Association of High-Density Lipoprotein-Cholesterol Versus Apolipoprotein A-I With Risk of Coronary Heart Disease: The European Prospective Investigation Into Cancer-Norfolk Prospective Population Study, the Atherosclerosis Risk in Communities Study, and the Women's Health Study

Julian C van Capelleveen, Andrea E Bochem, S Matthijs Boekholdt, Samia Mora, Ron C Hoogeveen, Christie M Ballantyne, Paul M Ridker, Wensheng Sun, Philip J Barter, Alan R Tall, Aeilko H Zwinderman, John J P Kastelein, Nick J Wareham, Kay-Tee Khaw, G Kees Hovingh, Julian C van Capelleveen, Andrea E Bochem, S Matthijs Boekholdt, Samia Mora, Ron C Hoogeveen, Christie M Ballantyne, Paul M Ridker, Wensheng Sun, Philip J Barter, Alan R Tall, Aeilko H Zwinderman, John J P Kastelein, Nick J Wareham, Kay-Tee Khaw, G Kees Hovingh

Abstract

Background: The contribution of apolipoprotein A-I (apoA-I) to coronary heart disease (CHD) risk stratification over and above high-density lipoprotein cholesterol (HDL-C) is unclear. We studied the associations between plasma levels of HDL-C and apoA-I, either alone or combined, with risk of CHD events and cardiovascular risk factors among apparently healthy men and women.

Methods and results: HDL-C and apoA-I levels were measured among 17 661 participants of the EPIC (European Prospective Investigation into Cancer)-Norfolk prospective population study. Hazard ratios for CHD events and distributions of risk factors were calculated by quartiles of HDL-C and apoA-I. Results were validated using data from the ARIC (Atherosclerosis Risk in Communities) and WHS (Women's Health Study) cohorts, comprising 15 494 and 27 552 individuals, respectively. In EPIC-Norfolk, both HDL-C and apoA-I quartiles were strongly and inversely associated with CHD risk. Within HDL-C quartiles, higher apoA-I levels were not associated with lower CHD risk; in fact, CHD risk was higher within some HDL-C quartiles. ApoA-I levels were associated with higher levels of CHD risk factors: higher body mass index, HbA1c, non-HDL-C, triglycerides, apolipoprotein B, systolic blood pressure, and C-reactive protein, within fixed HDL-C quartiles. In contrast, HDL-C levels were consistently inversely associated with overall CHD risk and CHD risk factors within apoA-I quartiles (P<0.001). These findings were validated in the ARIC and WHS cohorts.

Conclusions: Our findings demonstrate that apoA-I levels do not offer predictive information over and above HDL-C. In fact, within some HDL-C quartiles, higher apoA-I levels were associated with higher risk of CHD events, possibly because of the unexpected higher prevalence of cardiovascular risk factors in association with higher apoA-I levels.

Clinical trial registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT00000479.

Keywords: apolipoprotein A‐I; cardiovascular disease; coronary heart disease; high‐density lipoprotein cholesterol.

© 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

Figures

Figure 1
Figure 1
Adjusted hazard ratios for coronary heart disease per HDL‐C (A) and apolipoprotein A‐I (B) quartile in the EPIC‐Norfolk Study. Data are shown as hazard ratios and corresponding 95% CI for the risk of future coronary heart disease events. Hazard ratios were calculated by quartile, using the lowest quartile as reference category, and were adjusted for sex, age, smoking, body mass index, systolic blood pressure, apolipoprotein B, C‐reactive protein, and triglyceride levels. ApoA‐I indicates apolipoprotein A‐I; EPIC, European Prospective Investigation into Cancer; HDL‐C, high‐density lipoprotein cholesterol.
Figure 2
Figure 2
Kaplan–Meier event‐free survival curves per HDL cholesterol and apolipoprotein A‐I quartile in the EPIC‐Norfolk Study. ApoA‐I indicates apolipoprotein A‐I; EPIC, European Prospective Investigation into Cancer; HDL‐C, high‐density lipoprotein cholesterol.

