The Lifestyle Modifications and Endometrial Proteome Changes of Women With Polycystic Ovary Syndrome and Obesity

D Abdulkhalikova, A Sustarsic, Eda Vrtačnik Bokal, N Jancar, M Jensterle, T Burnik Papler, D Abdulkhalikova, A Sustarsic, Eda Vrtačnik Bokal, N Jancar, M Jensterle, T Burnik Papler

Abstract

Polycystic ovary syndrome (PCOS) is a polyendocrine disorder and the most common endocrinopathy in women of reproductive age. Affected women have an elevated prevalence of being overweight and obese. Our study sought to determine how weight loss associated with lifestyle changes affects the endometrium specific proteome, endocrine-metabolic characteristics, and motor capabilities of obese women with PCOS and infertility. A group of 12 infertile women under the age of 38 with PCOS and BMI ≥30 kg/m2 were included in the study. An evaluation was performed by a gynecologist and an endocrinologist. The weight-loss program lasted 8 weeks under the guidance of a professional trainer. Endometrial sampling during a period of implantation window for proteome determination was performed before and after weight loss. In endometrial samples at the end of the study increased protein abundance was recorded for Legumain, Insulin-like growth factor-binding protein 7, Hepatocyte growth factor receptor, Keratin, type II cytoskeletal 7, and Cystatin-B, while the B-lymphocyte antigen CD20 protein abundance decreased. Our results also indicate significantly lowered fasting blood glucose level and free testosterone concentration and significant improvements in body composition and physical capacity. This study may open up the venues for investigating important biomarkers that may affect endometrial receptivity.

Clinical trial registration: https://ichgcp.net/clinical-trials-registry/NCT04989244?term=NCT04989244&draw=2&rank=1, identifier: NCT04989244.

Keywords: PCOS (polycystic ovary syndrome); endometrium; glucose; infertility; obesity; proteome; testosterone; weight loss.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Abdulkhalikova, Sustarsic, Vrtačnik Bokal, Jancar, Jensterle and Burnik Papler.

Figures

Figure 1
Figure 1
The flow chart of patient recruitment.
Figure 2
Figure 2
Several proteins exhibited distinct abundance variations in END samples (final visit) and START samples (baseline visit). The volcano plot visualizes the p-values (adjusted for multiple testing) and corresponding log-fold changes (logFC). A significance level of adj. p-value = 0.05 is indicated as a horizontal red line. The logFC cutoffs are indicated as vertical lines. Proteins with a positive logFC had a higher abundance in END samples, proteins with a negative value in START samples.
Figure 3
Figure 3
Individual array values for a set of differential proteins. Each sample is measured by four replicate spots per array.
Figure 4
Figure 4
Functional associations of the studied proteins. The colored nodes signify a direct interaction with other proteins. The confidence cutoff for showing interaction links has been set to “high” (0.700) for CD20 and ‘highest’ (0.900) for Legumain, IGFBP-7, HGF receptor, CK-7, and Cystatin-B. (A) Legumain (LGMN), (B) IGFBP-7 (IGFBP7), (C) HGF receptor (MET), (D) CK-7 (KRT7), (E) Cystatin-B (CSTB), (F) CD20 (MS4A1). All abbreviations in figure 4 are explained in the Supplementary File S2.
Figure 5
Figure 5
Protein-protein interaction between all investigated proteins. The green line represents the simultaneous mention of related proteins in the published literature. The pink line represents that putative homologs were found interacting in other organisms. The black line represents coexpression of proteins in human or coexpression of their putative homologs in other organisms. Coexpression predicts functional association between the proteins. In our network, there is coexpression between HGF receptor and Legumain and between HGF receptor and CK-7, suggesting their likely significant functional interaction. Legumain (LGMN), IGFBP-7 (IGFBP7), HGF receptor (MET), CK-7 (KRT7), Cystatin-B (CSTB), CD20 (MS4A1).

