Rapid Escalation of High-Volume Exercise during Caloric Restriction; Change in Visceral Adipose Tissue and Adipocytokines in Obese Sedentary Breast Cancer Survivors

Carol J Fabian, Jennifer R Klemp, Nicholas J Marchello, Eric D Vidoni, Debra K Sullivan, Jennifer L Nydegger, Teresa A Phillips, Amy L Kreutzjans, Bill Hendry, Christie A Befort, Lauren Nye, Kandy R Powers, Stephen D Hursting, Erin D Giles, Jill M Hamilton-Reeves, Bing Li, Bruce F Kimler, Carol J Fabian, Jennifer R Klemp, Nicholas J Marchello, Eric D Vidoni, Debra K Sullivan, Jennifer L Nydegger, Teresa A Phillips, Amy L Kreutzjans, Bill Hendry, Christie A Befort, Lauren Nye, Kandy R Powers, Stephen D Hursting, Erin D Giles, Jill M Hamilton-Reeves, Bing Li, Bruce F Kimler

Abstract

Aerobic exercise reduces risk for breast cancer and recurrence and promotes visceral adipose tissue (VAT) loss in obesity. However, few breast cancer survivors achieve recommended levels of moderate to vigorous physical activity (MVPA) without supervision. In a two-cohort study, feasibility of 12 weeks of partially supervised exercise was started concomitantly with caloric restriction and effects on body composition and systemic risk biomarkers were explored. In total, 22 obese postmenopausal sedentary women (including 18 breast cancer survivors) with median age of 60 and BMI of 37 kg/m2 were enrolled. Using personal trainers twice weekly at area YMCAs, MVPA was escalated to ≥200 min/week over 9 weeks. For cohort 2, maintenance of effect was assessed when study provided trainer services were stopped but monitoring, group counseling sessions, and access to the exercise facility were continued. Median post-escalation MVPA was 219 min/week with median 12-week mass and VAT loss of 8 and 19%. MVPA was associated with VAT loss which was associated with improved adiponectin:leptin ratio. In total, 9/11 of cohort-2 women continued the behavioral intervention for another 12 weeks without trainers. High MVPA continued with median 24-week mass and VAT loss of 12 and 29%. This intervention should be further studied in obese sedentary women.

Keywords: DXA; biomarkers; breast cancer prevention; exercise; visceral adipose tissue.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Diet and exercise interventional design for the two cohorts.
Figure 2
Figure 2
Change in body composition after 12 weeks (closed symbols) for 22 participants in cohorts 1 and 2; and 24 weeks (open symbols) for 9 participants in cohort 2.
Figure 3
Figure 3
Improvement in cardiopulmonary fitness after 12 and 24 weeks of intervention as measured by peak oxygen consumption (VO2peak) relative to baseline, plotted as a function of weekly MVPA achieved (median of recorded values weeks 9–12 or weeks 21–24). Diamonds denote participants in cohort 1; circles denote participants in cohort 2 (blue = 12-week values; orange = 24-week values). Linear regression yields a slope of 0.057% change in VO2peak per min of MVPA (p = 0.021).
Figure 4
Figure 4
Visceral fat lost (percent relative to baseline) as assessed by iDXA after 12 and 24 weeks of intervention, plotted as a function of weekly MVPA achieved (median of recorded values for weeks 9–12 or weeks 21–24). Diamonds denote participants in cohort 1; circles denote participants in cohort 2 (blue = 12-week values; orange = 24-week values). Linear regression yields a slope of 0.063% visceral fat loss per min of MVPA (p = 0.011).
Figure 5
Figure 5
Change in serum adiponectin:leptin ratio at 12 and 24 weeks as a function of visceral fat lost, both relative to baseline values. Diamonds denote participants in cohort 1; circles denote participants in cohort 2 (blue = 12-week values; orange = 24-week values). Linear regression yields a slope of 6.6% change in adiponectin:leptin ratio per percent visceral fat loss (p < 0.001).

References

    1. Pizot C., Boniol M., Mullie P., Koechlin A., Boniol M., Boyle P., Autier P. Physical activity, hormone replacement therapy and breast cancer risk: A meta-analysis of prospective studies. Eur. J. Cancer. 2016;52:138–154. doi: 10.1016/j.ejca.2015.10.063.
