The Cytotoxicity and Genotoxicity of Three Dental Universal Adhesives-An In Vitro Study

Adam Wawrzynkiewicz, Wioletta Rozpedek-Kaminska, Grzegorz Galita, Monika Lukomska-Szymanska, Barbara Lapinska, Jerzy Sokolowski, Ireneusz Majsterek, Adam Wawrzynkiewicz, Wioletta Rozpedek-Kaminska, Grzegorz Galita, Monika Lukomska-Szymanska, Barbara Lapinska, Jerzy Sokolowski, Ireneusz Majsterek

Abstract

Dental universal adhesives are considered an useful tool in modern dentistry as they can be used in different etching techniques, allow for simplified protocol and provide sufficient bond strength. However, there is still no consensus as to their toxicity towards pulp. Thus, the present study aimed to evaluate the cytotoxicity and genotoxicity of three universal adhesives: OptiBond Universal, Prime&Bond Universal and Adhese in an in vitro experimental model, monocyte/macrophage cell line SC (ATCC CRL-9855). The cytotoxicity was measured by means of XTT assay, whereas the genotoxicity (comet assay) was evaluated based on the percentage of DNA present in the comet tail. Furthermore, the ability of the adhesives to induce apoptosis was analyzed using flow cytometry (FC) with the FITC annexin V/propidium iodide (PI) double staining. The analysis of the cell cycle progression was performed with FC using PI staining. OptiBond Universal presented significant, while Prime&Bond Universal and Adhese Universal had minimal cytotoxicity and genotoxicity towards human SC cells. Moreover, only OptiBond Universal increased the level of apoptosis in SC cell line. None of the adhesives showed significant cell cycle arrest, as revealed by FC analysis. Due to substantial differences in toxicity in in vitro studies of dental adhesives, there is a great need for further research in order to establish more reliable test protocols allowing for standardized methodology.

Keywords: cytotoxicity; dental materials; dental universal adhesives; flow cytometry; genotoxicity.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript or in the decision to publish the results.

Figures

Figure 1
Figure 1
Cytotoxicity of the investigated adhesives. *** p < 0.001 versus negative control.
Figure 2
Figure 2
Genotoxicity of the investigated adhesives. *** p < 0.001 versus negative control.
Figure 3
Figure 3
Flow cytometric FITC annexin V/propidium iodide (PI) double staining analysis of apoptosis. (a) negative control; (b) positive control; (c) OptiBond Universal; (d) Prime&Bond Universal; (e) Adhese Universal. Dot plot graphs indicate the percentage of viable (FITC annexin V negative, PI negative), early apoptotic (FITC annexin V positive, PI negative) late apoptotic (FITC annexin V positive, PI positive) and necrotic (FITC annexin V negative, PI positive) cells.
Figure 4
Figure 4
Flow cytometry (FC) analysis of cell cycle progression. (a) negative control; (b) positive control; (c) OptiBond Universal; (d) Prime&Bond Universal; (e) Adhese Universal. ** p < 0.01, *** p < 0.001 versus negative control.
Figure 4
Figure 4
Flow cytometry (FC) analysis of cell cycle progression. (a) negative control; (b) positive control; (c) OptiBond Universal; (d) Prime&Bond Universal; (e) Adhese Universal. ** p < 0.01, *** p < 0.001 versus negative control.

References

    1. Milia E., Cumbo E., Jose A., Cardoso R., Gallina G. Current Dental Adhesives Systems. A Narrative Review. Curr. Pharm. Des. 2012;18:5542–5552. doi: 10.2174/138161212803307491.
    1. Sofan E., Sofan A., Palaia G., Tenore G., Romeo U., Migliau G. Classification review of dental adhesive systems: From the IV generation to the universal type. Ann. Stomatol. 2017;8:1–17.
    1. Mante F.K., Ozer F., Walter R., Atlas A.M., Saleh N., Dietschi D., Blatz M.B. The current state of adhesive dentistry: A guide for clinical practice. Compend. Contin. Educ. Dent. 2013;34:2–8.
    1. Van Landuyt K.L., Snauwaert J., De Munck J., Peumans M., Yoshida Y., Poitevin A., Coutinho E., Suzuki K., Lambrechts P., Van Meerbeek B. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials. 2007;28:3757–3785. doi: 10.1016/j.biomaterials.2007.04.044.
