Chloroquine reduces hypercoagulability in pancreatic cancer through inhibition of neutrophil extracellular traps

Brian A Boone, Pranav Murthy, Jennifer Miller-Ocuin, W Reed Doerfler, Jarrod T Ellis, Xiaoyan Liang, Mark A Ross, Callen T Wallace, Jason L Sperry, Michael T Lotze, Matthew D Neal, Herbert J Zeh 3rd, Brian A Boone, Pranav Murthy, Jennifer Miller-Ocuin, W Reed Doerfler, Jarrod T Ellis, Xiaoyan Liang, Mark A Ross, Callen T Wallace, Jason L Sperry, Michael T Lotze, Matthew D Neal, Herbert J Zeh 3rd

Abstract

Background: The hypercoagulable state associated with pancreatic adenocarcinoma (PDA) results in increased risk of venous thromboembolism, leading to substantial morbidity and mortality. Recently, neutrophil extracellular traps (NETs), whereby activated neutrophils release their intracellular contents containing DNA, histones, tissue factor, high mobility group box 1 (HMGB1) and other components have been implicated in PDA and in cancer-associated thrombosis.

Methods: Utilizing an orthotopic murine PDA model in C57/Bl6 mice and patient correlative samples, we studied the role of NETs in PDA hypercoagulability and targeted this pathway through treatment with the NET inhibitor chloroquine. PAD4 and RAGE knockout mice, deficient in NET formation, were used to study the role of NETs in platelet aggregation, release of tissue factor and hypercoagulability. Platelet aggregation was assessed using collagen-activated impedance aggregometry. Levels of circulating tissue factor, the initiator of extrinsic coagulation, were measured using ELISA. Thromboelastograms (TEGs) were performed to assess hypercoagulability and changes associated with treatment. Correlative data and samples from a randomized clinical trial of preoperative gemcitabine/nab-paclitaxel with and without hydroxychloroquine were studied and the impact of treatment on venous thromboembolism (VTE) rate was evaluated.

Results: The addition of NETs to whole blood stimulated platelet activation and aggregation. DNA and the receptor for advanced glycation end products (RAGE) were necessary for induction of NET associated platelet aggregation. PAD4 knockout tumor-burdened mice, unable to form NETs, had decreased aggregation and decreased circulating tissue factor. The NET inhibitor chloroquine reduces platelet aggregation, reduces circulating tissue factor and decreases hypercoagulability on TEG. Review of correlative data from patients treated on a randomized protocol of preoperative chemotherapy with and without hydroxychloroquine demonstrated a reduction in peri-operative VTE rate from 30 to 9.1% with hydroxychloroquine that neared statistical significance (p = 0.053) despite the trial not being designed to study VTE.

Conclusion: NETs promote hypercoagulability in murine PDA through stimulation of platelets and release of tissue factor. Chloroquine inhibits NETs and diminishes hypercoagulability. These findings support clinical study of chloroquine to lower rates of venous thromboembolism in patients with cancer.

Trial registration: This study reports correlative data from two clinical trials that registered with clinicaltrials.gov, NCT01128296 (May 21, 2010) and NCT01978184 (November 7, 2013).

Keywords: Autophagy; Chloroquine; Hypercoagulability; Neutrophil extracellular traps (NETs); Venous thromboembolism.

Conflict of interest statement

Ethics approval and consent to participate

All experimental animal procedures were reviewed and approved by the Institutional Animal Care and Use Committee of the University of Pittsburgh (Protocol # 14084123).

