Phase II study of preoperative bevacizumab, capecitabine and radiotherapy for resectable locally-advanced rectal cancer

Margarita García, Mercedes Martinez-Villacampa, Cristina Santos, Valentin Navarro, Alex Teule, Ferran Losa, Aleydis Pisa, Maria Cambray, Gemma Soler, Laura Lema, Esther Kreisler, Agnes Figueras, Xavier San Juan, Francesc Viñals, Sebastiano Biondo, Ramon Salazar, Margarita García, Mercedes Martinez-Villacampa, Cristina Santos, Valentin Navarro, Alex Teule, Ferran Losa, Aleydis Pisa, Maria Cambray, Gemma Soler, Laura Lema, Esther Kreisler, Agnes Figueras, Xavier San Juan, Francesc Viñals, Sebastiano Biondo, Ramon Salazar

Abstract

Background: To evaluate whether the addition of bevacizumab (BVZ) to capecitabine-based chemoradiotherapy in the preoperative treatment of locally advanced rectal cancer (LARC) improves efficacy measured by the pathological complete response (pCR) rate.

Methods: A phase II two-step design was performed. Patients received four cycles of therapy consisting of: BVZ 10 mg/kg in first infusion on day 1 and 5 mg/kg on days 15, 29, 43, capecitabine 1800 mg/m(2)/day 5 days per week during radiotherapy, which consisted of external-beam irradiation (45 Gy in 1.8 Gy dose per session over 5 sessions/week for 5 weeks). Six to eight weeks after completion of all therapies surgery was undergone. To profile the biological behaviour during BVZ treatment we measured molecular biomarkers before treatment, during BVZ monotherapy, and during and after combination therapy. Microvessel density (MVD) was measured after surgery.

Results: Forty-three patients were assessed and 41 were included in the study. Three patients achieved a pathological complete response (3/40: 7.5%) and 27 (67.5%) had a pathological partial response, (overall pathological response rate of 75%). A further 8 patients (20%) had stable disease, giving a disease control rate of 95%. Downstaging occurred in 31 (31/40: 77.5%) of the patients evaluated. This treatment resulted in an actuarial 4-year disease-free and overall survival of 85.4 and 92.7% respectively. BVZ with chemoradiotherapy showed acceptable toxicity. No correlations were observed between biomarker results and efficacy variables.

Conclusion: BVZ with capecitabine and radiotherapy seem safe and active and produce promising survival results in LARC.

Trial registration: ClinicalTrials.gov Identifier NCT00847119 . Trial registration date: February 18, 2009.

Figures

Figure 1
Figure 1
Disposition of enrolled patients.