    1. Perdigão J., Sezinando A., Monteiro P.C. Laboratory bonding ability of a multi-purpose dentin adhesive. Am. J. Dent. 2012;25:153–158.
    1. Hanabusa M., Mine A., Kuboki T., Momoi Y., Van Ende A., Van Meerbeek B., De Munck J. Bonding effectiveness of a new “multi-mode” adhesive to enamel and dentine. J. Dent. 2012;40:475–484. doi: 10.1016/j.jdent.2012.02.012.
    1. Zecin-Deren A., Lukomska-Szymanska M., Szczesio-Wlodarczyk A., Piwonski I., Sokolowski J., Lapinska B. The Influence of Application Protocol of Simplified and Universal Adhesives on the Dentin Bonding Performance. Appl. Sci. 2019;10:124. doi: 10.3390/app10010124.
    1. Yoshida Y., Yoshihara K., Nagaoka N., Hayakawa S., Torii Y., Ogawa T., Osaka A., Meerbeek B. Van Self-assembled nano-layering at the adhesive interface. J. Dent. Res. 2012;91:376–381. doi: 10.1177/0022034512437375.
    1. Alex G. Universal adhesives: The next evolution in adhesive dentistry? Compend. Contin. Educ. Dent. 2015;36:15–26.
    1. Kaczor-Wiankowska K., Lipa S., Krasowski M., Sokołowski J., Lewusz-Butkiewicz K., Nowicka A. Evaluation of gap formation at the composite resin-tooth interface after using universal adhesives: In vitro SEM study using the replica technique. Microsc. Res. Tech. 2020;83:176–185. doi: 10.1002/jemt.23400.
    1. Carvalho A.A., Leite M.M., Zago J.K.M., Nunes C.A.B.C.M., Barata T.J.E., de Freitas G.C., de Torres É.M., Lopes L.G. Influence of different application protocols of universal adhesive system on the clinical behavior of Class I and II restorations of composite resin—A randomized and double-blind controlled clinical trial. BMC Oral Health. 2019;19:252. doi: 10.1186/s12903-019-0913-3.
    1. Cuevas-Suárez C.E., de Oliveira da Rosa W.L., Vitti R.P., da Silva A.F., Piva E. Bonding Strength of Universal Adhesives to Indirect Substrates: A Meta-Analysis of in Vitro Studies. J. Prosthodont. 2020;29:298–308. doi: 10.1111/jopr.13147.
    1. Nagarkar S., Theis-Mahon N., Perdigão J. Universal dental adhesives: Current status, laboratory testing, and clinical performance. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019;107:2121–2131. doi: 10.1002/jbm.b.34305.
    1. Lümkemann N., Eichberger M., Stawarczyk B. Different surface modifications combined with universal adhesives: The impact on the bonding properties of zirconia to composite resin cement. Clin. Oral Investig. 2019;23:3941–3950. doi: 10.1007/s00784-019-02825-z.
    1. Papadogiannis D., Dimitriadi M., Zafiropoulou M., Gaintantzopoulou M.-D., Eliades G. Universal Adhesives: Setting Characteristics and Reactivity with Dentin. Materials. 2019;12:1720. doi: 10.3390/ma12101720.
    1. Fukegaw a D., Hayakawa S., Yoshida Y., Suzuki K., Osaka A., Van Meerbeek B. Chemical interaction of phosphoric acid ester with hydroxyapatite. J. Dent. Res. 2006;85:941–944. doi: 10.1177/154405910608501014.
    1. Van Landuyt K.L., Yoshida Y., Hirata I., Snauwaert J., De Munck J., Okazaki M., Suzuki K., Lambrechts P., Van Meerbeek B. Influence of the chemical structure of functional monomers on their adhesive performance. J. Dent. Res. 2008;87:757–761. doi: 10.1177/154405910808700804.
    1. Lukomska-Szymanska M., Sokolowski J., Lapinska B. Degradation of a hybrid layer—Review of literature. J. Stomatol. 2017;70:88–94.