Correlative patient samples and data were included from two clinical trial protocols that were approved by the Institutional Review Board for the University of Pittsburgh (Protocol #10010028 and #13080444). All patients signed informed consent prior to participation in these clinical protocols.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
NETs promote hypercoagulability through platelet aggregation. Tumor bearing mice have elevated platelet aggregation compared with sham controls (a, AUC 40.2 ± 5.5 vs. 25.8 ± 1.5, n = 5). Treatment of human (b) and murine (c) blood with NET supernatant led to a dose dependent increase in platelet aggregation compared with treatment with media control. Tumor bearing PAD4 KO mice had decreased platelet aggregation compared to WT (AUC 8.4 ± 2.4 vs. 3.7 ± 1.7, n = 7) with no difference in sham controls (d). *p < 0.05
Fig. 2
Fig. 2
NET upregulation of platelet aggregation is mediated by neutrophil DNA and platelet RAGE. Removing DNA from NET supernatant using DNase I treatment prior to exposure to whole blood reversed the treatment effects of NET supernatant on platelet aggregation in human blood (a, 25.9 ± 2.2 vs. 11.35 ± 0.31, n = 4, p < 0.05). In vivo treatment with DNase I resulted in decreased aggregation in tumor bearing mice (b, AUC 22.1 ± 2.3 vs. 38.4 ± 2.1, n = 4, p < 0.05). Tumor bearing RAGE KO mice have decreased platelet aggregation compared to WT mice (c, AUC 30.6 ± 1.5 vs. 40.2 ± 5.5, n = 4, p < 0.05). Blood from RAGE knockout mice had decreased aggregation after treatment with 100 μL of NET supernatant compared with WT (d, AUC 25.5 ± 2.6 vs. 43.3 ± 3.9, n = 4, p < 0.05). *p < 0.05
Fig. 3
Fig. 3
NETs promote hypercoagulability in PDA by releasing circulating tissue factor. Tissue factor ELISA was performed on serum from orthotopic mice, demonstrating that tumor burdened mice had elevated levels of circulating tissue factor compared to sham (a, 255 ± 49 vs. 159 ± 26 pg/mL, p < 0.05). Genetic deletion of PAD4, thereby inhibiting NET formation, resulted in a substantial decrease in circulating tissue factor levels in tumor bearing mice (269 ± 26 vs. 202 ± 30 pg/mL, p < 0.05). Blue = WT, Red = PAD4 KO, Circle = Sham, Triangle = Tumor. RAGE knockout tumor bearing mice, who we have previously shown have decreased NET formation, also had lower levels of tissue factor compared to WT controls (b, 331 ± 39 vs. 390 ± 34 pg/mL, p < 0.05). *p < 0.05. Blue = WT, Red = RAGE KO, Circle = Sham, Triangle = Tumor
Fig. 4
Fig. 4
CQ inhibition of NETs reverses platelet aggregation and decreases tissue factor. In vitro treatment of whole blood with CQ led to a significant reduction in platelet aggregation in blood harvested from tumor bearing mice (a, AUC 50 ± 2.4 vs. 68.1 ± 8.8, n = 4, p < 0.05). Treatment of mice with CQ led to a decrease in aggregation in tumor bearing animals with no change in sham (b, AUC 52.6 ± 5.3 vs. 68.1 ± 8.8, n = 4, p < 0.05). Importantly, CQ had minimal effects in PAD4KO mice, suggesting that it decreases platelet aggregation through inhibition of NETs (c). CQ treatment led to a decrease in circulating tissue factor in tumor bearing mice (d, 186.9 ± 5.6 vs. 228.2 ± 21 pg/mL, p < 0.05). Hydroxychloroquine treatment resulted in significant reduction in tissue factor levels in patients with elevated preoperative serum tissue factor compared to control, with a mean response to treatment of − 240 ± 120 versus − 8.74 ± 26 pg/mL (p < 0.05, n = 10 gem/nab-paclitaxel, n = 7 HCQ). Waterfall plot demonstrating individual treatment response to gemcitabine/nab-paclitaxel with and without hydroxychloroquine in patients with elevated preoperative levels (e)
Fig. 5
Fig. 5
Chloroquine reverses hypercoagulability in pancreatic cancer. Representative TEG curves demonstrating orthotopically injected mice are hypercoagulable compared with sham controls (a). Treatment with CQ reverses the hypercoagulability on TEG as measured by coagulation index (b). The 90 day VTE rate for patients treated with 2 cycles of preoperative gemcitabine/abraxane + HCQ was 9.1% (n = 3 of 33) compared to 30% (n = 9 of 30) in patients treated with gemcitabine/abraxane alone (c, p = 0.053)