    1. Hardefeldt P.J., Penninkilampi R., Edirimanne S., Eslick G.D. Physical activity and weight loss reduce the risk of breast cancer: A meta-analysis of 139 prospective and retrospective studies. Clin. Breast Cancer. 2018;18:e601–e612. doi: 10.1016/j.clbc.2017.10.010.
    1. Eliassen A.H., Hankinson S.E., Rosner B., Holmes M.D., Willett W.C. Physical activity and risk of breast cancer among postmenopausal women. Arch Intern. Med. 2010;170:1758–1764. doi: 10.1001/archinternmed.2010.363.
    1. Fournier A., Dos Santos G., Guillas G., Bertsch J., Duclos M., Boutron-Ruault M.C., Clavel-Chapelon F., Mesrine S. Recent recreational physical activity and breast cancer risk in postmenopausal women in the E3N cohort. Cancer Epidemiol. Biomark. Prev. 2014;23:1893–1902. doi: 10.1158/1055-9965.EPI-14-0150.
    1. Niehoff N.M., Nichols H.B., Zhao S., White A.J., Sandler D.P. Adult physical activity and breast cancer risk in women with a family history of breast cancer. Cancer Epidemiol. Biomark. Prev. 2019;28:51–58. doi: 10.1158/1055-9965.EPI-18-0674.
    1. Lahart I.M., Metsios G.S., Nevill A.M., Carmichael A.R. Physical activity, risk of death and recurrence in breast cancer survivors: A systematic review and meta-analysis of epidemiological studies. Acta Oncol. 2015;54:635–654. doi: 10.3109/0284186X.2014.998275.
    1. Spei M.E., Samoli E., Bravi F., La Vecchia C., Bamia C., Benetou V. Physical activity in breast cancer survivors: A systematic review and meta-analysis on overall and breast cancer survival. Breast. 2019;44:144–152. doi: 10.1016/j.breast.2019.02.001.
    1. Cannioto R.A., Hutson A., Dighe S., McCann W., McCann S.E., Zirpoli G.R., Barlow W., Kelly K.M., DeNysschen C.A., Hershman D.L., et al. Physical activity before, during, and after chemotherapy for high-risk breast cancer: Relationships with survival. J. Natl. Cancer Inst. 2021;113:54–63. doi: 10.1093/jnci/djaa046.
    1. Friedenreich C.M., Shaw E., Neilson H.K., Brenner D.R. Epidemiology and biology of physical activity and cancer recurrence. J. Mol. Med. 2017;95:1029–1041. doi: 10.1007/s00109-017-1558-9.
    1. USDHHS . 2018 Physical Activity Guidelines for Americans. Office of Disease Prevention and Health Promotion; Washington, DC, USA: 2018.
    1. Campbell K.L., Winters-Stone K.M., Wiskemann J., May A.M., Schwartz A.L., Cournea K., Zucker D.S., Mathews C.E., Ligabel J.A., Gerber L.H., et al. Exercise guidelines for cancer survivors: Consensus statement from international multidisciplinary roundtable. Med. Sci. Sports Exerc. 2019;51:2375–2390. doi: 10.1249/MSS.0000000000002116.
    1. Blanchard C.M., Courneya K.S., Stein K. American Cancer Society’s SCS-II. Cancer survivors’ adherence to lifestyle behavior recommendations and associations with health-related quality of life: Results from the American Cancer Society’s SCS-II. J. Clin. Oncol. 2008;26:2198–2204. doi: 10.1200/JCO.2007.14.6217.
    1. Coletta A.M., Marquez G., Thomas P., Thoman W., Bevers T., Brewster A.M., Hawk E., Basen-Engquist K., Gilchrist S.C. Clinical factors associated with adherence to aerobic and resistance physical activity guidelines among cancer prevention patients and survivors. PLoS ONE. 2019;14:e0220814. doi: 10.1371/journal.pone.0220814.
    1. Himbert C., Delphan M., Scherer D., Bowers L.W., Hursting S., Ulrich C.M. Signals from the adipose microenvironment and the obesity-cancer link—A systematic review. Cancer Prev. Res. 2017;10:494–506. doi: 10.1158/1940-6207.CAPR-16-0322.