    1. Yoshihara K., Yoshida Y., Hayakawa S., Nagaoka N., Kamenoue S., Okihara T., Ogawa T., Nakamura M., Osaka A., Van Meerbeek B. Novel fluoro-carbon functional monomer for dental bonding. J. Dent. Res. 2014;93:189–194. doi: 10.1177/0022034513514447.
    1. Yoshida Y., Nagakane K., Fukuda R., Nakayama Y., Okazaki M., Shintani H., Inoue S., Tagawa Y., Suzuki K., De Munck J., et al. Comparative study on adhesive performance of functional monomers. J. Dent. Res. 2004;83:454–458. doi: 10.1177/154405910408300604.
    1. Tsuchimoto Y., Yoshida Y., Mine A., Nakamura M., Nishiyama N., Van Meerbeek B., Suzuki K., Kuboki T. Effect of 4-MET- and 10-MDP-based primers on resin bonding to titanium. Dent. Mater. J. 2006;25:120–124. doi: 10.4012/dmj.25.120.
    1. Ikemura K., Kojima K., Endo T., Kadoma Y. Effect of the combination of dithiooctanoate monomers and acidic adhesive monomers on adhesion to precious metals, precious metal alloys and non-precious metal alloys. Dent. Mater. J. 2011;30:469–477. doi: 10.4012/dmj.2010-151.
    1. Thompson J.Y., Stoner B.R., Piascik J.R., Smith R. Adhesion/cementation to zirconia and other non-silicate ceramics: Where are we now? Dent. Mater. 2011;27:71–82. doi: 10.1016/j.dental.2010.10.022.
    1. Llerena-Icochea A.E., Costa R.M., Borges A.F.S., Bombonatti J.F.S., Furuse A.Y. Bonding polycrystalline zirconia with 10-MDP-containing adhesives. Oper. Dent. 2017;42:335–341. doi: 10.2341/16-156-L.
    1. Van Meerbeek B., Yoshihara K., Yoshida Y., Mine A., De Munck J., Van Landuyt K.L. State of the art of self-etch adhesives. Dent. Mater. 2011;27:17–28. doi: 10.1016/j.dental.2010.10.023.
    1. Pashley D.H., Tay F.R., Breschi L., Tjäderhane L., Carvalho R.M., Carrilho M., Tezvergil-Mutluay A. State of the art etch-and-rinse adhesives. Dent. Mater. 2011;27:1–16. doi: 10.1016/j.dental.2010.10.016.
    1. Ergün G., Eǧilmez F., Üçtaşli M.B., Yilmaz Ş. Effect of light curing type on cytotoxicity of dentine-bonding agents. Int. Endod. J. 2007;40:216–223. doi: 10.1111/j.1365-2591.2007.01225.x.
    1. Nowicka A., Łagocka R., Lipski M., Parafiniuk M., Grocholewicz K., Sobolewska E., Witek A., Buczkowska-Radlińska J., Nowicka A., Lagocka R., et al. Clinical and Histological Evaluation of Direct Pulp Capping on Human Pulp Tissue Using a Dentin Adhesive System. Biomed Res. Int. 2016;2016:2591273. doi: 10.1155/2016/2591273.
    1. Fernandes A.M., Silva G.A.B., Lopes N., Napimoga M.H., Benatti B.B., Alves J.B. Direct capping of human pulps with a dentin bonding system and calcium hydroxide: An immunohistochemical analysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2008;105:385–390. doi: 10.1016/j.tripleo.2007.08.031.
    1. Silva G.A.B., Gava E., Lanza L.D., Estrela C., Alves J.B. Subclinical failures of direct pulp capping of human teeth by using a dentin bonding system. J. Endod. 2013;39:182–189. doi: 10.1016/j.joen.2012.09.022.
    1. Lu Y., Liu T., Li H., Pi G. Histological evaluation of direct pulp capping with a self-etching adhesive and calcium hydroxide on human pulp tissue. Int. Endod. J. 2008;41:643–650. doi: 10.1111/j.1365-2591.2008.01396.x.
    1. Paula A.B., Laranjo M., Marto C.M., Paulo S., Abrantes A.M., Casalta-Lopes J., Marques-Ferreira M., Botelho M.F., Carrilho E. Direct Pulp Capping: What is the Most Effective Therapy?—Systematic Review and Meta-Analysis. J. Evid. Based. Dent. Pract. 2018;18:298–314. doi: 10.1016/j.jebdp.2018.02.002.