References

    1. Petterson TM, Marks RS, Ashrani AA, Bailey KR, Heit JA. Risk of site-specific cancer in incident venous thromboembolism: a population-based study. Thromb Res. 2015;135(3):472–478. doi: 10.1016/j.thromres.2014.12.013.
    1. Wun T, White RH. Venous thromboembolism (VTE) in patients with cancer: epidemiology and risk factors. Cancer Investig. 2009;27(Suppl 1):63–74. doi: 10.1080/07357900802656681.
    1. Kruger S, Haas M, Burkl C, Goehring P, Kleespies A, Roeder F, et al. Incidence, outcome and risk stratification tools for venous thromboembolism in advanced pancreatic cancer - a retrospective cohort study. Thromb Res. 2017;157:9–15. doi: 10.1016/j.thromres.2017.06.021.
    1. Chew HK, Wun T, Harvey D, Zhou H, White RH. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch Intern Med. 2006;166(4):458–464. doi: 10.1001/archinte.166.4.458.
    1. Mandala M, Reni M, Cascinu S, Barni S, Floriani I, Cereda S, et al. Venous thromboembolism predicts poor prognosis in irresectable pancreatic cancer patients. Annals of oncology: official journal of the European society for. Med Oncol. 2007;18(10):1660–1665.
    1. Krepline AN, Christians KK, George B, Ritch PS, Erickson BA, Tolat P, et al. Venous thromboembolism prophylaxis during neoadjuvant therapy for resectable and borderline resectable pancreatic cancer-is it indicated? J Surg Oncol. 2016;114(5):581–586. doi: 10.1002/jso.24361.
    1. Meng H, Yalavarthi S, Kanthi Y, Mazza LF, Elfline MA, Luke CE, et al. In vivo role of neutrophil extracellular traps in antiphospholipid antibody-mediated venous thrombosis. Arthritis Rheum. 2017;69(3):655–667. doi: 10.1002/art.39938.
    1. Doring Y, Soehnlein O, Weber C. Neutrophil extracellular traps in atherosclerosis and Atherothrombosis. Circ Res. 2017;120(4):736–743. doi: 10.1161/CIRCRESAHA.116.309692.
    1. Demers M, Wagner DD. NETosis: a new factor in tumor progression and cancer-associated thrombosis. Semin Thromb Hemost. 2014;40(3):277–283. doi: 10.1055/s-0034-1370765.
    1. Demers M, Krause DS, Schatzberg D, Martinod K, Voorhees JR, Fuchs TA, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A. 2012;109(32):13076–13081. doi: 10.1073/pnas.1200419109.
    1. Abdol Razak N, Elaskalani O, Metharom P. Pancreatic Cancer-induced neutrophil extracellular traps: a potential contributor to Cancer-associated thrombosis. Int J Mol Sci. 2017;18(3):487.
    1. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–1535. doi: 10.1126/science.1092385.
    1. Boone BA, Orlichenko L, Schapiro NE, Loughran P, Gianfrate GC, Ellis JT, et al. The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer. Cancer Gene Ther. 2015;22(6):326–334. doi: 10.1038/cgt.2015.21.
    1. Smith CK, Vivekanandan-Giri A, Tang C, Knight JS, Mathew A, Padilla RL, et al. Neutrophil extracellular trap-derived enzymes oxidize high-density lipoprotein: an additional proatherogenic mechanism in systemic lupus erythematosus. Arthritis Rheum. 2014;66(9):2532–2544. doi: 10.1002/art.38703.
    1. Demers M, Wagner DD. Neutrophil extracellular traps: a new link to cancer-associated thrombosis and potential implications for tumor progression. Oncoimmunology. 2013;2(2):e22946. doi: 10.4161/onci.22946.
    1. Hemmers S, Teijaro JR, Arandjelovic S, Mowen KA. PAD4-mediated neutrophil extracellular trap formation is not required for immunity against influenza infection. PLoS One. 2011;6(7):e22043. doi: 10.1371/journal.pone.0022043.
    1. Swamydas M, Luo Y, Dorf ME, Lionakis MS. Isolation of mouse neutrophils. Curr Protoc Immunol. 2015;110(3):20.
