Imaging CAR T cell therapy with PSMA-targeted positron emission tomography

Il Minn, David J Huss, Hye-Hyun Ahn, Tamara M Chinn, Andrew Park, Jon Jones, Mary Brummet, Steven P Rowe, Polina Sysa-Shah, Yong Du, Hyam I Levitsky, Martin G Pomper, Il Minn, David J Huss, Hye-Hyun Ahn, Tamara M Chinn, Andrew Park, Jon Jones, Mary Brummet, Steven P Rowe, Polina Sysa-Shah, Yong Du, Hyam I Levitsky, Martin G Pomper

Abstract

Chimeric antigen receptor (CAR) T cell therapy for hematologic malignancies is fraught with several unknowns, including number of functional T cells that engage target tumor, durability and subsequent expansion and contraction of that engagement, and whether toxicity can be managed. Non-invasive, serial imaging of CAR T cell therapy using a reporter transgene can address those issues quantitatively. We have transduced anti-CD19 CAR T cells with the prostate-specific membrane antigen (PSMA) because it is a human protein with restricted normal tissue expression and has an expanding array of positron emission tomography (PET) and therapeutic radioligands. We demonstrate that CD19-tPSMA(N9del) CAR T cells can be tracked with [18F]DCFPyL PET in a Nalm6 model of acute lymphoblastic leukemia. Divergence between the number of CD19-tPSMA(N9del) CAR T cells in peripheral blood and bone marrow and those in tumor was evident. These findings underscore the need for non-invasive repeatable monitoring of CAR T cell disposition clinically.