References

    1. Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group . Consensus on Women's Health Aspects of Polycystic Ovary Syndrome (PCOS). Hum Reprod (2012) 27:14–24. doi: 10.1093/humrep/der396
    1. Lim SS, Davies MJ, Norman RJ, Moran LJ. Overweight, Obesity and Central Obesity in Women With Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Hum Reprod Update (2012) 18(6):618–37. doi: 10.1093/humupd/dms030
    1. Ehrmann DA. Polycystic Ovary Syndrome. N Engl J Med (2005) 352(12):1223–36. doi: 10.1056/NEJMra041536
    1. Gambineri A, Pelusi C, Vicennati V, Pagotto U, Pasquali R. Obesity and the Polycystic Ovary Syndrome. Int J Obes Relat Metab Disord (2002) 26(7):883–96. doi: 10.1038/sj.ijo.0801994
    1. Brewer CJ, Balen AH. The Adverse Effects of Obesity on Conception and Implantation. Reproduction (2010) 140(3):347–64. doi: 10.1530/REP-09-0568
    1. Deswal R, Yadav A, Dang AS. Sex Hormone Binding Globulin - an Important Biomarker for Predicting PCOS Risk: A Systematic Review and Meta-Analysis. Syst Biol Reprod Med (2018) 64(1):12–24. doi: 10.1080/19396368.2017.1410591
    1. Hamilton-Fairley D, Taylor A. Anovulation. BMJ (2003) 327(7414):546–9. doi: 10.1136/bmj.327.7414.546
    1. Maheshwari A, Stofberg L, Bhattacharya S. Effect of Overweight and Obesity on Assisted Reproductive Technology-a Systematic Review. Hum Reprod Update (2007) 13:433–44. doi: 10.1093/humupd/dmm017
    1. Jungheim ES, Lanzendorf SE, Odem RR, Moley KH, Chang AS, Ratts VS. Morbid Obesity is Associated With Lower Clinical Pregnancy Rates After In Vitro Fertilization in Women With Polycystic Ovary Syndrome. Fertil Steril (2009) 92(1):256–61. doi: 10.1016/j.fertnstert.2008.04.063
    1. Bellver J, Ayllón Y, Ferrando M, Melo M, Goyri E, Pellicer A, et al. . Female Obesity Impairs In Vitro Fertilization Outcome Without Affecting Embryo Quality. Fertil Steril (2010) 93(2):447–54. doi: 10.1016/j.fertnstert.2008.12.032
    1. Dokras A, Baredziak L, Blaine J, Syrop C, VanVoorhis BJ, Sparks A. Obstetric Outcomes After In Vitro Fertilization in Obese and Morbidly Obese Women. Obstet Gynecol (2006) 108(1):61–9. doi: 10.1097/01.AOG.0000219768.08249.b6
    1. Metwally M, Ong KJ, Ledger WL, Li TC. Does High Body Mass Index Increase the Risk of Miscarriage After Spontaneous and Assisted Conception? A Meta-Analysis of the Evidence. Fertil Steril (2008) 90(3):714–26. doi: 10.1016/j.fertnstert.2007.07.1290
    1. Kiddy DS, Hamilton-Fairley D, Bush A, Short F, Anyaoku V, Reed MJ, et al. . Improvement in Endocrine and Ovarian Function During Dietary Treatment of Obese Women With Polycystic Ovary Syndrome. Clin Endocrinol (Oxf) (1992) 36(1):105–11. doi: 10.1111/j.1365-2265.1992.tb02909.x
    1. Crosignani PG, Colombo M, Vegetti W, Somigliana E, Gessati A, Ragni G. Overweight and Obese Anovulatory Patients With Polycystic Ovaries: Parallel Improvements in Anthropometric Indices, Ovarian Physiology and Fertility Rate Induced by Diet. Hum Reprod (2003) 18(9):1928–32. doi: 10.1093/humrep/deg367
    1. Thessaloniki ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group . Consensus on Infertility Treatment Related to Polycystic Ovary Syndrome. Hum Reprod (2008) 23(3):462–77. doi: 10.1093/humrep/dem426
    1. Rai P, Kota V, Sundaram CS, Deendayal M, Shivaji S. Proteome of Human Endometrium: Identification of Differentially Expressed Proteins in Proliferative and Secretory Phase Endometrium. Proteomics Clin Appl (2010) 4(1):48–59. doi: 10.1002/prca.200900094