References

    1. Voight BF, Peloso GM, Orho‐Melander M, Frikke‐Schmidt R, Barbalic M, Jensen MK, Hindy G, Hólm H, Ding EL, Johnson T, Schunkert H, Samani NJ, Clarke R, Hopewell JC, Thompson JF, Li M, Thorleifsson G, Newton‐Cheh C, Musunuru K, Pirruccello JP, Saleheen D, Chen L, Stewart AF, Schillert A, Thorsteinsdottir U, Thorgeirsson G, Anand S, Engert JC, Morgan T, Spertus J, Stoll M, Berger K, Martinelli N, Girelli D, McKeown PP, Patterson CC, Epstein SE, Devaney J, Burnett M‐S, Mooser V, Ripatti S, Surakka I, Nieminen MS, Sinisalo J, Lokki M‐L, Perola M, Havulinna A, de Faire U, Gigante B, Ingelsson E, Zeller T, Wild P, de Bakker PIW, Klungel OH, Maitland‐van der Zee A‐H, Peters BJM, de Boer A, Grobbee DE, Kamphuisen PW, Deneer VHM, Elbers CC, Onland‐Moret NC, Hofker MH, Wijmenga C, Verschuren WM, Boer JM, van der Schouw YT, Rasheed A, Frossard P, Demissie S, Willer C, Do R, Ordovas JM, Abecasis GR, Boehnke M, Mohlke KL, Daly MJ, Guiducci C, Burtt NP, Surti A, Gonzalez E, Purcell S, Gabriel S, Marrugat J, Peden J, Erdmann J, Diemert P, Willenborg C, König IR, Fischer M, Hengstenberg C, Ziegler A, Buysschaert I, Lambrechts D, Van de Werf F, Fox KA, El Mokhtari NE, Rubin D, Schrezenmeir J, Schreiber S, Schäfer A, Danesh J, Blankenberg S, Roberts R, McPherson R, Watkins H, Hall AS, Overvad K, Rimm E, Boerwinkle E, Tybjaerg‐Hansen A, Cupples LA, Reilly MP, Melander O, Mannucci PM, Ardissino D, Siscovick D, Elosua R, Stefansson K, O'Donnell CJ, Salomaa V, Rader DJ, Peltonen L, Schwartz SM, Altshuler D, Kathiresan S. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study. Lancet. 2012;380:572–580.
    1. Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes‐Nickens P, Koprowicz K, McBride R, Teo K, Weintraub W. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365:2255–2267.
    1. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, Chaitman BR, Holme IM, Kallend D, Leiter LA, Leitersdorf E, McMurray JJ, Mundl H, Nicholls SJ, Shah PK, Tardif J‐C, Wright RS. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367:2089–2099.
    1. Lincoff AM, Nicholls SJ, Riesmeyer JS, Barter PJ, Brewer HB, Fox KAA, Gibson CM, Granger C, Menon V, Montalescot G, Rader D, Tall AR, McErlean E, Wolski K, Ruotolo G, Vangerow B, Weerakkody G, Goodman SG, Conde D, McGuire DK, Nicolau JC, Leiva‐Pons JL, Pesant Y, Li W, Kandath D, Kouz S, Tahirkheli N, Mason D, Nissen SE; ACCELERATE Investigators . Evacetrapib and cardiovascular outcomes in high‐risk vascular disease. N Engl J Med. 2017;376:1933–1942.
    1. Emerging Risk Factors Collaboration , Di Angelantonio E, Sarwar N, Perry P, Kaptoge S, Ray KK, Thompson A, Wood AM, Lewington S, Sattar N, Packard CJ, Collins R, Thompson SG, Danesh J. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302:1993–2000.
    1. Barter PJ, Rye K‐A. The rationale for using apoA‐I as a clinical marker of cardiovascular risk. J Intern Med. 2006;259:447–454.
    1. Mineo C, Shaul PW. Novel biological functions of high‐density lipoprotein cholesterol. Circ Res. 2012;111:1079–1090.
