Intervertebral disc and vertebral endplate subchondral changes associated with Modic 1 changes of the lumbar spine: a cross-sectional study

Christelle Nguyen, Marylène Jousse, Serge Poiraudeau, Antoine Feydy, François Rannou, Christelle Nguyen, Marylène Jousse, Serge Poiraudeau, Antoine Feydy, François Rannou

Abstract

Background: Modic 1 changes are usually associated with degenerative disc disease (DDD). We aimed to compare Modic 1 changes with advanced degenerative disc disease (>50%-intervertebral space narrowing [IVSN]) to Modic 1 changes with less advanced lumbar degenerative disc disease (≤50%-IVSN).

Methods: We conducted a cross-sectional study. The computerized MRI database from a French tertiary care hospital was searched. Patients were included if they were ≥ 18 years old and had a lumbar MRI between January 1, 2006 and January 31, 2008, that showed a Modic 1 signal at a single level. The strength of the magnet was 1.5 T. MRI were reviewed by 2 assessors. Age and gender were recorded. MRI changes involving the intervertebral disc and the vertebral endplate subchondral bone were assessed for Modic 1 signal, intervertebral space narrowing, asymmetrical degenerative disc disease, spondylolisthesis, anterior and posterior intervertebral disc herniation, and anterior and lateral osteophytes. These outcomes were compared between >50%-IVSN Modic 1 and ≤50%-IVSN Modic 1 groups. For bivariate analysis, comparisons involved nonparametric Kruskal-Wallis test for quantitative variables and nonparametric Fisher's exact test for qualitative variables. Multivariate analysis was conducted to determine factors independently associated with <50%-IVSN Modic 1 changes by backward stepwise regression. Informed consent and formal approval from Institutional Review Board is not required for this type of study. This statement was confirmed by our Institutional Review Board.

Results: MRI for 101 individuals were eligible. Patients' mean (SD) age was 56.6(13.4) years, and 41/101(40.6%) were men. Modic 1 were most frequently observed at L4/L5 and L5/S1 (37[36.6%] cases each). As compared with >50%-IVSN Modic 1 patients, ≤50%-IVSN Modic 1 patients were younger (mean[SD] age 51.5[14.1] vs 58.8[12.6] years, p = 0.019), Modic 1 were more frequent at L5/S1 level (19[61.3%] vs 18[25.7%], p = 0.001), and anterior and lateral osteophytes were less frequent (13[41.9%] vs 55[78.6%], p < 0.001, and 11[35.5%] vs 48[68.6%], p = 0.002, respectively).

Conclusions: ≤50%-IVSN Modic 1 are rather found in young men at L5/S1 level and are associated with less frequent osteophytes than >50%-IVSN Modic, while >50%-IVSN Modic 1 are rather found in older women at L4/L5 level.

Keywords: Active discopathy; Degenerative disc disease; MRI; Modic 1; Vertebral endplate subchondral bone.

Figures

Fig. 1
Fig. 1
Modic 1 changes width and height semi-quantitative scoring system. Modic 1 signal changes extending to the vertebral body were graded in the cranio-caudal axis for height and in the antero-posterior axis for width, based on the review of all slices, by using a semi-quantitative score ranging from 1 (edema involving  2/3 of the vertebral body)
Fig. 2
Fig. 2
Flow chart of selection of lumbar MRI
Fig. 3
Fig. 3
Examples of intervertebral space narrowing >50% intervertebral space narrowing (>50-IVSN) Modic 1 signal changes and ≤50%-IVSN Modic 1 changes on lumbar MRI. a >50%-IVSN Modic 1 changes in L5/S1 in a 52-year-old man. Decrease in intervertebral disc height was >50%, bone edema was present and extended to L5 and S1 vertebral bodies (white arrows) with hyperintense signal in T2-weighted sequence (left panel) and hypointense signal in T1-weighted sequence (right panel), and L5/S1 antelisthesis was observed (red arrow); b ≤50%-IVSN Modic 1 signal changes in L5/S1 in a 35-year-old woman. Decrease in intervertebral disc height was <50%, edema extended to L5 and S1 vertebral endplates (white arrows) with hyperintense signal in T2-weighted sequence (left panel) and hypointense signal in T1-weighted sequence (right panel), and posterior disc protrusion was observed (red arrow). L4/L5 lumbar DDD was also present