    1. Li J, Tan Z, Li M, Xia T, Liu P, Yu W. Proteomic Analysis of Endometrium in Fertile Women During the Prereceptive and Receptive Phases After Luteinizing Hormone Surge. Fertil Steril (2011) 95(3):1161–3. doi: 10.1016/j.fertnstert.2010.09.033
    1. Piltonen TT. Polycystic Ovary Syndrome: Endometrial Markers. Best Pract Res Clin Obstet Gynaecol (2016) 37:66–79. doi: 10.1016/j.bpobgyn.2016.03.008
    1. Haouzi D, Hamamah S. The Acquisition of the Human Endometrial Receptivity Phenotype: Lessons From Proteomic Studies. Reproductomics (2018), 303–14. doi: 10.1016/B978-0-12-812571-7.00017-4
    1. Hernández-Vargas P, Muñoz M, Domínguez F. Identifying Biomarkers for Predicting Successful Embryo Implantation: Applying Single to Multi-OMICs to Improve Reproductive Outcomes. Hum Reprod Update (2020) 26(2):264–301. doi: 10.1093/humupd/dmz042
    1. Yan L, Wang A, Chen L, Shang W, Li M, Zhao Y. Expression of Apoptosis-Related Genes in the Endometrium of Polycystic Ovary Syndrome Patients During the Window of Implantation. Gene (2012) 506(2):350–4. doi: 10.1016/j.gene.2012.06.037
    1. Dessolle L, Daraï E, Cornet D, Rouzier R, Coutant C, Mandelbaum J, et al. . Determinants of Pregnancy Rate in the Donor Oocyte Model: A Multivariate Analysis of 450 Frozen-Thawed Embryo Transfers. Hum Reprod (2009) 24(12):3082–9. doi: 10.1093/humrep/dep303
    1. Silvestris E, de Pergola G, Rosania R, Loverro G. Obesity as Disruptor of the Female Fertility. Reprod Biol Endocrinol (2018) 16(1):22. doi: 10.1186/s12958-018-0336-z
    1. Bellver J, Martínez-Conejero JA, Labarta E, Alamá P, Melo MA, Remohí J, et al. . Endometrial Gene Expression in the Window of Implantation is Altered in Obese Women Especially in Association With Polycystic Ovary Syndrome. Fertil Steril (2011) 95(7):2335–41. doi: 10.1016/j.fertnstert.2011.03.021
    1. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group . Revised 2003 Consensus on Diagnostic Criteria and Long-Term Health Risks Related Topolycystic Ovary Syndrome. Fertil Steril (2004) 81(1):19–25. doi: 10.1016/j.fertnstert.2003.10.004
    1. Azziz R. Introduction: Determinants of Polycystic Ovary Syndrome. Fertil Steril (2016) 106(1):4–5. doi: 10.1016/j.fertnstert.2016.05.009
    1. Genuth S, Alberti KG, Bennett P, Buse J, Defronzo R, Kahn R, et al. . Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Follow-Up Report on the Diagnosis of Diabetes Mellitus. Diabetes Care (2003) 26(11):3160–7. doi: 10.2337/diacare.26.11.3160
    1. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function From Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia (1985) 28(7):412–9. doi: 10.1007/BF00280883
    1. Ferreira SR, Motta AB. Uterine Function: From Normal to Polycystic Ovarian Syndrome Alterations. Curr Med Chem (2018) 25(15):1792–804. doi: 10.2174/0929867325666171205144119
    1. Giudice LC. Endometrium in PCOS: Implantation and Predisposition to Endocrine CA. Best Pract Res Clin Endocrinol Metab (2006) 20(2):235–44. doi: 10.1016/j.beem.2006.03.005
    1. Yu HF, Chen HS, Rao DP, Gong J. Association Between Polycystic Ovary Syndrome and the Risk of Pregnancy Complications: A PRISMA-Compliant Systematic Review and Meta-Analysis. Med (Baltimore) (2016) 95(51):e4863. doi: 10.1097/MD.0000000000004863
    1. Alikhani M, Amjadi F, Mirzaei M, Wu Y, Shekari F, Ashrafi M, et al. . Proteome Analysis of Endometrial Tissue From Patients With PCOS Reveals Proteins Predicted to Impact the Disease. Mol Biol Rep (2020) 47(11):8763–74. doi: 10.1007/s11033-020-05924-3