Figures

Fig. 1. Engineered expression of PSMA variants…
Fig. 1. Engineered expression of PSMA variants on CD19 CAR T cells.
(A) CAR construct illustration demonstrating the CD19-targeting domain, costimulatory domain, and the location of the PSMA expression tag. Three different molecular constructs of PSMA were produced: WT, W2G, and N9del. VH, heavy chain variable domain; VL, light chain variable domain; GST, glutathione S-transferase; IgG4, immunoglobulin G4. (B) CD19-EGFRt or CD19-PSMA CAR T cells were generated, and flow cytometry was performed to identify CAR+ and PSMA+ CD4 or CD8 T cells. Gating was based on the mock transduction control. (C) Surface expression of PSMA was assessed by flow cytometry. Geometric mean fluorescent intensity (gMFI) is reported after gating on PSMA+ cells. (D) Mock, CD19-EGFRt, or CD19-PSMA CAR T cells were incubated with K562-CD19-NLR target cells at a ratio of 4:1. Target cells were analyzed every 2 hours using an IncuCyte live cell imaging system. TM, transmembrane; NLR, NucLight Red.
Fig. 2. CD19 CAR T cells expressing…
Fig. 2. CD19 CAR T cells expressing tPSMA maintain function in vitro and in vivo.
(A) Mock or CD19-tPSMA CAR T cells were incubated with K562-CD19-NLR target cells at a ratio of 4:1. Target cells were analyzed every 2 hours using an IncuCyte live cell imaging system. (B) A kill index [1/area under the curve (AUC)] was calculated at the indicated effector:target ratio. (C and D) Nalm6-GFP-fLuc tumor cells were injected intravenously into female NOD scid (nonobese diabetic severe combined immunodeficient) gamma (NSG) mice (n = 8 per group) on day 0, and 1 × 106 mock or CAR T cells were injected on day 4. Whole-body bioluminescence imaging (BLI) was performed to determine tumor burden, with data displayed as average radiance for each group (C), and survival events were recorded (D).
Fig. 3. PET detects CD19-tPSMA CAR T…
Fig. 3. PET detects CD19-tPSMA CAR T cells with high sensitivity in vitro and in vivo.
(A) Standard curve demonstrating a linear relationship between the PET signal and the number of CD19-tPSMA(N9Del) CAR T cells. Inset: In vitro phantom from which the standard curve was derived. The in vitro phantom used varying numbers of CD19-tPSMA(N9del) CAR T cells incubated with 37 MBq of [18F]DCFPyL, a high affinity, positron-emitting ligand targeting PSMA, in a 384-well plate. Plates were scanned using the SuperArgus small-animal PET/CT device at 1 hour after beginning the incubation. There were three rows and eight columns of wells presented in a checkerboard pattern: (top row) 40,000, 20,000, 10,000, and 8000 cells; (middle row) 6000, 4000, 2000, and 1000 cells; and (bottom row) 800, 600, 400, and 200 cells. Detection limit was at or near 2000 cells. Images from one of eight separate plates are shown. Error bars, SD; n = 8. (B) Representative images of NSG mice injected with the indicated number (K = 1000; M = 1 × 106) of CD19-tPSMA(N9del) CAR T cells in 50 μl (50% Matrigel) in the shoulders (white arrows); n = 5. Mice were imaged on the SuperArgus small-animal PET/CT at 1 hour after injection of 14.8 MBq of [18F]DCFPyL. PET data are expressed in percentage of injected dose per cubic centimeter of tissue imaged (%ID/cc). To improve the display contrast of the in vivo images, relatively high renal radiotracer uptake was masked using a thresholding method.
Fig. 4. PSMA PET/CT enables visualization of…
Fig. 4. PSMA PET/CT enables visualization of CD19-tPSMA(N9del) CAR T cell infiltration into local and metastatic tumors.
Tumors were derived from Nalm6-eGFP-fLuc cells. (A and B) Mice were infused with 2 × 106 CD19-tPSMA(N9del) CAR T cells; n = 5. (C) Untreated (left mouse) and treated (right mouse) with infusion of 2 × 106 mock T cells. Mice were imaged on the SuperArgus small-animal PET/CT at 1 hour after injection of 14.8 MBq of [18F]DCFPyL and were evaluated at various times (in days) after infusion of the CAR T cells, as indicated. Images alternate between fLuc-tagged bioluminescence (BLI, radiance) for visualization of tumor cells and PET/CT for T cells, with each mouse undergoing both imaging studies; n = 2. (D) Tumor was dissected and stained with anti-PSMA antibody for CD19-tPSMA(N9del) CAR T cells and anti–enhanced green fluorescent protein (eGFP) antibody for tumor cells. CAR T cells infiltrated into the center of the tumor (magnification boxes). Regions where CD19-tPSMA(N9del) CAR T cells infiltrated stained negative with anti-eGFP antibody, indicating tumor cell death. This is a representative example of n = 8. PET data are expressed in percentage of injected dose per cubic centimeter of tissue imaged (%ID/cc). To improve the display contrast of the in vivo images, the relatively high renal radiotracer uptake was masked using a thresholding method. Arrows demonstrate tumor, where indicated. Images are scaled to the same maximum value within each modality.
Fig. 5. CD19-tPSMA (N9del) CAR T cell…
Fig. 5. CD19-tPSMA(N9del) CAR T cell numbers in mouse and human.
Values were obtained from tumor biopsies, with the human samples derived from the TRANSCEND NHL-001 trial. TRANSCEND uses the same CAR construct but an EGFRt rather than tPSMA tag. Note that CD19-tPSMA(N9del) CAR T cell numbers in mouse versus human biopsy samples are on the same order of magnitude.
Fig. 6. The number of CD19-tPSMA (N9del)…
Fig. 6. The number of CD19-tPSMA(N9del) cells in the peripheral blood and the bone marrow does not correlate with the total number of the CD19-tPSMA(N9del) cells localized to the tumors.
(A) PET/CT and BLI images of five mice. Days are marked from the day of infusion of CD19-tPSMA(N9del) CAR T cells. Mice were imaged on the SuperArgus small-animal PET/CT at 1 hour after injection of 14.8 MBq of [18F]DCFPyL and were scanned at various times after injection, as indicated. Images alternate between fLuc-tagged bioluminescence (BLI, radiance) for visualization of tumor cells and PET/CT for CAR T cells, with each mouse undergoing both imaging studies. PET data are expressed in percentage of injected dose per cubic centimeter of tissue imaged (%ID/cc), with arrows designating accumulation of CAR T cells. To improve the display contrast of the in vivo images, the relatively high renal radiotracer uptake was masked using a thresholding method. Images are scaled to the same maximum value within each modality. (B) Quantified numbers of the CD19-tPSMA(N9del) cells in the region of interest drawn to cover the entire tumor area were plotted with the percentage number of PSMA+/CAR+ cell populations in the peripheral blood (PPB) and the bone marrow (BM). Each data point (M) represents each mouse; n = 5.