    1. Boone BA, Bahary N, Zureikat AH, Moser AJ, Normolle DP, Wu WC, et al. Safety and biologic response of pre-operative autophagy inhibition in combination with gemcitabine in patients with pancreatic adenocarcinoma. Ann Surg Oncol. 2015;22(13):4402–4410. doi: 10.1245/s10434-015-4566-4.
    1. Ding N, Chen G, Hoffman R, Loughran PA, Sodhi CP, Hackam DJ, et al. Toll-like receptor 4 regulates platelet function and contributes to coagulation abnormality and organ injury in hemorrhagic shock and resuscitation. Circ Cardiovasc Genet. 2014;7(5):615–624. doi: 10.1161/CIRCGENETICS.113.000398.
    1. Zohav E, Almog B, Cohen A, Levin I, Deutsch V, Many A, et al. A new perspective on the risk of Hypercoagulopathy in ovarian Hyperstimulation syndrome using Thromboelastography. Reprod Sci. 2017;24(12):1600-6.
    1. Fuchs TA, Brill A, Wagner DD. Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arterioscler Thromb Vasc Biol. 2012;32(8):1777–1783. doi: 10.1161/ATVBAHA.111.242859.
    1. Leshner M, Wang S, Lewis C, Zheng H, Chen XA, Santy L, et al. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front Immunol. 2012;3:307. doi: 10.3389/fimmu.2012.00307.
    1. Sirois CM, Jin T, Miller AL, Bertheloot D, Nakamura H, Horvath GL, et al. RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA. J Exp Med. 2013;210(11):2447–2463. doi: 10.1084/jem.20120201.
    1. Khorana AA, Ahrendt SA, Ryan CK, Francis CW, Hruban RH, Hu YC, et al. Tissue factor expression, angiogenesis, and thrombosis in pancreatic cancer. Clin Cancer Res. 2007;13(10):2870–2875. doi: 10.1158/1078-0432.CCR-06-2351.
    1. Kambas K, Mitroulis I, Apostolidou E, Girod A, Chrysanthopoulou A, Pneumatikos I, et al. Autophagy mediates the delivery of thrombogenic tissue factor to neutrophil extracellular traps in human sepsis. PLoS One. 2012;7(9):e45427. doi: 10.1371/journal.pone.0045427.
    1. Kambas K, Chrysanthopoulou A, Vassilopoulos D, Apostolidou E, Skendros P, Girod A, et al. Tissue factor expression in neutrophil extracellular traps and neutrophil derived microparticles in antineutrophil cytoplasmic antibody associated vasculitis may promote thromboinflammation and the thrombophilic state associated with the disease. Ann Rheum Dis. 2014;73(10):1854–1863. doi: 10.1136/annrheumdis-2013-203430.
    1. Ansari D, Ansari D, Andersson R, Andren-Sandberg A. Pancreatic cancer and thromboembolic disease, 150 years after Trousseau. Hepatobiliary Surg Nutr. 2015;4(5):325–335.
    1. Demers M, Wong SL, Martinod K, Gallant M, Cabral JE, Wang Y, et al. Priming of neutrophils toward NETosis promotes tumor growth. Oncoimmunology. 2016;5(5):e1134073. doi: 10.1080/2162402X.2015.1134073.
    1. Cools-Lartigue J, Spicer J, McDonald B, Gowing S, Chow S, Giannias B, et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest. 2013;123(8):3446–58. doi: 10.1172/JCI67484.
    1. Tohme S, Yazdani HO, Al-Khafaji AB, Chidi AP, Loughran P, Mowen K, et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 2016;76(6):1367–1380. doi: 10.1158/0008-5472.CAN-15-1591.
    1. Olsson AK, Cedervall J. NETosis in Cancer - platelet-neutrophil crosstalk promotes tumor-associated pathology. Front Immunol. 2016;7:373. doi: 10.3389/fimmu.2016.00373.
    1. Maugeri N, Campana L, Gavina M, Covino C, De Metrio M, Panciroli C, et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost. 2014;12(12):2074–2088. doi: 10.1111/jth.12710.
    1. McDonald B, Davis RP, Kim SJ, Tse M, Esmon CT, Kolaczkowska E, et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood. 2017;129(10):1357–1367. doi: 10.1182/blood-2016-09-741298.
    1. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD, Jr, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107(36):15880–15885. doi: 10.1073/pnas.1005743107.
