout R. J., Dejong G. (2005). Timing of initiation of rehabilitation after stroke. Arch. Phys. Med. Rehabil. 86, S34–S40. 10.1016/j.apmr.2005.08.119
    1. Mead G. E., Lewis S. C., Wardlaw J. M., Dennis M. S., Warlow C. P. (2000). How well does the Oxfordshire community stroke project classification predict the site and size of the infarct on brain imaging? J. Neurol. Neurosurg. Psychiatr. 68, 558–562. 10.1136/jnnp.68.5.558
    1. Medical Research Council. (1976). Aids to Examination of the Peripheral Nervous System. Memorandum no. 45. London: Her Majesty's Stationary Office.
    1. Meinert C. L. (1986). Clinical Trials: Design, Conduct, and Analysis. New York, NY: Oxford Press.
    1. Mesulam M. M. (1985). Principles of Behavioral Neurology. Philadelphia, PA: F.A. Davis Company.
    1. Michaelsen S. M., Dannenbaum R., Levin M. F. (2006). Task-specific training with trunk restraint on arm recovery in stroke: randomized control trial. Stroke 37, 186–192. 10.1161/01.STR.0000196940.20446.c9
    1. Michaelsen S. M., Levin M. F. (2004). Short-term effects of practice with trunk restraint on reaching movements in patients with chronic stroke: a controlled trial. Stroke 35, 1914–1919. 10.1161/01.STR.0000132569.33572.75
    1. Murphy T. H., Corbett D. (2009). Plasticity during stroke recovery: from synapse to behaviour. Nat. Rev. Neurosci. 10, 861–872. 10.1038/nrn2735
    1. Nakayama H., Jorgensen H. S., Raaschou H. O., Olsen T. S. (1994). Compensation in recovery of upper extremity function after stroke: the Copenhagen Stroke Study. Arch. Phys. Med. Rehabil. 75, 852–857. 10.1016/0003-9993(94)90108-2
    1. Nave A. H., Krober J. M., Brunecker P., Fiebach J. B., List J., Grittner U., et al. . (2013). Biomarkers and perfusion—training-induced changes after stroke (BAPTISe): protocol of an observational study accompanying a randomized controlled trial. BMC Neurol. 13:197. 10.1186/1471-2377-13-197
    1. Newport E. L. (1990). Maturational constraints on language learning. Cogn. Sci. 14, 11–28 10.1207/s15516709cog1401_2
    1. Oldfield R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–113. 10.1016/0028-3932(71)90067-4
    1. Ostwald S. K., Godwin K. M., Cheong H., Cron S. G. (2009). Predictors of resuming therapy within four weeks after discharge from inpatient rehabilitation. Top. Stroke Rehabil. 16, 80–91. 10.1310/tsr1601-80
    1. Page S. J., Sisto S. A., Levine P., Johnston M. V., Hughes M. (2001). Modified constraint induced therapy: a randomized feasibility and efficacy study. J. Rehabil. Res. Dev. 38, 583–590.
    1. Paolucci S., Antonucci G., Grasso M. G., Morelli D., Troisi E., Coiro P., et al. . (2000). Early versus delayed inpatient stroke rehabilitation: a matched comparison conducted in Italy. Arch. Phys. Med. Rehabil. 81, 695–700. 10.1016/S0003-9993(00)90095-9
    1. Pollock A., Baer G., Pomeroy V., Langhorne P. (2007). Physiotherapy treatment approaches for the recovery of postural control and lower limb function following stroke. Cochrane Database Syst. Rev. CD001920 10.1002/14651858.CD001920.pub2
    1. Rossi P. W., Forer S., Wiechers D. (1997). Effective rehabilitation for patients with stroke: analysis of entry, functional gain, and discharge to community. J. Neurol. Rehabil. 11, 27–33.
    1. Shah S., Vanclay F., Cooper B. (1989). Improving the sensitivity of the Barthel Index for stroke rehabilitation. J. Clin. Epidemiol. 42, 703–709. 10.1016/0895-4356(89)90065-6
    1. Signorini D. F., Leung O., Simes R. J., Beller E., Gebski V. J., Callaghan T. (1993). Dynamic balanced randomization for clinical trials. Stat. Med. 12, 2343–2350. 10.1002/sim.4780122410
    1. Sivenius J., Pyorala K., Heinonen O. P., Salonen J. T., Riekkinen P. (1985). The significance of intensity of rehabilitation of stroke—a controlled trial. Stroke 16, 928–931. 10.1161/01.STR.16.6.928