References

    1. Kochenderfer J. N., Wilson W. H., Janik J. E., Dudley M. E., Stetler-Stevenson M., Feldman S. A., Maric I., Raffeld M., Nathan D.-A., Lanier B. J., Morgan R. A., Rosenberg S. A., Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116, 4099–4102 (2010).
    1. Porter D. L., Levine B. L., Kalos M., Bagg A., June C. H., Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).
    1. Brentjens R. J., Davila M. L., Riviere I., Park J., Wang X., Cowell L. G., Bartido S., Stefanski J., Taylor C., Olszewska M., Borquez-Ojeda O., Qu J., Wasielewska T., He Q., Bernal Y., Rijo I. V., Hedvat C., Kobos R., Curran K., Steinherz P., Jurcic J., Rosenblat T., Maslak P., Frattini M., Sadelain M., CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 5, 177ra38 (2013).
    1. Grupp S. A., Kalos M., Barrett D., Aplenc R., Porter D. L., Rheingold S. R., Teachey D. T., Chew A., Hauck B., Wright J. F., Milone M. C., Levine B. L., June C. H., Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).
    1. Milone M. C., Bhoj V. G., The Pharmacology of T cell therapies. Mol. Ther. Methods Clin. Dev. 8, 210–221 (2018).
    1. Srivastava S., Riddell S. R., Engineering CAR-T cells: Design concepts. Trends Immunol. 36, 494–502 (2015).
    1. Ali S. A., Shi V., Maric I., Wang M., Stroncek D. F., Rose J. J., Brudno J. N., Stetler-Stevenson M., Feldman S. A., Hansen B. G., Fellowes V. S., Hakim F. T., Gress R. E., Kochenderfer J. N., T cells expressing an anti–B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood 128, 1688–1700 (2016).
    1. Mueller K. T., Maude S. L., Porter D. L., Frey N., Wood P., Han X., Waldron E., Chakraborty A., Awasthi R., Levine B. L., Melenhorst J. J., Grupp S. A., June C. H., Lacey S. F., Cellular kinetics of CTL019 in relapsed/refractory B-cell acute lymphoblastic leukemia and chronic lymphocytic leukemia. Blood 130, 2317–2325 (2017).
    1. Kochenderfer J. N., Somerville R. P. T., Lu T., Yang J. C., Sherry R. M., Feldman S. A., McIntyre L., Bot A., Rossi J., Lam N., Rosenberg S. A., Long-duration complete remissions of diffuse large B cell lymphoma after anti-CD19 chimeric antigen receptor T cell therapy. Mol. Ther. 25, 2245–2253 (2017).
    1. Hay K. A., Hanafi L.-A., Li D., Gust J., Liles W. C., Wurfel M. M., López J. A., Chen J., Chung D., Harju-Baker S., Cherian S., Chen X., Riddell S. R., Maloney D. G., Turtle C. J., Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor–modified T-cell therapy. Blood 130, 2295–2306 (2017).
    1. Gust J., Hay K. A., Hanafi L. A., Li D., Myerson D., Gonzalez-Cuyar L. F., Yeung C., Liles W. C., Wurfel M., Lopez J. A., Chen J., Chung D., Harju-Baker S., Ozpolat T., Fink K. R., Riddell S. R., Maloney D. G., Turtle C. J., Endothelial activation and blood–brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 7, 1404–1419 (2017).
    1. Emami-Shahri N., Papa S., Dynamic imaging for CAR-T-cell therapy. Biochem. Soc. Trans. 44, 386–390 (2016).
    1. Chapelin F., Gao S., Okada H., Weber T. G., Messer K., Ahrens E. T., Fluorine-19 nuclear magnetic resonance of chimeric antigen receptor T cell biodistribution in murine cancer model. Sci. Rep. 7, 17748 (2017).
    1. Emami-Shahri N., Foster J., Kashani R., Gazinska P., Cook C., Sosabowski J., Maher J., Papa S., Clinically compliant spatial and temporal imaging of chimeric antigen receptor T-cells. Nat. Commun. 9, 1081 (2018).