    1. Oh S.W., Park C.Y., Lee E.S., Yoon Y.S., Lee E.S., Park S.S., Kim Y., Sung N.J., Yun Y.H., Lee K.S., et al. Adipokines, insulin resistance, metabolic syndrome, and breast cancer recurrence: A cohort study. Breast Cancer Res. 2011;13:R34. doi: 10.1186/bcr2856.
    1. Duggan C., Irwin M.L., Xiao L., Henderson K.D., Smith A.W., Baumgartner R.N., Baumgartner K.B., Bernstein L., Ballard-Barbash R., McTiernan A. Associations of insulin resistance and adiponectin with mortality in women with breast cancer. J. Clin. Oncol. 2011;29:32–39. doi: 10.1200/JCO.2009.26.4473.
    1. Goodwin P.J., Ennis M., Pritchard K.I., Trudeau M.E., Koo J., Taylor S.K., Hood N. Insulin- and obesity-related variables in early-stage breast cancer correlations and time course of prognostic associations. J. Clin. Oncol. 2017;30:164–171. doi: 10.1200/JCO.2011.36.2723.
    1. Bardia A., Arieas E.T., Zhang Z., Defilippis A., Tarpinian K., Jeter S., Nguyen A., Henry N.L., Flockhart D.A., Hayes D.F., et al. Comparison of breast cancer recurrence risk and cardiovascular disease incidence risk among postmenopausal women with breast cancer. Breast Cancer Res. Treat. 2012;131:907–914. doi: 10.1007/s10549-011-1843-1.
    1. Donnelly J.E., Blair S.N., Jakicic J.M., Manore M.M., Rankin J.W., Smith B.K., American College of Sports Medicine American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med. Sci. Sports Exerc. 2009;41:459–471. doi: 10.1249/MSS.0b013e3181949333.
    1. Jensen M.D., Ryan D.H., Apovian C.M., Ard J.D., Comuzzie A.G., Donato K.A., Hu F.B., Hubbard V.S., Jakicic J.M., Kushner R.F., et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation. 2014;129:S102–S138. doi: 10.1161/.
    1. Foright R.M., Presby D.M., Sherk V.D., Kahn D., Checkley L.A., Giles E.D., Bergouignan A., Higgins J.A., Jackman M.R., Hill J.O., et al. Is regular exercise an effective strategy for weight loss maintenance? Physiol. Behav. 2018;188:86–93. doi: 10.1016/j.physbeh.2018.01.025.
    1. Jakicic J.M., Marcus B.H., Lang W., Janney C. Effect of exercise on 24-month weight loss maintenance in overweight women. Arch Intern. Med. 2008;168:1550–1559. doi: 10.1001/archinte.168.14.1550.
    1. Wadden T.A., Neiberg R.H., Wing R.R., Clark J.M., Delahanty L.M., Hill J.O., Krakoff J., Otto A., Ryan D.H., Vitolins M.Z. Four-year weight losses in the Look AHEAD study: Factors associated with long-term success. Obesity. 2011;19:1987–1998. doi: 10.1038/oby.2011.230.
    1. Jeffery R.W., Wing R.R., Sherwood N.E., Tate D.F. Physical activity and weight loss: Does prescribing higher physical activity goals improve outcome? Am. J. Clin. Nutr. 2003;78:684–689. doi: 10.1093/ajcn/78.4.684.
    1. Pavlou K.N., Krey S., Steffee W.P. Exercise as an adjunct to weight loss and maintenance in moderately obese subjects. Am. J. Clin. Nutr. 1989;49:1115–1123. doi: 10.1093/ajcn/49.5.1115.
    1. Irwin M.L. Physical activity interventions for cancer survivors. Br. J. Sports Med. 2009;43:32–83. doi: 10.1136/bjsm.2008.053843.
    1. Dieli-Conwright C.M., Courneya K.S., Demark-Wahnefried W., Sami N., Lee K., Buchanan T.A., Spicer D.V., Tripathy D., Bernstein L., Mortimer J.E. Effects of aerobic and resistance exercise on metabolic syndrome, sarcopenic obesity, and circulating biomarkers in overweight or obese survivors of breast cancer: A randomized controlled trial. J. Clin. Oncol. 2018;36:875–883. doi: 10.1200/JCO.2017.75.7526.