    1. Pereira J.C., Segala A.D., Costa C.A.S. Human pulpal response to direct pulp capping with an adhesive system. Am. J. Dent. 2000;13:139–147.
    1. Galler K.M., Schweikl H., Hiller K.A., Cavender A.C., Bolay C., D’Souza R.N., Schmalz G. TEGDMA reduces mineralization in dental pulp cells. J. Dent. Res. 2011;90:257–262. doi: 10.1177/0022034510384618.
    1. Dammaschke T., Stratmann U., Fischer R.J., Sagheri D., Schäfer E. Proliferation of rat molar pulp cells after direct pulp capping with dentine adhesive and calcium hydroxide. Clin. Oral Investig. 2011;15:577–587. doi: 10.1007/s00784-010-0409-7.
    1. Pagano S., Lombardo G., Balloni S., Bodo M., Cianetti S., Barbati A., Montaseri A., Marinucci L. Cytotoxicity of universal dental adhesive systems: Assessment in vitro assays on human gingival fibroblasts. Toxicol. Vitr. 2019;60:252–260. doi: 10.1016/j.tiv.2019.06.009.
    1. Hanks C.T., Strawn S.E., Watahai J.C., Craig R.G. Cytotoxic Effects of Resin Components on Cultured Mammalian Fibroblasts. J. Dent. Res. 1991;70:1450–1455. doi: 10.1177/00220345910700111201.
    1. Oilo G. Biodegradation of dental composites/glass-ionomer cements. Adv. Dent. Res. 1992;6:50–54. doi: 10.1177/08959374920060011701.
    1. Murray P.E., García Godoy C., García Godoy F. How is the biocompatibilty of dental biomaterials evaluated? Med. Oral Patol. Oral Cir. Bucal. 2007;12:E258–E266.
    1. Schmalz G., Galler K.M. Biocompatibility of biomaterials–Lessons learned and considerations for the design of novel materials. Dent. Mater. 2017;33:382–393. doi: 10.1016/j.dental.2017.01.011.
    1. Moharamzadeh K., Brooki I.M., Van Noortr R. Biocompatibility of resin-based dental materials. Materials (Basel) 2009;2:514–548. doi: 10.3390/ma2020514.
    1. Ausiello P., Cassese A., Miele C., Beguinot F., Garcia-Godoy F., Jeso B.D., Ulianich L. Cytotoxicity of dental resin composites: An in vitro evaluation. J. Appl. Toxicol. 2013;33:451–457. doi: 10.1002/jat.1765.
    1. Ergun G., Egilmez F., Cekic-Nagas I. The effect of light curing units and modes on cytotoxicity of resin-core systems. Med. Oral Patol. Oral Cir. Bucal. 2010;15:e962-8. doi: 10.4317/medoral.15.e962.
    1. Willershausen I., Callaway A., Briseño B., Willershausen B. In vitro analysis of the cytotoxicity and the antimicrobial effect of four endodontic sealers. Head Face Med. 2011;7:15. doi: 10.1186/1746-160X-7-15.
    1. Baraba A., Želježić D., Kopjar N., Mladinić M., Anić I., Miletić I. Evaluation of cytotoxic and genotoxic effects of two resin-based root-canal sealers and their components on human leucocytes in vitro. Int. Endod. J. 2011;44:652–661. doi: 10.1111/j.1365-2591.2011.01869.x.
    1. Pawlowska E., Poplawski T., Ksiazek D., Szczepanska J., Blasiak J. Genotoxicity and cytotoxicity of 2-hydroxyethyl methacrylate. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2010;696:122–129. doi: 10.1016/j.mrgentox.2009.12.019.
    1. Di Pietro A., Visalli G., La Maestra S., Micale R., Baluce B., Matarese G., Cingano L., Scoglio M.E. Biomonitoring of DNA damage in peripheral blood lymphocytes of subjects with dental restorative fillings. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2008;650:115–122. doi: 10.1016/j.mrgentox.2007.10.023.
    1. ISO/EN10993-5 ISO 10993-5 Biological Evaluation of Medical Devices—Part 5: Tests for Cytotoxicity: In Vitro Methods. [(accessed on 30 May 2020)]; Int. Stand. ISO 2009. Available online: .