    1. Keu K. V., Witney T. H., Yaghoubi S. S., Rosenberg J., Kurien A., Magnusson R., Williams J., Habte F., Wagner J. R., Forman S., Brown C., Allen-Auerbach M., Czernin J., Tang W., Jensen M. D., Badie B., Gambhir S. S., Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci. Transl. Med. 9, eaag2196 (2017).
    1. Vedyvas Y., Shevlin E., Zaman M., Min I. M., Amor-Coarasa A., Park S., Park S., Kwon K.-W., Smith T., Luo Y., Kim D., Kim Y., Law B., Ting R., Babich J., Jin M. M., Longitudinal PET imaging demonstrates biphasic CAR T cell responses in survivors. JCI Insight 1, e90064 (2016).
    1. Wei W., Jiang D., Ehlerding E. B., Luo Q., Cai W., Noninvasive PET Imaging of T cells. Trends Cancer 4, 359–373 (2018).
    1. Zhang Y., Bressler J. P., Neal J., Lal B., Bhang H.-E., Laterra J., Pomper M. G., ABCG2/BCRP expression modulates D-Luciferin–based bioluminescence imaging. Cancer Res. 67, 9389–9397 (2007).
    1. Lee S. B., Lee H. W., Lee H. J., Jeon Y. H., Lee S.-W., Ahn B.-C., Jeong S. Y., Tracking dendritic cell migration into lymph nodes by using a novel PET probe 18F-tetrafluoroborate for sodium/iodide symporter. EJNMMI Res. 7, 32 (2017).
    1. Bhanat E., Koch C. A., Parmar R., Garia V., Vijayakumar V., Somatostatin receptor expression in non-classical locations—Clinical relevance? Rev. Endocr. Metab. Disord. 19, 123–132 (2018).
    1. Castanares M. A., Mukherjee A., Chowdhury W. H., Liu M., Chen Y., Mease R. C., Wang Y., Rodriguez R., Lupold S. E., Pomper M. G., Evaluation of prostate-specific membrane antigen as an imaging reporter. J. Nucl. Med. 55, 805–811 (2014).
    1. Sweat S. D., Pacelli A., Murphy G. P., Bostwick D. G., Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology 52, 637–640 (1998).
    1. Silver D. A., Pellicer I., Fair W. R., Heston W. D., Cordon-Cardo C., Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res. 3, 81–85 (1997).
    1. Szabo Z., Mena E., Rowe S. P., Plyku D., Nidal R., Eisenberger M. A., Antonarakis E. S., Fan H., Dannals R. F., Chen Y., Mease R. C., Vranesic M., Bhatnagar A., Sgouros G., Cho S. Y., Pomper M. G., Initial evaluation of [18F]DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol. Imaging Biol. 17, 565–574 (2015).
    1. Rowe S. P., Macura K. J., Mena E., Blackford A. L., Nadal R., Antonarakis E. S., Eisenberger M., Carducci M., Fan H., Dannals R. F., Chen Y., Mease R. C., Szabo Z., Pomper M. G., Cho S. Y., PSMA-based [18F]DCFPyL PET/CT is superior to conventional imaging for lesion detection in patients with metastatic prostate cancer. Mol. Imaging Biol. 18, 411–419 (2016).
    1. Werner R. A., Bundschuh R. A., Budndschuh L., Javadi M. S., Leal J. P., Higuchi T., Pienta K. J., Buck A. K., Pomper M. G., Gorin M. A., Lapa C., Rowe S. P., Interobserver agreement for the standardized reporting system PSMA-RADS 1.0 on 18F-DCFPyL PET/CT Imaging. J. Nucl. Med. 59, 1857–1864 (2018).
    1. Rowe S. P., Pienta K. J., Pomper M. G., Gorin M. A., PSMA-RADS version 1.0: A step towards standardizing the interpretation and reporting of PSMA–targeted PET imaging studies. Eur. Urol. 73, 485–487 (2018).
    1. Rowe S. P., Pienta K. J., Pomper M. G., Gorin M. A., Proposal for a structured reporting system for prostate-specific membrane antigen–targeted PET imaging: PSMA-RADS version 1.0. J. Nucl. Med. 59, 479–485 (2018).