    1. Skinner B. F. (1938). The Behavior of Organisms: An Experimental Analysis. New York, NY: Appleton-Century-Crofts.
    1. Stark S. L., Edwards D. F., Hollingsworth H., Gray D. B. (2005). Validation of the reintegration to normal living index in a population of community-dwelling people with mobility limitations. Arch. Phys. Med. Rehabil. 86, 344–345. 10.1016/j.apmr.2004.03.020
    1. Sunderland A., Tinson D. J., Bradley E. L., Fletcher D., Langton Hewer R., Wade D. T. (1992). Enhanced physical therapy improves recovery of arm function after stroke. A randomised controlled trial. J. Neurol. Neurosurg. Psychiatry 55, 530–535. 10.1136/jnnp.55.7.530
    1. Tang Y., Xu H., Du X., Lit L., Walker W., Lu A., et al. . (2006). Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans: a microarray study. J. Cereb. Blood Flow Metab. 26, 1089–1102. 10.1038/sj.jcbfm.9600264
    1. Taub E., Crago J. E., Burgio L. D., Groomes T. E., Cook E. W., III, Deluca S. C., et al. . (1994). An operant approach to rehabilitation medicine: overcoming learned nonuse by shaping. J. Exp. Anal. Behav. 61, 281–293. 10.1901/jeab.1994.61-281
    1. Taub E., McCoullock K., Uswatte G., Morris D. (eds.). (2011). Motor Activity Log (MAL) Manual. Birmingham: U.T.R. Group.
    1. Thorndike E. L. (1898). Animal intelligence: an experimental study of the associative processes in animals. Psychol. Monogr. 2, 1–109 10.1037/h0092987
    1. Uswatte G., Taub E., Morris D., Light K., Thompson P. A. (2006). The Motor Activity Log-28: assessing daily use of the hemiparetic arm after stroke. Neurology 67, 1189–1194. 10.1212/01.wnl.0000238164.90657.c2
    1. Van der Lee J. H., De Groot V., Beckerman H., Wagenaar R. C., Lankhorst G. J., Bouter L. M. (2001). The intra- and interrater reliability of the action research arm test: a practical test of upper extremity function in patients with stroke. Arch. Phys. Med. Rehabil. 82, 14–19. 10.1053/apmr.2001.18668
    1. Van der Lee J. H., Roorda L. D., Beckerman H., Lankhorst G. J., Bouter L. M. (2002). Improving the Action Research Arm test: a unidimensional hierarchical scale. Clin. Rehabil. 16, 646–653. 10.1191/0269215502cr534oa
    1. van Swieten J. C., Koudstaal P. J., Visser M. C., Schouten H. J., van Gijn J. (1988). Interobserver agreement for the assessment of handicap in stroke patients. Stroke 19, 604–607. 10.1161/01.STR.19.5.604
    1. Wade D. T., Hewer R. L. (1987). Functional abilities after stroke: measurement, natural history and prognosis. J. Neurol. Neurosurg. Psychiatr. 50, 177–182. 10.1136/jnnp.50.2.177
    1. Ween J. E., Alexander M. P., D'Esposito M., Roberts M. (1996). Factors predictive of stroke outcome in a rehabilitation setting. Neurology 47, 388–392. 10.1212/WNL.47.2.388
    1. Whitall J., McCombe Waller S., Silver K. H., Macko R. F. (2000). Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke 31, 2390–2395. 10.1161/01.STR.31.10.2390
    1. Winstein C. J., Wolf S. L., Dromerick A. W., Lane C. J., Nelsen M. A., Lewthwaite R., et al. . (2013). Interdisciplinary comprehensive arm rehabilitation evaluation (ICARE): a randomized controlled trial protocol. BMC Neurol. 13:5. 10.1186/1471-2377-13-5
    1. Woldag H., Stupka K., Hummelsheim H. (2010). Repetitive training of complex hand and arm movements with shaping is beneficial for motor improvement in patients after stroke. J. Rehabil. Med. 42, 582–587. 10.2340/16501977-0558
    1. Wolf S. L., Thompson P. A., Winstein C. J., Miller J. P., Blanton S. R., Nichols-Larsen D. S., et al. . (2010). The EXCITE stroke trial: comparing early and delayed constraint-induced movement therapy. Stroke 41, 2309–2315. 10.1161/STROKEAHA.110.588723
    1. Wolf S. L., Winstein C. J., Miller J. P., Taub E., Uswatte G., Morris D., et al. . (2006). Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA 296, 2095–2104. 10.1001/jama.296.17.2095
    1. Wong D. L., Hockenberg-Eaton M., Wilson D., Winklestein M. L., Schwarz P. (2001). Wong's Essentials of Pediatric Nursing. St. Louis, MO: Mosby.
    1. Wylie C. M. (1970). The value of early rehabilitation in stroke. Geriatrics 25, 107–113. 10.1097/00006199-197011000-00106
    1. Yesavage J. A. (1988). Geriatric depression scale. Psychopharmacol. Bull. 24, 709–711.
    1. Yuan A., Dromerick A., Tan M. T. (2014). Phase II multi-arm clinical trial designs and randomization with covariates via empirical weighting. J.Clin. Trials 4:181 10.4172/2167-0870.1000181
    1. Zhou X., Panizzutti R., de Villers-Sidani E., Madeira C., Merzenich M. M. (2011). Natural restoration of critical period plasticity in the juvenile and adult primary auditory cortex. J. Neurosci. 31, 5625–5634. 10.1523/JNEUROSCI.6470-10.2011

Source: PubMed

3
구독하다