References

    1. Bailly F, Maigne JY, Genevay S, Marty M, Gandjbakhch F, Rozenberg S, et al. Inflammatory pain pattern and pain with lumbar extension associated with Modic 1 changes on MRI: a prospective case–control study of 120 patients. Eur Spine J. 2014;23(3):493–7. doi: 10.1007/s00586-013-3036-6.
    1. Nguyen C, Bendeddouche I, Sanchez K, Jousse M, Papelard A, Feydy A, et al. Assessment of ankylosing spondylitis criteria in patients with chronic low back pain and vertebral endplate Modic I signal changes. J Rheumatol. 2010;37(11):2334–9. doi: 10.3899/jrheum.100165.
    1. Rannou F, Ouanes W, Boutron I, Lovisi B, Fayad F, Macé Y, et al. High-sensitivity C-reactive protein in chronic low back pain with vertebral end-plate Modic signal changes. Arthritis Rheum. 2007;57(7):1311–5. doi: 10.1002/art.22985.
    1. Modic MT, Masaryk TJ, Ross JS, Carter JR. Imaging of degenerative disk disease. Radiology. 1988;168(1):177–86. doi: 10.1148/radiology.168.1.3289089.
    1. Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology. 1988;166(1 Pt 1):193–9. doi: 10.1148/radiology.166.1.3336678.
    1. Nguyen C, Poiraudeau S, Rannou F. Vertebral subchondral bone. Osteoporos Int. 2012;23(Suppl 8):S857–60. doi: 10.1007/s00198-012-2164-x.
    1. Nguyen C, Poiraudeau S, Rannou F. From Modic 1 vertebral-endplate subchondral bone signal changes detected by MRI to the concept of ‘active discopathy’. Ann Rheum Dis. 2015;74(8):1488-94.
    1. de Roos A, Kressel H, Spritzer C, Dalinka M. MR imaging of marrow changes adjacent to end plates in degenerative lumbar disk disease. AJR Am J Roentgenol. 1987;149(3):531–4. doi: 10.2214/ajr.149.3.531.
    1. Yu LP, Qian WW, Yin GY, Ren YX, Hu ZY. MRI assessment of lumbar intervertebral disc degeneration with lumbar degenerative disease using the Pfirrmann grading systems. PLoS One. 2012;7(12):e48074. doi: 10.1371/journal.pone.0048074.
    1. Jensen TS, Kjaer P, Korsholm L, Bendix T, Sorensen JS, Manniche C, et al. Predictors of new vertebral endplate signal (Modic) changes in the general population. Eur Spine J. 2010;19(1):129–35. doi: 10.1007/s00586-009-1184-5.
    1. Kerttula L, Luoma K, Vehmas T, Gronblad M, Kaapa E. Modic type I change may predict rapid progressive, deforming disc degeneration: a prospective 1-year follow-up study. Eur Spine J. 2012;21(6):1135–42. doi: 10.1007/s00586-012-2147-9.
    1. Luoma K, Vehmas T, Gronblad M, Kerttula L, Kaapa E. Relationship of Modic type 1 change with disc degeneration: a prospective MRI study. Skeletal Radiol. 2009;38(3):237–44. doi: 10.1007/s00256-008-0611-8.
    1. Ma Z, Ding WY, Shen Y, Sun YP, Yang DL, Xu JX. The study on the relationship between modic change and disc height together with lumbar hyperosteogeny. Zhonghua Wai Ke Za Zhi. 2013;51(7):610–4.
    1. Kanna RM, Shetty AP, Rajasekaran S. Patterns of lumbar disc degeneration are different in degenerative disc disease and disc prolapse magnetic resonance imaging analysis of 224 patients. Spine J. 2014;14(2):300–7. doi: 10.1016/j.spinee.2013.10.042.
    1. Berg L, Hellum C, Gjertsen O, Neckelmann G, Johnsen LG, Storheim K, et al. Do more MRI findings imply worse disability or more intense low back pain? A cross-sectional study of candidates for lumbar disc prosthesis. Skeletal Radiol. 2013;42(11):1593–602. doi: 10.1007/s00256-013-1700-x.
    1. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 2001;26(17):1873–8. doi: 10.1097/00007632-200109010-00011.
    1. Jensen TS, Karppinen J, Sorensen JS, Niinimaki J, Leboeuf-Yde C. Vertebral endplate signal changes (Modic change): a systematic literature review of prevalence and association with non-specific low back pain. Eur Spine J. 2008;17(11):1407–22. doi: 10.1007/s00586-008-0770-2.
    1. Macnab I. The traction spur. An indicator of segmental instability. J Bone Joint Surg Am. 1971;53(4):663–70. doi: 10.2106/00004623-197153040-00005.
    1. Albert HB, Kjaer P, Jensen TS, Sorensen JS, Bendix T, Manniche C. Modic changes, possible causes and relation to low back pain. Med Hypotheses. 2008;70(2):361–8. doi: 10.1016/j.mehy.2007.05.014.
    1. Albert HB, Lambert P, Rollason J, Sorensen JS, Worthington T, Pedersen MB, et al. Does nuclear tissue infected with bacteria following disc herniations lead to Modic changes in the adjacent vertebrae? Eur Spine J. 2013;22(4):690–6. doi: 10.1007/s00586-013-2674-z.
    1. Albert HB, Manniche C, Sorensen JS, Deleuran BW. Antibiotic treatment in patients with low-back pain associated with Modic changes Type 1 (bone oedema): a pilot study. Br J Sports Med. 2008;42(12):969–73. doi: 10.1136/bjsm.2008.050369.
    1. Albert HB, Sorensen JS, Christensen BS, Manniche C. Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (Modic type 1 changes): a double-blind randomized clinical controlled trial of efficacy. Eur Spine J. 2013;22(4):697–707. doi: 10.1007/s00586-013-2675-y.
    1. Karppinen J, Daavittila I, Solovieva S, Kuisma M, Taimela S, Natri A, et al. Genetic factors are associated with modic changes in endplates of lumbar vertebral bodies. Spine (Phila Pa 1976) 2008;33(11):1236–41. doi: 10.1097/BRS.0b013e318170fd0e.
    1. Karppinen J, Solovieva S, Luoma K, Raininko R, Leino-Arjas P, Riihimaki H. Modic changes and interleukin 1 gene locus polymorphisms in occupational cohort of middle-aged men. Eur Spine J. 2009;18(12):1963–70. doi: 10.1007/s00586-009-1139-x.
    1. Jarman JP, Arpinar VE, Baruah D, Klein AP, Maiman DJ, Tugan Muftuler L. Intervertebral disc height loss demonstrates the threshold of major pathological changes during degeneration. Eur Spine J. 2015;24(9):1944-50.

Source: PubMed

3
구독하다