    1. Ravert H. T., Holt D. P., Chen Y., Mease R. C., Fan H., Pomper M. G., Dannals R. F., An improved synthesis of the radiolabeled prostate-specific membrane antigen inhibitor, [18F]DCFPyL. J. Labelled Comp. Radiopharm. 59, 439–450 (2016).
    1. Rajasekaran S. A., Anilkumar G., Oshima E., Bowie J. U., Liu H., Heston W., Bander N. H., Rajasekaran A. K., A novel cytoplasmic tail MXXXL motif mediates the internalization of prostate-specific membrane antigen. Mol. Biol. Cell 14, 4835–4845 (2003).
    1. Turtle C. J., Hanafi L.-A., Berger C., Gooley T. A., Cherian S., Hudecek M., Sommermeyer D., Melville K., Pender B., Budiarto T. M., Robinson E., Steevens N. N., Chaney C., Soma L., Chen X., Yeung C., Wood B., Li D., Cao J., Heimfeld S., Jensen M. C., Riddell S. R., Maloney D. G., CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest. 126, 2123–2138 (2016).
    1. Zhao Z., Condomines M., van der Stegen S. J. C., Perna F., Kloss C. C., Gunset G., Plotkin J., Sadelain M., Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 28, 415–428 (2015).
    1. Chen Y., Pullambhatla M., Byun Y., Foss C. A., Nimmagadda S., Senthamizhchelvan S., Sgouros G., Mease R. C., Pomper M. G., 2-(3-{1carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin. Cancer Res. 17, 7645–7653 (2011).
    1. Dietlein M., Kobe C., Kuhnert G., Stockter S., Fischer T., Schomacker K., Schmidt M., Dietlein F., Zlatopolskiy B. D., Krapf P., Richarz R., Neubauer S., Drzezga A., Neumaier B., Comparison of [18F]DCFPyL and [68Ga]Ga-PSMA-HBED-CC for PSMA-PET imaging in patients with relapsed prostate cancer. Mol. Imaging Biol. 17, 575–584 (2015).
    1. Robu S., Schmidt A., Eiber M., Schottelius M., Günther T., Hooshyar Yousefi B., Schwaiger M., Wester H.-J., Synthesis and preclinical evaluation of novel 18F-labeled Glu-urea-Glu-based PSMA inhibitors for prostate cancer imaging: A comparison with 18F-DCFPyl and 18F-PSMA-1007. EJNMMI Res. 8, 30 (2018).
    1. Bouchkouj N., Kasamon Y. L., de Claro R. A., George B., Lin X., Lee S., Blumenthal G. M., Bryan W., McKee A. E., Pazdur R., FDA approval summary: Axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma. Clin. Cancer Res. 25, 1702–1708 (2018).
    1. Morgan M. A., Schambach A., Engineering CAR-T cells for improved function against solid tumors. Front. Immunol. 9, 2493 (2018).
    1. Calais J., Fendler W. P., Eiber M., Gartmann J., Chu F. I., Nickols N. G., Reiter R. E., Rettig M. B., Marks L. S., Ahlering T. E., Huynh L. M., Slavik R., Gupta P., Quon A., Allen-Auerbach M. S., Czernin J., Herrmann K., Impact of 68Ga-PSMA-11 PET/CT on the management of prostate cancer patients with biochemical recurrence. J. Nucl. Med. 59, 434–441 (2018).
    1. Emmett L., Crumbaker M., Ho B., Willowson K., Eu P., Ratnayake L., Epstein R., Blanksby A., Horvath L., Guminski A., Mahon K., Gedye C., Yin C., Stricker P., Joshua A. M., Results of a prospective phase 2 pilot trial of 177Lu–PSMA-617 therapy for metastatic castration-resistant prostate cancer including imaging predictors of treatment response and patterns of progression. Clin. Genitourin. Cancer (2018).
    1. Gust J., Taraseviciute A., Turtle C. J., Neurotoxicity associated with CD19-targeted CAR-T cell therapies. CNS Drugs 32, 1091–1101 (2018).

Source: PubMed

3
구독하다