    1. Amjadi F, Mehdizadeh M, Ashrafi M, Nasrabadi D, Taleahmad S, Mirzaei M, et al. . Distinct Changes in the Proteome Profile of Endometrial Tissues in Polycystic Ovary Syndrome Compared With Healthy Fertile Women. Reprod BioMed Online (2018) 37(2):184–200. doi: 10.1016/j.rbmo.2018.04.043
    1. Chen JM, Dando PM, Rawlings ND, Brown MA, Young NE, Stevens RA, et al. . Cloning, Isolation, and Characterization of Mammalian Legumain, an Asparaginyl Endopeptidase. J Biol Chem (1997) 272(12):8090–8. doi: 10.1074/jbc.272.12.8090
    1. Bauersachs S, Ulbrich SE, Gross K, Schmidt SE, Meyer HH, Wenigerkind H, et al. . Embryo-Induced Transcriptome Changes in Bovine Endometrium Reveal Species-Specific and Common Molecular Markers of Uterine Receptivity. Reproduction (2006) 132(2):319–31. doi: 10.1530/rep.1.00996
    1. Ledgard AM, Lee RS, Peterson AJ. Bovine Endometrial Legumain and TIMP-2 Regulation in Response to Presence of a Conceptus. Mol Reprod Dev (2009) 76(1):65–74. doi: 10.1002/mrd.20931
    1. Evans J, Hutchison J, Salamonsen LA, Greening DW. Proteomic Insights Into Endometrial Receptivity and Embryo-Endometrial Epithelium Interaction for Implantation Reveal Critical Determinants of Fertility. Proteomics (2020) 20(1):e1900250. doi: 10.1002/pmic.201900250
    1. Bayramoglu Z, Kılınc ANU, Omeroglu E, Yilmaz F, Bayramoglu D, Unlu Y, et al. . Expression of Extracellular Matrix Proteins Nidogen-1 and Legumain in Endometrial Carcinomas. J Obstet Gynaecol Res (2022) 48(4):1019–25. doi: 10.1111/jog.15158
    1. Sun SG, Guo JJ, Qu XY, Tang XY, Lin YY, Hua KQ, et al. . The Extracellular Vesicular Pseudogene LGMNP1 Induces M2-Like Macrophage Polarization by Upregulating LGMN and Serves as a Novel Promising Predictive Biomarker for Ovarian Endometriosis Recurrence. Hum Reprod (2022) 37(3):447–65. doi: 10.1093/humrep/deab266
    1. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. . STRING V11: Protein-Protein Association Networks With Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Res (2019) 47(D1):D607–13. doi: 10.1093/nar/gky1131
    1. Xing K, Qi X, Ni H, Wang X, Guo Y, Sheng X. Transcriptional Analyses of Endometrial Caruncles in Sheep With In Vivo / In Vitro Produced Embryos During the Peri-Implantation Period. Reprod Biol (2019) 19(4):404–11. doi: 10.1016/j.repbio.2019.09.008
    1. Karras SN, Koufakis T, Fakhoury H, Kotsa K. Deconvoluting the Biological Roles of Vitamin D-Binding Protein During Pregnancy: A Both Clinical and Theoretical Challenge. Front Endocrinol (Lausanne) (2018) 9:259. doi: 10.3389/fendo.2018.00259
    1. Lerchbaum E, Obermayer-Pietsch B. Vitamin D and Fertility: A Systematic Review. Eur J Endocrinol (2012) 166(5):765–78. doi: 10.1530/EJE-11-0984
    1. Łagowska K, Bajerska J, Jamka M. The Role of Vitamin D Oral Supplementation in Insulin Resistance in Women With Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients (2018) 10(11):1637. doi: 10.3390/nu10111637
    1. Wehr E, Pilz S, Schweighofer N, Giuliani A, Kopera D, Pieber TR, et al. . Association of Hypovitaminosis D With Metabolic Disturbances in Polycystic Ovary Syndrome. Eur J Endocrinol (2009) 161(4):575–82. doi: 10.1530/EJE-09-0432
    1. Halhali A, Acker GM, Garabédian M. 1,25-Dihydroxyvitamin D3 Induces In Vivo the Decidualization of Rat Endometrial Cells. J Reprod Fertil (1991) 91(1):59–64. doi: 10.1530/jrf.0.0910059
    1. Tamura K, Hara T, Kutsukake M, Iwatsuki K, Yanagida M, Yoshie M, et al. . Expression and the Biological Activities of Insulin-Like Growth Factor-Binding Protein Related Protein 1 in Rat Uterus During the Periimplantation Period. Endocrinology (2004) 145(11):5243–51. doi: 10.1210/en.2004-0415