    1. Heinmoller E, Schropp T, Kisker O, Simon B, Seitz R, Weinel RJ. Tumor cell-induced platelet aggregation in vitro by human pancreatic cancer cell lines. Scand J Gastroenterol. 1995;30(10):1008–1016. doi: 10.3109/00365529509096346.
    1. Yan M, Jurasz P. The role of platelets in the tumor microenvironment: from solid tumors to leukemia. Biochim Biophys Acta. 2016;1863(3):392–400. doi: 10.1016/j.bbamcr.2015.07.008.
    1. Martinod K, Demers M, Fuchs TA, Wong SL, Brill A, Gallant M, et al. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci U S A. 2013;110(21):8674–8679. doi: 10.1073/pnas.1301059110.
    1. Gould TJ, Vu TT, Swystun LL, Dwivedi DJ, Mai SH, Weitz JI, et al. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler Thromb Vasc Biol. 2014;34(9):1977–1984. doi: 10.1161/ATVBAHA.114.304114.
    1. Woei AJFJ, Tesselaar ME, Garcia Rodriguez P, Romijn FP, Bertina RM, Osanto S. Tissue factor-bearing microparticles and CA19.9: two players in pancreatic cancer-associated thrombosis? Br J Cancer. 2016;115(3):332–338. doi: 10.1038/bjc.2016.170.
    1. Geddings JE, Mackman N. Tumor-derived tissue factor-positive microparticles and venous thrombosis in cancer patients. Blood. 2013;122(11):1873–1880. doi: 10.1182/blood-2013-04-460139.
    1. Kambas K, Mitroulis I, Ritis K. The emerging role of neutrophils in thrombosis-the journey of TF through NETs. Front Immunol. 2012;3:385. doi: 10.3389/fimmu.2012.00385.
    1. Thomas GM, Brill A, Mezouar S, Crescence L, Gallant M, Dubois C, et al. Tissue factor expressed by circulating cancer cell-derived microparticles drastically increases the incidence of deep vein thrombosis in mice. J Thromb Haemost. 2015;13(7):1310–1319. doi: 10.1111/jth.13002.
    1. Khorana AA, Kamphuisen PW, Meyer G, Bauersachs R, Janas MS, Jarner MF, et al. Tissue factor as a predictor of recurrent venous thromboembolism in malignancy: biomarker analyses of the CATCH trial. J Clin Oncol. 2016;35(10):1078-85.
    1. Chang X, Yamada R, Sawada T, Suzuki A, Kochi Y, Yamamoto K. The inhibition of antithrombin by peptidylarginine deiminase 4 may contribute to pathogenesis of rheumatoid arthritis. Rheumatology. 2005;44(3):293–298. doi: 10.1093/rheumatology/keh473.
    1. Ordonez A, Martinez-Martinez I, Corrales FJ, Miqueo C, Minano A, Vicente V, et al. Effect of citrullination on the function and conformation of antithrombin. FEBS J. 2009;276(22):6763–6772. doi: 10.1111/j.1742-4658.2009.07391.x.
    1. Pilcher DB. Hydroxychloroquine sulfate in prevention of thromboembolic phenomena in surgical patients. Am Surg. 1975;41(12):761–766.
    1. Carter AE, Eban R. Prevention of postoperative deep venous thrombosis in legs by orally administered hydroxychloroquine sulphate. Br Med J. 1974;3(5923):94–95. doi: 10.1136/bmj.3.5923.94.
    1. Espinola RG, Pierangeli SS, Gharavi AE, Harris EN. Hydroxychloroquine reverses platelet activation induced by human IgG antiphospholipid antibodies. Thromb Haemost. 2002;87(3):518–522. doi: 10.1055/s-0037-1613033.
    1. Nosal R, Jancinova V, Danihelova E. Chloroquine: a multipotent inhibitor of human platelets in vitro. Thromb Res. 2000;98(5):411–421. doi: 10.1016/S0049-3848(00)00200-0.
    1. Thorson CM, Van Haren RM, Ryan ML, Curia E, Sleeman D, Levi JU, et al. Pre-existing hypercoagulability in patients undergoing potentially curative cancer resection. Surgery. 2014;155(1):134–144. doi: 10.1016/j.surg.2013.06.053.
    1. Diaz JA, Fuchs TA, Jackson TO, Kremer Hovinga JA, Lammle B, Henke PK, et al. Plasma DNA is elevated in patients with deep vein thrombosis. J Vasc Surg Venous Lymphat Disord. 2013;1(4):341-8.
    1. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61(4):1659–1665.

Source: PubMed

3
구독하다