    1. Rogers L.Q., Courneya K.S., Anton P.M., Hopkins-Price P., Verhulst S., Vicari S.K., Robbs R.S., Mocharnuk R., McAuley E. Effects of the BEAT Cancer physical activity behavior change intervention on physical activity, aerobic fitness, and quality of life in breast cancer survivors: A multicenter randomized controlled trial. Breast Cancer Res. Treat. 2015;149:109–119. doi: 10.1007/s10549-014-3216-z.
    1. Neeland I.J., Ross R., Després J.P., Matsuzawa Y., Yamashita S., Shai I., Seidell J., Magni P., Santos R.D., Arsenault B., et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: A position statement. Lancet Diabetes Endocrinol. 2019;7:715–725. doi: 10.1016/S2213-8587(19)30084-1.
    1. Bradshaw P.T., Monda K.L., Stevens J. Metabolic syndrome in healthy obese, overweight, and normal weight individuals: The Atherosclerosis Risk in Communities Study. Obesity. 2013;21:203–209. doi: 10.1002/oby.20248.
    1. Britton K.A., Massaro J.M., Murabito J.M., Kreger B.E., Hoffmann U., Fox C.S. Body fat distribution, incident cardiovascular disease, cancer, and all-cause mortality. J. Am. Coll. Cardiol. 2013;62:921–925. doi: 10.1016/j.jacc.2013.06.027.
    1. Verheggen R.J., Maessen M.F., Green D.J., Hermus A.R., Hopman M.T., Thijssen D.H. A systematic review and meta-analysis on the effects of exercise training versus hypocaloric diet: Distinct effects on body weight and visceral adipose tissue. Obes. Rev. 2016;17:664–690. doi: 10.1111/obr.12406.
    1. Vissers D., Hens W., Taeymans J., Baeyens J.P., Poortmans J., Van Gaal L. The effect of exercise on visceral adipose tissue in overweight adults: A systematic review and meta-analysis. PLoS ONE. 2013;8:e56415. doi: 10.1371/journal.pone.0056415.
    1. Keating S.E., Hackett D.A., Parker H.M., O’Connor H.T., Gerofi J.A., Sainsbury A., Baker M.K., Chuter V.H., Caterson I.D., George J., et al. Effect of aerobic exercise training dose on liver fat and visceral adiposity. J. Hepatol. 2015;63:174–182. doi: 10.1016/j.jhep.2015.02.022.
    1. You T., Murphy K.M., Lyles M.F., Demons J.L., Lenchik L., Nicklas B.J. Addition of aerobic exercise to dietary weight loss preferentially reduces abdominal adipocyte size. Int. J. Obes. 2006;30:1211–1216. doi: 10.1038/sj.ijo.0803245.
    1. Mika A., Macaluso F., Barone R., Di Felice V., Sledzinski T. Effect of exercise on fatty acid metabolism and adipokine secretion in adipose tissue. Front. Physiol. 2019;10:26. doi: 10.3389/fphys.2019.00026.
    1. Camell C.D., Sander J., Spadaro O., Lee A., Nguyen K.Y., Wing A., Goldberg E.L., Youm Y.H., Brown C.W., Elsworth J., et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature. 2017;550:119–123. doi: 10.1038/nature24022.
    1. Murabito J.M., Pedley A., Massaro J.M., Vasan R.S., Esliger D., Blease S.J., Hoffman U., Fox C.S. Moderate-to-vigorous physical activity with accelerometry is associated with decreased visceral adipose tissue in adults. J. Am. Heart Assoc. 2015;3:4.
    1. Brochu M., Tchernof A., Turner A.N., Ades P.A., Poehlman E.T. Is there a threshold of visceral fat loss that improves the metabolic profile in obese postmenopausal women? Metabolism. 2003;52:599–604. doi: 10.1053/meta.2003.50095.
    1. Fabian C.J., Kimler B.F., Donnelly J.E., Sullivan D.K., Klemp J.R., Petroff B.K., Phillips T.A., Metheny T., Aversman S., Yeh H.W., et al. Favorable modulation of benign breast tissue and serum risk biomarkers is associated with >10% weight loss in postmenopausal women. Breast Cancer Res. Treat. 2013;142:119–132. doi: 10.1007/s10549-013-2730-8.
    1. Teras L.R., Patel A.V., Wang M., Yaun S.S., Anderson K., Brathwaite R., Caan B.J., Chen Y., Connor A.E., Eliassen A.H., et al. Sustained weight loss and risk of breast cancer in women 50 years and older: A pooled analysis of prospective data. J. Natl. Cancer Inst. 2020;112:929–937. doi: 10.1093/jnci/djz226.