    1. Kutsukake M, Ishihara R, Yoshie M, Kogo H, Tamura K. Involvement of Insulin-Like Growth Factor-Binding Protein-Related Protein 1 in Decidualization of Human Endometrial Stromal Cells. Mol Hum Reprod (2007) 13(10):737–43. doi: 10.1093/molehr/gam058
    1. Domínguez F, Avila S, Cervero A, Martín J, Pellicer A, Castrillo JL, et al. . A Combined Approach for Gene Discovery Identifies Insulin-Like Growth Factor-Binding Protein-Related Protein 1 as a New Gene Implicated in Human Endometrial Receptivity. J Clin Endocrinol Metab (2003) 88(4):1849–57. doi: 10.1210/jc.2002-020724
    1. Liu ZK, Wang RC, Han BC, Yang Y, Peng JP. A Novel Role of IGFBP7 in Mouse Uterus: Regulating Uterine Receptivity Through Th1/Th2 Lymphocyte Balance and Decidualization. PLoS One (2012) 7(9):e45224. doi: 10.1371/journal.pone.0045224
    1. Lappas M. Insulin-Like Growth Factor-Binding Protein 1 and 7 Concentrations are Lower in Obese Pregnant Women, Women With Gestational Diabetes and Their Fetuses. J Perinatol (2015) 35(1):32–8. doi: 10.1038/jp.2014.144
    1. Nayak NR, Giudice LC. Comparative Biology of the IGF System in Endometrium, Decidua, and Placenta, and Clinical Implications for Foetal Growth and Implantation Disorders. Placenta (2003) 24(4):281–96. doi: 10.1053/plac.2002.0906
    1. Cork BA, Tuckerman EM, Li TC, Laird SM. Expression of Interleukin (IL)-11 Receptor by the Human Endometrium In Vivo and Effects of IL-11, IL-6 and LIF on the Production of MMP and Cytokines by Human Endometrial Cells In Vitro. Mol Hum Reprod (2002) 8(9):841–8. doi: 10.1093/molehr/8.9.841
    1. Achache H, Revel A. Endometrial Receptivity Markers, the Journey to Successful Embryo Implantation. Hum Reprod Update (2006) 12(6):731–46. doi: 10.1093/humupd/dml004
    1. Chen C, Spencer TE, Bazer FW. Expression of Hepatocyte Growth Factor and its Receptor C-Met in the Ovine Uterus. Biol Reprod (2000) 62(6):1844–50. doi: 10.1095/biolreprod62.6.1844
    1. Stepanjuk A, Koel M, Pook M, Saare M, Jääger K, Peters M, et al. . MUC20 Expression Marks the Receptive Phase of the Human Endometrium. Reprod BioMed Online (2019) 39(5):725–36. doi: 10.1016/j.rbmo.2019.05.004
    1. Oliveira AG, Araújo TG, Carvalho BM, Rocha GZ, Santos A, Saad MJA. The Role of Hepatocyte Growth Factor (HGF) in Insulin Resistance and Diabetes. Front Endocrinol (Lausanne) (2018) 9:503. doi: 10.3389/fendo.2018.00503
    1. Bertola A, Bonnafous S, Cormont M, Anty R, Tanti JF, Tran A, et al. . Hepatocyte Growth Factor Induces Glucose Uptake in 3T3-L1 Adipocytes Through A Gab1/phosphatidylinositol 3-Kinase/Glut4 Pathway. J Biol Chem (2007) 282(14):10325–32. doi: 10.1074/jbc.M611770200
    1. Tsukagawa E, Adachi H, Hirai Y, Enomoto M, Fukami A, Ogata K, et al. . Independent Association of Elevated Serum Hepatocyte Growth Factor Levels With Development of Insulin Resistance in a 10-Year Prospective Study. Clin Endocrinol (Oxf) (2013) 79(1):43–8. doi: 10.1111/j.1365-2265.2012.04496.x
    1. Long X, Zhang M, Chen X, He J, Ding Y, Zhang C, et al. . Expression of KRAS in the Endometrium of Early Pregnant Mice and its Effect During Embryo Implantation. Reprod BioMed Online (2015) 31(1):51–61. doi: 10.1016/j.rbmo.2015.04.005
    1. Moll R, Levy R, Czernobilsky B, Hohlweg-Majert P, Dallenbach-Hellweg G, Franke WW. Cytokeratins of Normal Epithelia and Some Neoplasms of the Female Genital Tract. Lab Invest (1983) 49(5):599–610.