    1. Bushnell P.J., Kavlock R.J., Crofton K.M., Weiss B., Rice D.C. Behavioral toxicology in the 21st century: Challenges and opportunities for behavioral scientists. Summary of a symposium presented at the annual meeting of the Neurobehavioral Teratology Society, June, 2009. Neurotoxicol. Teratol. 2010;32:313–328. doi: 10.1016/j.ntt.2010.02.002.
    1. Tuncer S., Demirci M., Schweikl H., Erguven M., Bilir A., Kara Tuncer A. Inhibition of cell survival, viability and proliferation by dentin adhesives after direct and indirect exposure in vitro. Clin. Oral Investig. 2012;16:1635–1646. doi: 10.1007/s00784-011-0669-x.
    1. Lee Y., An S.-Y.Y., Park Y.-J.J., Yu F.H., Park J.-C.C., Seo D.-G.G. Cytotoxic effects of one-step self-etching adhesives on an odontoblast cell line. Scanning. 2016;38:36–42. doi: 10.1002/sca.21236.
    1. Bianchi L., Ribeiro A.P.D., De Oliveira Carrilho M.R., Pashley D.H., De Souza Costa C.A., Hebling J. Cytotoxicity of adhesive systems of different hydrophilicities on cultured odontoblast-like cells. J. Biomed. Mater. Res. Part B Appl. Biomater. 2013;101:1498–1507. doi: 10.1002/jbm.b.32971.
    1. Bianchi L., Ribeiro A.P.D., De Oliveira Carrilho M.R., Pashley D.H., De Souza Costa C.A., Hebling J. Transdentinal cytotoxicity of experimental adhesive systems of different hydrophilicity applied to ethanol-saturated dentin. Dent. Mater. 2013;29:980–990. doi: 10.1016/j.dental.2013.07.006.
    1. Lukomska-Szymanska M., Konieczka M., Zarzycka B., Lapinska B., Grzegorczyk J., Sokolowski J. Antibacterial activity of commercial dentine bonding systems against E. faecalis-flow cytometry study. Materials. 2017;10:481. doi: 10.3390/ma10050481.
    1. Lapinska B., Konieczka M., Zarzycka B., Sokolowski K., Grzegorczyk J., Lukomska-Szymanska M. Flow cytometry analysis of antibacterial effects of universal dentin bonding agents on streptococcus mutans. Molecules. 2019;24:532. doi: 10.3390/molecules24030532.
    1. Collins A.R. The comet assay for DNA damage and repair: Principles, applications, and limitations. Appl. Biochem. Biotechnol. Part B Mol. Biotechnol. 2004;26:249–261. doi: 10.1385/MB:26:3:249.
    1. Tice R.R., Agurell E., Anderson D., Burlinson B., Hartmann A., Kobayashi H., Miyamae Y., Rojas E., Ryu J.C., Sasaki Y.F. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. 2000;35:206–221. doi: 10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>;2-J.
    1. Kitasako Y., Arakawa M., Sonoda H., Tagami J. Light and scanning electron microscopy of the inner surfaces of resins used in direct pulp capping. Am. J. Dent. 1999;12:217–221.
    1. Koulaouzidou E.A., Helvatjoglu-Antoniades M., Palaghias G., Karanika-Kouma A., Antoniades D. Cytotoxicity of Dental Adhesives In Vitro. Eur. J. Dent. 2009;3:3–9. doi: 10.1055/s-0039-1697399.
    1. Caldas I.P., Alves G.G., Barbosa I.B., Scelza P., de Noronha F., Scelza M.Z. In vitro cytotoxicity of dental adhesives: A systematic review. Dent. Mater. 2019;35:195–205. doi: 10.1016/j.dental.2018.11.028.
    1. Williams D.F. On the mechanisms of biocompatibility. Biomaterials. 2008;29:2941–2953. doi: 10.1016/j.biomaterials.2008.04.023.
    1. Loison-Robert L.S., Tassin M., Bonte E., Berbar T., Isaac J., Berdal A., Simon S., Fournier B.P.J. In vitro effects of two silicate-based materials, Biodentine and BioRoot RCS, on dental pulp stem cells in models of reactionary and reparative dentinogenesis. PLoS ONE. 2018;13:e0190014. doi: 10.1371/journal.pone.0190014.