    1. Look AHEAD Research Group. Gregg E.W., Jakicic J.M., Blackburn G., Bloomquist P., Bray G.A., Clark J.M., Coday M., Curtis J.M., Egan C., et al. Association of the magnitude of weight loss and changes in physical fitness with long-term cardiovascular disease outcomes in overweight or obese people with type 2 diabetes: A post-hoc analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol. 2016;4:913–921.
    1. Neeland I.J., Grundy S.M., Li X., Adams-Huet B., Vega G.L. Comparison of visceral fat mass measurement by dual-X-ray absorptiometry and magnetic resonance imaging in a multiethnic cohort: The Dallas Heart Study. Nutr. Diabetes. 2015;6:e221. doi: 10.1038/nutd.2016.28.
    1. Bi X., Seabolt L., Shibao C., Buchowski M., Kang H., Keil C.D., Tyree R., Silver H.J. DXA-measured visceral adipose tissue predicts impaired glucose tolerance and metabolic syndrome in obese Caucasian and African-American women. Eur. J. Clin. Nutr. 2015;69:329–336. doi: 10.1038/ejcn.2014.227.
    1. Cespedes Feliciano E.M., Chen W.Y., Bradshaw P.T., Prado C.M., Alexeeff S., Albers K.B., Castillo A.L., Caan B.J. Adipose tissue distribution and cardiovascular disease risk among breast cancer survivors. J. Clin. Oncol. 2019;37:2528–2536. doi: 10.1200/JCO.19.00286.
    1. Neeland I.J., Poirier P., Després J.P. Cardiovascular and metabolic heterogeneity of obesity: Clinical challenges and implications for management. Circulation. 2018;137:1391–1406. doi: 10.1161/CIRCULATIONAHA.117.029617.
    1. Mason C., Katzmarzyk P.T. Waist circumference thresholds for the prediction of cardiometabolic risk: Is measurement site important? Eur. J. Clin. Nutr. 2010;64:862–867. doi: 10.1038/ejcn.2010.82.
    1. Mellis M.G., Oldroyd B., Hind K. In vivo precision of the GE Lunar iDXA for the measurement of visceral adipose tissue in adults: The influence of body mass index. Eur. J. Clin. Nutr. 2014;68:1365–1367. doi: 10.1038/ejcn.2014.213.
    1. Heyward V.H., editor. Advance Fitness Assessment & Exercise Prescription. 3rd ed. Human Kinetics; Champaign, IL, USA: 1998. The Physical Fitness Specialist Certification Manual, The Cooper Institute for Aerobics Research, Dallas TX, revised 1997 printed; p. 48.
    1. Mendoza T.R., Wang X.S., Cleeland C.S., Morrissey M., Johnson B.A., Wendt J.K., Huber S.L. The rapid assessment of fatigue severity in cancer patients: Use of the Brief Fatigue Inventory. Cancer. 1999;85:1186–1196. doi: 10.1002/(SICI)1097-0142(19990301)85:5<1186::AID-CNCR24>;2-N.
    1. National Task Force on the Prevention and Treatment of Obesity Dieting and the development of eating disorders in overweight and obese adults. Arch Intern. Med. 2000;160:2581–2589. doi: 10.1001/archinte.160.17.2581.
    1. Vidoni E.D., Van Sciver A., Johnson D.K., He J., Honea R., Haines B., Goodwin J., Laubinger M.P., Anderson H.S., Kluding P.M., et al. A community-based approach to trials of aerobic exercise in aging and Alzheimer’s disease. Contemp. Clin. Trials. 2012;33:1105–1116. doi: 10.1016/j.cct.2012.08.002.
    1. Schrack J.A., Leroux A., Fleg J.L., Zipunnikov V., Simonsick E.M., Studenski S.A., Crainiceanu C., Ferrucci L. Using heart rate and accelerometry to define quantity and intensity of physical activity in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2018;73:668–675. doi: 10.1093/gerona/gly029.
    1. Tedesco S., Sica M., Ancillao A., Timmons S., Barton J., O’Flynn B. Validity evaluation of the Fitbit Charge2 and the Garmin Vivosmart HR+ in free-living environments in an older adult cohort. JMIR mHealth uHealth. 2019;7:e13084. doi: 10.2196/13084.