    1. Barak V, Goike H, Panaretakis KW, Einarsson R. Clinical Utility of Cytokeratins as Tumor Markers. Clin Biochem (2004) 37(7):529–40. doi: 10.1016/j.clinbiochem.2004.05.009
    1. Park KJ, Bramlage MP, Ellenson LH, Pirog EC. Immunoprofile of Adenocarcinomas of the Endometrium, Endocervix, and Ovary With Mucinous Differentiation. Appl Immunohistochem Mol Morphol (2009) 17(1):8–11. doi: 10.1097/PAI.0b013e318174f012
    1. Maldonado-Estrada J, Menu E, Roques P, Barré-Sinoussi F, Chaouat G. Evaluation of Cytokeratin 7 as an Accurate Intracellular Marker With Which to Assess the Purity of Human Placental Villous Trophoblast Cells by Flow Cytometry. J Immunol Methods (2004) 286(1-2):21–34. doi: 10.1016/j.jim.2003.03.001
    1. Trenkić M, Basić M, Milentijević M, Petrović A, Zivković V, Lazarević V. Immunohistohemical Evidences of Pregnancy in Uterine Curettage Tissue by the Use of a Double Immunocytochemical Staining Technique Using Cytokeratin 7 and Vimentin Antibodies. Vojnosanit Pregl (2008) 65(11):810–3. doi: 10.2298/VSP0811810T
    1. Riesewijk A, Martín J, van Os R, Horcajadas JA, Polman J, Pellicer A, et al. . Gene Expression Profiling of Human Endometrial Receptivity on Days LH+2 Versus LH+7 by Microarray Technology. Mol Hum Reprod (2003) 9(5):253–64. doi: 10.1093/molehr/gag037
    1. Tamai Y, Ishikawa T, Bösl MR, Mori M, Nozaki M, Baribault H, et al. . Cytokeratins 8 and 19 in the Mouse Placental Development. J Cell Biol (2000) 151(3):563–72. doi: 10.1083/jcb.151.3.563
    1. Olson GE, Winfrey VP, Blaeuer GL, Palisano JR, NagDas SK. Stage-Specific Expression of the Intermediate Filament Protein Cytokeratin 13 in Luminal Epithelial Cells of Secretory Phase Human Endometrium and Peri-Implantation Stage Rabbit Endometrium. Biol Reprod (2002) 66(4):1006–15. doi: 10.1095/biolreprod66.4.1006
    1. Baston-Buest DM, Schanz A, Buest S, Fischer JC, Kruessel JS, Hess AP. The Embryo's Cystatin C and F Expression Functions as a Protective Mechanism Against the Maternal Proteinase Cathepsin S in Mice. Reproduction (2010) 139(4):741–8. doi: 10.1530/REP-09-0381
    1. Jevnikar Z, Kos J. CSTB (Cystatin B (Stefin B)). Atlas Genet Cytogenet Oncol Haematol (2009) 13(6):406–8.
    1. Wang X, Gui L, Zhang Y, Zhang J, Shi J, Xu G. Cystatin B is a Progression Marker of Human Epithelial Ovarian Tumors Mediated by the TGF-β Signaling Pathway. Int J Oncol (2014) 44(4):1099–106. doi: 10.3892/ijo.2014.2261
    1. Tang FH, Chang WA, Tsai EM, Tsai MJ, Kuo PL. Investigating Novel Genes Potentially Involved in Endometrial Adenocarcinoma Using Next-Generation Sequencing and Bioinformatic Approaches. Int J Med Sci (2019) 16(10):1338–48. doi: 10.7150/ijms.38219
    1. Forde N, Bazer FW, Spencer TE, Lonergan P. 'Conceptualizing' the Endometrium: Identification of Conceptus-Derived Proteins During Early Pregnancy in Cattle. Biol Reprod (2015) 92(6):156. doi: 10.1095/biolreprod.115.129296
    1. Taleb S, Cancello R, Poitou C, Rouault C, Sellam P, Levy P, et al. . Weight Loss Reduces Adipose Tissue Cathepsin S and its Circulating Levels in Morbidly Obese Women. J Clin Endocrinol Metab (2006) 91(3):1042–7. doi: 10.1210/jc.2005-1601
    1. Nakanishi T, Ozaki Y, Blomgren K, Tateyama H, Sugiura-Ogasawara M, Suzumori K. Role of Cathepsins and Cystatins in Patients With Recurrent Miscarriage. Mol Hum Reprod (2005) 11(5):351–5. doi: 10.1093/molehr/gah172