    1. Guo Y, Fan Y, Zhang J, Lomberk GA, Zhou Z, Sun L, Mathison AJ, Garcia‐Barrio MT, Zhang J, Zeng L, Li L, Pennathur S, Willer CJ, Rader DJ, Urrutia R, Chen YE. Perhexiline activates KLF14 and reduces atherosclerosis by modulating ApoA‐I production. J Clin Invest. 2015;125:3819–3830.
    1. Waksman R, Torguson R, Kent KM, Pichard AD, Suddath WO, Satler LF, Martin BD, Perlman TJ, Maltais J‐AB, Weissman NJ, Fitzgerald PJ, Brewer HB. A first‐in‐man, randomized, placebo‐controlled study to evaluate the safety and feasibility of autologous delipidated high‐density lipoprotein plasma infusions in patients with acute coronary syndrome. J Am Coll Cardiol. 2010;55:2727–2735.
    1. Tardif J‐C, Ballantyne CM, Barter P, Dasseux J‐L, Fayad ZA, Guertin M‐C, Kastelein JJP, Keyserling C, Klepp H, Koenig W, L'Allier PL, Lespérance J, Lüscher TF, Paolini JF, Tawakol A, Waters DD; Can HDL Infusions Significantly QUicken Atherosclerosis REgression (CHI‐SQUARE) Investigators . Effects of the high‐density lipoprotein mimetic agent CER‐001 on coronary atherosclerosis in patients with acute coronary syndromes: a randomized trial. Eur Heart J. 2014;35:3277–3286.
    1. Nicholls SJ, Puri R, Wolski K, Ballantyne CM, Barter PJ, Brewer HB, Kastelein JJP, Hu B, Uno K, Kataoka Y, Herrman J‐PR, Merkely B, Borgman M, Nissen SE. Effect of the BET protein inhibitor, RVX‐208, on progression of coronary atherosclerosis: results of the phase 2b, randomized, double‐blind, multicenter, ASSURE Trial. Am J Cardiovasc Drugs. 2016;16:55–65.
    1. Stampfer MJ, Sacks FM, Salvini S, Willett WC, Hennekens CH. A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction. N Engl J Med. 1991;325:373–381.
    1. Emerging Risk Factors Collaboration , Di Angelantonio E, Gao P, Pennells L, Kaptoge S, Caslake M, Thompson A, Butterworth AS, Sarwar N, Wormser D, Saleheen D, Ballantyne CM, Psaty BM, Sundström J, Ridker PM, Nagel D, Gillum RF, Ford I, Ducimetiere P, Kiechl S, Koenig W, Dullaart RPF, Assmann G, D'Agostino RB, Dagenais GR, Cooper JA, Kromhout D, Onat A, Tipping RW, Gómez‐de‐la‐Cámara A, Rosengren A, Sutherland SE, Gallacher J, Fowkes FGR, Casiglia E, Hofman A, Salomaa V, Barrett‐Connor E, Clarke R, Brunner E, Jukema JW, Simons LA, Sandhu M, Wareham NJ, Khaw K‐T, Kauhanen J, Salonen JT, Howard WJ, Nordestgaard BG, Wood AM, Thompson SG, Boekholdt SM, Sattar N, Packard C, Gudnason V, Danesh J. Lipid‐related markers and cardiovascular disease prediction. JAMA. 2012;307:2499–2506.
    1. Day N, Oakes S, Luben R, Khaw KT, Bingham S, Welch A, Wareham N. EPIC‐Norfolk: study design and characteristics of the cohort. European Prospective Investigation of Cancer. Br J Cancer. 1999;80(suppl 1):95–103.
    1. Boekholdt SM, Peters RJG, Day NE, Luben R, Bingham SA, Wareham NJ, Hack CE, Reitsma PH, Khaw K‐T. Macrophage migration inhibitory factor and the risk of myocardial infarction or death due to coronary artery disease in adults without prior myocardial infarction or stroke: the EPIC‐Norfolk Prospective Population study. Am J Med. 2004;117:390–397.
    1. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low‐density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502.