    1. Baker H.A., Fabian C.J., Hastings R.C., Dixon D.A., Nydegger J.L., Phillips T.A., Powers K.R., Kimler B.F. Circulating adipose stromal cells as a response biomarker in phase II energy balance trials of obese breast cancer survivors and high-risk women. Breast Cancer Res. Treat. 2019;176:387–394. doi: 10.1007/s10549-019-05251-7.
    1. Frühbeck G., Catalán V., Rodríguez A., Gómez-Ambrosi J. Adiponectin-leptin ratio: A promising index to estimate adipose tissue dysfunction. Relation with obesity-associated cardiometabolic risk. Adipocyte. 2018;7:57–62. doi: 10.1080/21623945.2017.1402151.
    1. Westphal T., Rinnerthaler G., Gampenrieder S.P., Niebauer J., Thaler J., Pfob M., Fuchs D., Riedmann M., Mayr B., Reich B., et al. Supervised versus autonomous exercise training in breast cancer patients: A multicenter randomized clinical trial. Cancer Med. 2018;7:5962–5972. doi: 10.1002/cam4.1851.
    1. Gallagher D., Kovera A.J., Clay-Williams G., Agin D., Leone P., Albu J., Matthews D.E., Heymsfield S.B. Weight loss in postmenopausal obesity: No adverse alterations in body composition and protein metabolism. Am. J. Physiol. Endocrinol. Metab. 2000;279:E124–E131. doi: 10.1152/ajpendo.2000.279.1.E124.
    1. Brown J.C., Sarwer D.B., Troxel A.B., Sturgeon K., DeMichele A.M., Denlinger C.S., Schmitz K.H. Randomized trial of exercise and diet on body composition in survivors of breast cancer with overweight or obesity. Breast Cancer Res. Treat. 2021;89:145–154. doi: 10.1007/s10549-021-06284-7.
    1. Winkels R.M., Sturgeon K.M., Kallan M.J., Dean L.T., Zhang Z., Evangelisti M., Brown J.C., Sarwer D.B., Troxel A.B., Denlinger C., et al. The women in steady exercise research (WISER) survivor trial: The innovative transdisciplinary design of a randomized controlled trial of exercise and weight-loss interventions among breast cancer survivors with lymphedema. Contemp. Clin. Trials. 2017;61:63–72. doi: 10.1016/j.cct.2017.07.017.
    1. Cabia B., Andrade S., Carreira M.C., Casanueva F.F., Crujeiras A.B. A role for novel adipose tissue-secreted factors in obesity-related carcinogenesis. Obes. Rev. 2016;17:361–376. doi: 10.1111/obr.12377.
    1. Grossmann M.E., Cleary M.P. The balance between leptin and adiponectin in the control of carcinogenesis—Focus on mammary tumorigenesis. Biochimie. 2012;94:2164–2171. doi: 10.1016/j.biochi.2012.06.013.
    1. Christodoulatos G.S., Spyrou N., Kadillari J., Psallida S., Dalamaga M. The role of adipokines in breast cancer: Current evidence and perspectives. Curr. Obes. Rep. 2019;8:413–433. doi: 10.1007/s13679-019-00364-y.
    1. Akyol M., Alacacioglu A., Demir L., Kucukzeybek Y., Yildiz Y., Gumus Z., Kara M., Salman T., Varol U., Taskaynatan H., et al. The alterations of serum FGF-21 levels, metabolic and body composition in early breast cancer patients receiving adjuvant endocrine therapy. Cancer Biomark. 2017;18:441–449. doi: 10.3233/CBM-161507.
    1. Strong A.L., Ohlstein J.F., Biagas B.A., Rhodes L.V., Pei D.T., Tucker H.A., Llamas C., Bowles A.C., Dutreil M.F., Zhang S., et al. Leptin produced by obese adipose stromal/stem cells enhances proliferation and metastasis of estrogen receptor positive breast cancers. Breast Cancer Res. 2015;17:112. doi: 10.1186/s13058-015-0622-z.
    1. Larsen M.A., Isaksen V.T., Moen O.S., Wilsgaard L., Remijn M., Paulssen E.J., Florholmen J., Goll R. Leptin to adiponectin ratio—A surrogate biomarker for early detection of metabolic disturbances in obesity. Nutr. Metab. Cardiovasc. Dis. 2018;28:1114–1121. doi: 10.1016/j.numecd.2018.06.020.