    1. Jokimaa V, Oksjoki S, Kujari H, Vuorio E, Anttila L. Expression Patterns of Cathepsins B, H, K, L and S in the Human Endometrium. Mol Hum Reprod (2001) 7(1):73–8. doi: 10.1093/molehr/7.1.73
    1. Afonso S, Romagnano L, Babiarz B. The Expression and Function of Cystatin C and Cathepsin B and Cathepsin L During Mouse Embryo Implantation and Placentation. Development (1997) 124(17):3415–25. doi: 10.1242/dev.124.17.3415
    1. Godbole G, Suman P, Gupta SK, Modi D. Decidualized Endometrial Stromal Cell Derived Factors Promote Trophoblast Invasion. Fertil Steril (2011) 95(4):1278–83. doi: 10.1016/j.fertnstert.2010.09.045
    1. Kuijpers TW, Bende RJ, Baars PA, Grummels A, Derks IA, Dolman KM, et al. . CD20 Deficiency in Humans Results in Impaired T Cell-Independent Antibody Responses. J Clin Invest (2010) 120(1):214–22. doi: 10.1172/JCI40231
    1. Lachapelle MH, Miron P, Hemmings R, Roy DC. Endometrial T, B, and NK Cells in Patients With Recurrent Spontaneous Abortion. Altered Profile and Pregnancy Outcome. J Immunol (1996) 156(10):4027–34.
    1. Milne K, Köbel M, Kalloger SE, Barnes RO, Gao D, Gilks CB, et al. . Systematic Analysis of Immune Infiltrates in High-Grade Serous Ovarian Cancer Reveals CD20, FoxP3 and TIA-1 as Positive Prognostic Factors. PLoS One (2009) 4(7):e6412. doi: 10.1371/journal.pone.0006412
    1. Linkov F, Elishaev E, Gloyeske N, Edwards R, Althouse AD, Geller MA, et al. . Bariatric Surgery-Induced Weight Loss Changes Immune Markers in the Endometrium of Morbidly Obese Women. Surg Obes Relat Dis (2014) 10(5):921–6. doi: 10.1016/j.soard.2014.03.023
    1. Winer DA, Winer S, Shen L, Wadia PP, Yantha J, Paltser G, et al. . B Cells Promote Insulin Resistance Through Modulation of T Cells and Production of Pathogenic IgG Antibodies. Nat Med (2011) 17(5):610–7. doi: 10.1038/nm.2353
    1. Marron K, Walsh D, Harrity C. Detailed Endometrial Immune Assessment of Both Normal and Adverse Reproductive Outcome Populations. J Assist Reprod Genet (2019) 36(2):199–210. doi: 10.1007/s10815-018-1300-8
    1. Domecq JP, Prutsky G, Mullan RJ, Hazem A, Sundaresh V, Elamin MB, et al. . Lifestyle Modification Programs in Polycystic Ovary Syndrome: Systematic Review and Meta-Analysis. J Clin Endocrinol Metab (2013) 98(12):4655–63. doi: 10.1210/jc.2013-2385
    1. Lim SS, Hutchison SK, Van Ryswyk E, Norman RJ, Teede HJ, Moran LJ. Lifestyle Changes in Women With Polycystic Ovary Syndrome. Cochrane Database Syst Rev (2019) 3(3):CD007506. doi: 10.1002/14651858.CD007506.pub4
    1. Haqq L, McFarlane J, Dieberg G, Smart N. The Effect of Lifestyle Intervention on Body Composition, Glycemic Control, and Cardiorespiratory Fitness in Polycystic Ovarian Syndrome: A Systematic Review and Meta-Analysis. Int J Sport Nutr Exerc Metab (2015) 25(6):533–40. doi: 10.1123/ijsnem.2013-0232
    1. Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L, et al. . Recommendations From the International Evidence-Based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. Hum Reprod (2018) 33(9):1602–18. doi: 10.1093/humrep/dey256
    1. Haqq L, McFarlane J, Dieberg G, Smart N. Effect of Lifestyle Intervention on the Reproductive Endocrine Profile in Women With Polycystic Ovarian Syndrome: A Systematic Review and Meta-Analysis. Endocr Connect (2014) 3(1):36–46. doi: 10.1530/EC-14-0010

Source: PubMed

3
구독하다