    1. Wegehaupt F.J., Lunghi N., Belibasakis G.N., Attin T. Influence of light-curing distance on degree of conversion and cytotoxicity of etch-and-rinse and self-etch adhesives. BMC Oral Health. 2016;17:12. doi: 10.1186/s12903-016-0239-3.
    1. Almaroof A., Niazi S.A., Rojo L., Mannocci F., Deb S. Evaluation of dental adhesive systems incorporating an antibacterial monomer eugenyl methacrylate (EgMA) for endodontic restorations. Dent. Mater. 2017;33:e239–e254. doi: 10.1016/j.dental.2017.01.016.
    1. Jiang R.D., Lin H., Zheng G., Zhang X.M., Du Q., Yang M. In vitro dentin barrier cytotoxicity testing of some dental restorative materials. J. Dent. 2017;58:28–33. doi: 10.1016/j.jdent.2017.01.003.
    1. Lanza C.R.M., De Souza Costa C.A., Furlan M., Alécio A., Hebling J. Transdentinal diffusion and cytotoxicity of self-etching adhesive systems. Cell Biol. Toxicol. 2009;25:533–543. doi: 10.1007/s10565-008-9110-x.
    1. Cavalcanti B.N., Marques M.M. Cytotoxicity of substances leached from a conventional and a self-etching adhesive system on human pulp fibroblasts. Brazilian Dent. Sci. 2011;13:10–14. doi: 10.14295/bds.2010.v13i3/4.699.
    1. Rajić V.B., Želježić D., Ivanišević A.M., Verzak Ž., Baraba A., Miletić I. Cytotoxicity and genotoxicity of resin based dental materials in human lymphocytes in vitro. Acta Clin. Croat. 2018;57:278–285.
    1. Huang F.M., Tai K.W., Chou M.Y., Chang Y.C. Cytotoxicity of resin-, zinc oxide-eugenol-, and calcium hydroxide-based root canal sealers on human periodontal ligament cells and permanent V79 cells. Int. Endod. J. 2002;35:153–158. doi: 10.1046/j.1365-2591.2002.00459.x.
    1. Tadin A., Galic N., Zeljezic D., Mikelic Vitasovic B., Marovic D., Kovacic I. Ex vivo evaluation of genotoxic effects of four dental adhesives on human leukocytes. J. Dent. Sci. 2013;8:37–43. doi: 10.1016/j.jds.2012.12.001.
    1. Sideridou I.D., Achilias D.S. Elution study of unreacted Bis-GMA, TEGDMA, UDMA, and Bis-EMA from light-cured dental resins and resin composites using HPLC. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005;74:617–626. doi: 10.1002/jbm.b.30252.
    1. Geurtsen W., Lehmann F., Spahl W., Leyhausen G. Cytotoxicity of 35 dental resin composite monomers/additives in permanent 3T3 and three human primary fibroblast cultures. J. Biomed. Mater. Res. 1998;41:474–480. doi: 10.1002/(SICI)1097-4636(19980905)41:3<474::AID-JBM18>;2-I.
    1. Koulaouzidou E.A., Helvatjoglu-Antoniades M., Palaghias G., Karanika-Kouma A., Antoniades D. Cytotoxicity evaluation of an antibacterial dentin adhesive system on established cell lines. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008;84:271–276. doi: 10.1002/jbm.b.30870.
    1. Huang F.M., Li Y.C., Lee S.S., Chang Y.C. Cytotoxicity of dentine bonding agents on human pulp cells is related to intracellular glutathione levels. Int. Endod. J. 2010;43:1091–1097. doi: 10.1111/j.1365-2591.2010.01779.x.
    1. Kusdemir M., Gunal S., Ozer F., Imazato S., Izutani N., Ebisu S., Blatz M.B. Evaluation of cytotoxic effects of six self-etching adhesives with direct and indirect contact tests. Dent. Mater. J. 2011;30:799–805. doi: 10.4012/dmj.2011-046.
    1. Volk J., Ziemann C., Leyhausen G., Geurtsen W. Non-irradiated campherquinone induces DNA damage in human gingival fibroblasts. Dent. Mater. 2009;25:1556–1563. doi: 10.1016/j.dental.2009.07.009.