    1. Watanabe T., Watanabe-Kominato K., Takahashi Y., Kojima M., Watanabe R. Adipose tissue-derived omentin-1 function and regulation. Compr. Physiol. 2017;7:765–781.
    1. Wilms B., Ernst B., Gerig R., Schultes B. Plasma omentin-1 levels are related to exercise performance in obese women and increase upon aerobic endurance training. Exp. Clin. Endocrinol. Diabetes. 2015;123:187–192. doi: 10.1055/s-0034-1398504.
    1. Figueroa V., Rodríguez M.S., Lanari C., Lamb C.A. Nuclear action of FGF members in endocrine-related tissues and cancer: Interplay with steroid receptor pathways. Steroids. 2019;152:108492. doi: 10.1016/j.steroids.2019.108492.
    1. Benham V., Chakraborty D., Bullard B., Bernard J.J. A role for FGF2 in visceral adiposity-associated mammary epithelial transformation. Adipocyte. 2018;7:113–120. doi: 10.1080/21623945.2018.1445889.
    1. Han Y., Mao F., Wu Y., Fu X., Zhu X., Zhou S., Zhang W., Sun Q., Zhao Y. Prognostic role of C-reactive protein in breast cancer: A systematic review and meta-analysis. Int. J. Biol. Markers. 2011;26:209–215. doi: 10.5301/JBM.2011.8872.
    1. Sturgeon K.M., Foo W., Heroux M., Schmitz K. Change in inflammatory biomarkers and adipose tissue in BRCA1/2+ breast cancer survivors following a yearlong lifestyle modification program. Cancer Prev. Res. 2018;11:545–550. doi: 10.1158/1940-6207.CAPR-18-0098.
    1. Pedersen B.K. Anti-inflammatory effects of exercise: Role in diabetes and cardiovascular disease. Eur. J. Clin. Investig. 2017;47:600–611. doi: 10.1111/eci.12781.
    1. Haley J.S., Hibler E.A., Zhou S., Schmitz K.H., Sturgeon K.M. Dose-dependent effect of aerobic exercise on inflammatory biomarkers in a randomized controlled trial of women at high risk of breast cancer. Cancer. 2020;26:329–336. doi: 10.1002/cncr.32530.
    1. Hao J., Zhang Y., Yan X., Yan F., Sun Y., Zeng J., Waigel S., Yin Y., Fraig M.M., Egilmez N.K., et al. Circulating adipose fatty acid binding protein is a new link underlying obesity-associated breast/mammary tumor development. Cell Metab. 2018;28:689–705. doi: 10.1016/j.cmet.2018.07.006.
    1. Prentice K.J., Saksi J., Hotamisligil G.S. Adipokine FABP4 integrates energy stores and counterregulatory metabolic responses. J. Lipid. Res. 2019;60:734–740. doi: 10.1194/jlr.S091793.
    1. Krskova K., Eckertova M., Kukan M., Kuba D., Kebis A., Olszanecki R., Suski M., Gajdosechova L., Zorad S. Aerobic training lasting for 10 weeks elevates the adipose tissue FABP4, Giα, and adiponectin expression associated by a reduced protein oxidation. Endocr. Regul. 2012;46:137–146. doi: 10.4149/endo_2012_03_137.
    1. Villareal D.T., Aguirre L., Gurney A.B., Waters D.L., Sinacore D.R., Colombo E., Armamento-Villareal R., Qualls C. Aerobic or resistance exercise, or both, in dieting obese older adults. N. Engl. J. Med. 2017;376:1943–1955. doi: 10.1056/NEJMoa1616338.
    1. Mitka M. Do flawed data on caloric intake from NHANES present problems for researchers and policy makers? JAMA. 2013;310:2137–2138. doi: 10.1001/jama.2013.281865.
    1. Shook R.P., Hand G.A., O’Connor D.P., Thomas D.M., Hurley T.G., Hébert J.R., Drenowatz C., Welk G.J., Carriquiry A.L., Blair S.N. Energy intake derived from an energy balance equation, validated activity monitors, and dual x-ray absorptiometry can provide acceptable caloric intake data among young adults. J. Nutr. 2018;148:490–496. doi: 10.1093/jn/nxx029.

Source: PubMed

3
구독하다