    1. Albers JJ, Marcovina SM, Kennedy H. International Federation of Clinical Chemistry standardization project for measurements of apolipoproteins A‐I and B. II. Evaluation and selection of candidate reference materials. Clin Chem. 1992;38:658–662.
    1. The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC Investigators. Am J Epidemiol. 1989;129:687–702.
    1. White AD, Folsom AR, Chambless LE, Sharret AR, Yang K, Conwill D, Higgins M, Williams OD, Tyroler HA. Community surveillance of coronary heart disease in the Atherosclerosis Risk in Communities (ARIC) Study: methods and initial two years’ experience. J Clin Epidemiol. 1996;49:223–233.
    1. Sharrett AR, Patsch W, Sorlie PD, Heiss G, Bond MG, Davis CE. Associations of lipoprotein cholesterols, apolipoproteins A‐I and B, and triglycerides with carotid atherosclerosis and coronary heart disease. The Atherosclerosis Risk in Communities (ARIC) Study. Arterioscler Thromb Vasc Biol. 1994;14:1098–1104.
    1. Ridker PM, Cook NR, Lee I‐M, Gordon D, Gaziano JM, Manson JE, Hennekens CH, Buring JE. A randomized trial of low‐dose aspirin in the primary prevention of cardiovascular disease in women. N Engl J Med. 2005;352:1293–1304.
    1. Mora S, Buring JE, Ridker PM, Cui Y. Association of high‐density lipoprotein cholesterol with incident cardiovascular events in women, by low‐density lipoprotein cholesterol and apolipoprotein B100 levels: a cohort study. Ann Intern Med. 2011;155:742–750.
    1. Grundy SM. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Arterioscler Thromb Vasc Biol. 2004;24:e149–e161.
    1. McQueen MJ, Hawken S, Wang X, Ounpuu S, Sniderman A, Probstfield J, Steyn K, Sanderson JE, Hasani M, Volkova E, Kazmi K, Yusuf S; INTERHEART study investigators . Lipids, lipoproteins, and apolipoproteins as risk markers of myocardial infarction in 52 countries (the INTERHEART study): a case‐control study. Lancet. 2008;372:224–233.
    1. van der Steeg WA, Holme I, Boekholdt SM, Larsen ML, Lindahl C, Stroes ESG, Tikkanen MJ, Wareham NJ, Faergeman O, Olsson AG, Pedersen TR, Khaw K‐T, Kastelein JJP. High‐density lipoprotein cholesterol, high‐density lipoprotein particle size, and apolipoprotein A‐I: significance for cardiovascular risk. J Am Coll Cardiol. 2008;51:634–642.
    1. Walker BR. Abnormal glucocorticoid activity in subjects with risk factors for cardiovascular disease. Endocr Res. 1996;22:701–708.
    1. Berg AL, Nilsson‐Ehle P. Direct effects of corticotropin on plasma lipoprotein metabolism in man—studies in vivo and in vitro. Metabolism. 1994;43:90–97.
    1. Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev. 1997;18:774–800.
    1. Wang CN, McLeod RS, Yao Z, Brindley DN. Effects of dexamethasone on the synthesis, degradation, and secretion of apolipoprotein B in cultured rat hepatocytes. Arterioscler Thromb Vasc Biol. 1995;15:1481–1491.
    1. Rosenson RS, Brewer HB, Chapman MJ, Fazio S, Hussain MM, Kontush A, Krauss RM, Otvos JD, Remaley AT, Schaefer EJ. HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. Clin Chem. 2011;57:392–410.

Source: PubMed

3
구독하다