    1. Yeh H.W., Chang M.C., Lin C.C.P., Tseng W.Y., Chang H.H., Wang T.M., Chen Y.J., Lin C.C.P., Yang T.T., Lin L.D., et al. Comparative cytotoxicity of five current dentin bonding agents: Role of cell cycle deregulation. Acta Biomater. 2009;5:3404–3410. doi: 10.1016/j.actbio.2009.05.036.
    1. Huang F.M., Chang Y.C. Cytotoxicity of dentine-bonding agents on human pulp cells in vitro. Int. Endod. J. 2002;35:905–909. doi: 10.1046/j.1365-2591.2002.00589.x.
    1. Kostoryz E.L., Eick J.D., Chappelow C.C., Glaros A.G., Wetmore L., Yourtee D.M. In vitro effect of light-cure dental adhesive on IL-6 release from LPS-stimulated and unstimulated macrophages. J. Biomed. Mater. Res. 2003;65:89–94. doi: 10.1002/jbm.a.10448.
    1. Gerzina T.M., Hume W.R. Diffusion of monomers from bonding resin-resin composite combinations through dentine in vitro. J. Dent. 1996;24:125–128. doi: 10.1016/0300-5712(95)00036-4.
    1. Spagnuolo G., Mauro C., Leonardi A., Santillo M., Paternò R., Schweikl H., Avvedimento E.V., Rengo S. NF-κB protection against apoptosis induced by HEMA. J. Dent. Res. 2004;83:837–842. doi: 10.1177/154405910408301103.
    1. Altintas S.H., Usumez A. Evaluation of monomer leaching from a dual cured resin cement. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008;86:523–529. doi: 10.1002/jbm.b.31052.
    1. Bouillaguet S., Wataha J.C., Hanks C.T., Ciucchi B., Holz J. In vitro cytotoxicity and dentin permeability of HEMA. J. Endod. 1996;22:244–248. doi: 10.1016/S0099-2399(06)80141-X.
    1. About I., Camps J., Mitsiadis T.A., Bottero M.J., Butler W., Franquin J.C. Influence of resinous monomers on the differentiation in vitro of human pulp cells into odontoblasts. J. Biomed. Mater. Res. 2002;63:418–423. doi: 10.1002/jbm.10253.
    1. da Silva J.M.F., Rodrigues J.R., Camargo C.H.R., Fernandes V.V.B., Hiller K.A., Schweikl H., Schmalz G. Effectiveness and biological compatibility of different generations of dentin adhesives. Clin. Oral Investig. 2014;18:607–613. doi: 10.1007/s00784-013-1000-9.
    1. Schweikl H., Spagnuolo G., Schmalz G. Genetic and cellular toxicology of dental resin monomers. J. Dent. Res. 2006;85:870–877. doi: 10.1177/154405910608501001.
    1. Mavrogonatou E., Eliades T., Eliades G., Kletsas D. The effect of triethylene glycol dimethacrylate on p53-dependent G2 arrest in human gingival fibroblasts. Biomaterials. 2010;31:8530–8538. doi: 10.1016/j.biomaterials.2010.07.074.
    1. Elias S.T., dos Santos A.F., Garcia F.C.P., Pereira P.N.R., Hilgert L.A., Fonseca-Bazzo Y.M., Guerra E.N.S., Ribeiro A.P.D. Cytotoxicity of universal, self-etching and etch-and-rinse adhesive systems according to the polymerization time. Braz. Dent. J. 2015;26:160–168. doi: 10.1590/0103-6440201300294.
    1. Ruschel V.C., Stolf S.C., Shibata S., Chung Y., Boushell L.W., Baratieri L.N., Walter R. Three-year clinical evaluation of universal adhesives in non-carious cervical lesions. Am. J. Dent. 2019;32:223–228.
    1. Wang R., Shi Y., Li T., Pan Y., Cui Y., Xia W. Adhesive interfacial characteristics and the related bonding performance of four self-etching adhesives with different functional monomers applied to dentin. J. Dent. 2017;62:72–80. doi: 10.1016/j.jdent.2017.05.010.

Source: PubMed

3
구독하다