References

    1. MacFarlane JK, Ryall RD, Heald RJ. Mesorectal excision for rectal cancer. Lancet. 1993;341:457–60. doi: 10.1016/0140-6736(93)90207-W.
    1. Enker WE, Thaler HT, Cranor ML, Polyak T. Total mesorectal excision in the operative treatment of carcinoma of the rectum. J Am Coll Surg. 1995;181:335–46.
    1. Havenga K, Enker WE, Norstein J, Moriya Y, Heald RJ, van Houwelingen HC, et al. Improved survival and local control after total mesorectal excision or D3 lymphadenectomy in the treatment of primary rectal cancer: an international analysis of 1411 patients. Eur J Surg Oncol. 1999;25:368–74. doi: 10.1053/ejso.1999.0659.
    1. Sauer R, Becker H, Hohenberger W, Rödel C, Wittekind C, Fietkau R, et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med. 2004;351:1731–40. doi: 10.1056/NEJMoa040694.
    1. Rödel C, Martus P, Papadoupolos T, Füzesi L, Klimpfinger M, Fietkau R, et al. Prognostic significance of tumor regression after preoperative chemoradiotherapy for rectal cancer. J Clin Oncol. 2005;23:8688–96. doi: 10.1200/JCO.2005.02.1329.
    1. Maas M, Nelemans PJ, Valentini V, Das P, Rödel C, Kuo L-J, et al. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol. 2010;11:835–44. doi: 10.1016/S1470-2045(10)70172-8.
    1. Gérard J-P, Azria D, Gourgou-Bourgade S, Martel-Laffay I, Hennequin C, Etienne P-L, et al. Comparison of two neoadjuvant chemoradiotherapy regimens for locally advanced rectal cancer: results of the phase III trial ACCORD 12/0405-Prodige 2. J Clin Oncol. 2010;28:1638–44. doi: 10.1200/JCO.2009.25.8376.
    1. Aschele C, Cionini L, Lonardi S, Pinto C, Cordio S, Rosati G, et al. Primary tumor response to preoperative chemoradiation with or without oxaliplatin in locally advanced rectal cancer: pathologic results of the STAR-01 randomized phase III trial. J Clin Oncol. 2011;29:2773–80. doi: 10.1200/JCO.2010.34.4911.
    1. Goel S, Wong AH-K, Jain RK. Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harb Perspect Med. 2012;2:a006486. doi: 10.1101/cshperspect.a006486.
    1. Willett CG, Duda DG, di Tomaso E, Boucher Y, Ancukiewicz M, Sahani DV, et al. Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study. J Clin Oncol. 2009;27:3020–6. doi: 10.1200/JCO.2008.21.1771.
    1. Willett CG, Boucher Y, Duda DG, di Tomaso E, Munn LL, Tong RT, et al. Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients. J Clin Oncol. 2005;23:8136–9. doi: 10.1200/JCO.2005.02.5635.
    1. Simon R. Optimal two-stage designs for phase II clinical trials. Control Clin Trials. 1989;10:1–10. doi: 10.1016/0197-2456(89)90015-9.
    1. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM, et al. REporting recommendations for tumour MARKer prognostic studies (REMARK) Eur J Cancer. 2005;41:1690–6. doi: 10.1016/j.ejca.2005.03.032.
    1. Czito BG, Bendell JC, Willett CG, Morse MA, Blobe GC, Tyler DS, et al. Bevacizumab, oxaliplatin, and capecitabine with radiation therapy in rectal cancer: Phase I trial results. Int J Radiat Oncol Biol Phys. 2007;68:472–8. doi: 10.1016/j.ijrobp.2007.02.001.
    1. Kennecke H, Berry S, Wong R, Zhou C, Tankel K, Easaw J, et al. Pre-operative bevacizumab, capecitabine, oxaliplatin and radiation among patients with locally advanced or low rectal cancer: a phase II trial. Eur J Cancer. 2012;48:37–45. doi: 10.1016/j.ejca.2011.05.016.
    1. Crane CH, Eng C, Feig BW, Das P, Skibber JM, Chang GJ, et al. Phase II trial of neoadjuvant bevacizumab, capecitabine, and radiotherapy for locally advanced rectal cancer. Int J Radiat Oncol Biol Phys. 2010;76:824–30. doi: 10.1016/j.ijrobp.2009.02.037.
    1. Koukourakis MI, Giatromanolaki A, Tsoutsou P, Lyratzopoulos N, Pitiakoudis M, Kouklakis G, et al. Bevacizumab, capecitabine, amifostine, and preoperative hypofractionated accelerated radiotherapy (HypoArc) for rectal cancer: a Phase II study. Int J Radiat Oncol Biol Phys. 2011;80:492–8. doi: 10.1016/j.ijrobp.2010.02.037.
    1. Nogué M, Salud A, Vicente P, Arriví A, Roca JM, Losa F, et al. Addition of bevacizumab to XELOX induction therapy plus concomitant capecitabine-based chemoradiotherapy in magnetic resonance imaging-defined poor-prognosis locally advanced rectal cancer: the AVACROSS study. Oncologist. 2011;16:614–20. doi: 10.1634/theoncologist.2010-0285.
    1. Velenik V, Ocvirk J, Music M, Bracko M, Anderluh F, Oblak I, et al. Neoadjuvant capecitabine, radiotherapy, and bevacizumab (CRAB) in locally advanced rectal cancer: results of an open-label phase II study. Radiat Oncol. 2011;6:105. doi: 10.1186/1748-717X-6-105.
    1. Dipetrillo T, Pricolo V, Lagares-Garcia J, Vrees M, Klipfel A, Cataldo T, et al. Neoadjuvant bevacizumab, oxaliplatin, 5-fluorouracil, and radiation for rectal cancer. Int J Radiat Oncol Biol Phys. 2012;82:124–9. doi: 10.1016/j.ijrobp.2010.08.005.
    1. Gasparini G, Torino F, Ueno T, Cascinu S, Troiani T, Ballestrero A, et al. A phase II study of neoadjuvant bevacizumab plus capecitabine and concomitant radiotherapy in patients with locally advanced rectal cancer. Angiogenesis. 2012;15:141–50. doi: 10.1007/s10456-011-9250-0.
    1. Resch G, De Vries A, Öfner D, Eisterer W, Rabl H, Jagoditsch M, et al. Austrian Breast and Colorectal Cancer Study Group: Preoperative treatment with capecitabine, bevacizumab and radiotherapy for primary locally advanced rectal cancer–a two stage phase II clinical trial. Radiother Oncol. 2012;102:10–3. doi: 10.1016/j.radonc.2011.06.008.
    1. Spigel DR, Bendell JC, McCleod M, Shipley DL, Arrowsmith E, Barnes EK, et al. Phase II study of bevacizumab and chemoradiation in the preoperative or adjuvant treatment of patients with stage II/III rectal cancer. Clin Colorectal Cancer. 2012;11:45–52. doi: 10.1016/j.clcc.2011.04.002.
    1. Landry JC, Feng Y, Cohen SJ, Staley CA, 3rd, Whittington R, Sigurdson ER, et al. Phase 2 study of preoperative radiation with concurrent capecitabine, oxaliplatin, and bevacizumab followed by surgery and postoperative 5-fluorouracil, leucovorin, oxaliplatin (FOLFOX), and bevacizumab in patients with locally advanced rectal cancer: ECOG 3204. Cancer. 2013;119:1521–7. doi: 10.1002/cncr.27890.
    1. Francois Y, Nemoz CJ, Baulieux J, Vignal J, Grandjean JP, Partensky C, et al. Influence of the interval between preoperative radiation therapy and surgery on downstaging and on the rate of sphincter-sparing surgery for rectal cancer: the Lyon R90-01 randomized trial. J Clin Oncol. 1999;17:2396.
    1. Willett CG, Duda DG, Ancukiewicz M, Shah M, Czito BG, Bentley R, et al. A safety and survival analysis of neoadjuvant bevacizumab with standard chemoradiation in a phase I/II study compared with standard chemoradiation in locally advanced rectal cancer. Oncologist. 2010;15:845–51. doi: 10.1634/theoncologist.2010-0030.

Source: PubMed

3
구독하다