Angiotensin-converting enzymes play a dominant role in fertility

Pei-Pei Pan, Qi-Tao Zhan, Fang Le, Ying-Ming Zheng, Fan Jin, Pei-Pei Pan, Qi-Tao Zhan, Fang Le, Ying-Ming Zheng, Fan Jin

Abstract

According to the World Health Organization, infertility, associated with metabolic syndrome, has become a global issue with a 10%-20% incidence worldwide. An accumulating body of evidence has shown that the renin-angiotensin system is involved in the fertility problems observed in some populations. Moreover, alterations in the expression of angiotensin-converting enzyme-1, angiotensin-converting enzyme-2, and angiotensin-converting enzyme-3 might be one of the most important mechanisms underlying both female and male infertility. However, as a pseudogene in humans, further studies are needed to explore whether the abnormal angiotensin-converting enzyme-3 gene could result in the problems of human reproduction. In this review, the relationship between angiotensin-converting enzymes and fertile ability is summarized, and a new procedure for the treatment of infertility is discussed.

Figures

Figure 1
Figure 1
Schematic of the local renin–angiotensin system (RAS). AGT and REN are expressed in the liver and kidneys, respectively. Angiotensin peptides are produced through the action of REN, ACE1 and ACE2, all of which are peptidases. Digitals 1–3 refers to ACE1/AngII/AT1R, ACE1/AngII/AT2R and ACE2/Ang-(1–7)/MasR pathways, respectively. There are three main pathways in the ovarian RAS and two main pathways in the testis RAS. AngI (1–10), AngII (1–8), Ang-(1–9) and Ang-(1–7) are decapeptide, octapeptide, nonapeptide and heptapeptide, respectively. The peptide sequence of the AngI (1–10) is Arp-Arg-Val-Tyr-He-His-Pro-Phe-His-Leu. RAS: renin–angiotensin system; AGT: angiotensinogen; REN: renin; AngI: angiotensin I; AngII: angiotensin II; Ang-(1–9): angiotensin-(1–9); Ang-(1–7): angiotensin-(1–7); AT1R: angiotensin II type 1 receptor; AT2R: angiotensin II type 2 receptor; MasR: Mas receptor; ACE1: angiotensin-converting enzyme 1; ACE2: angiotensin-converting enzyme 2.
Figure 2
Figure 2
Mechanisms of sperm–egg interaction. tACE1 and ADAM3 are dispensable factors for the binding of sperm to the zona pellucida, whereas tACE3 and IZUMO1 play important roles in the fusion of gametes to sperm. ADAM: a disintegrin and metalloprotease; ZP: zona pellucida; tACE1: testis angiotensin-converting enzyme 1; tACE3: testis angiotensin-converting enzyme 3.

References

    1. Corona G., Rastrelli G., Morelli A., Vignozzi L., Mannucci E., Maggi M. Hypogonadism and metabolic syndrome. J. Endocrinol. Invest. 2011;34:557–567.
    1. Corona G., Rastrelli G., Vignozzi L., Mannucci E., Maggi M. Testosterone, cardiovascular disease and the metabolic syndrome. Best Pract. Res. Clin. Endocrinol. Metab. 2011;25:337–353.
    1. Lotti F., Corona G., Degli Innocenti S., Filimberti E., Scognamiglio V., Vignozzi L., Forti G., Maggi M. Seminal, ultrasound and psychobiological parameters correlate with metabolic syndrome in male members of infertile couples. Andrology. 2013;1:229–239.
    1. Orio F., Palomba S., Di Biase S., Colao A., Tauchmanova L., Savastano S., Labella D., Russo T., Zullo F., Lombardi G. Homocysteine levels and C677T polymorphism of methylenetetrahydrofolate reductase in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2003;88:673–679.
    1. Unsal T., Konac E., Yesilkaya E., Yilmaz A., Bideci A., Onen H.I., Cinaz P., Menevse A. Genetic polymorphisms of FSHR, CYP17, CYP1A1, CAPN10, INSR, SERPINE1 genes in adolescent girls with polycystic ovary syndrome. J. Assist. Reprod Genet. 2009;26:205–216.
    1. Boivin J., Bunting L., Collins J.A., Nygren K.G. International estimates of infertility prevalence and treatment-seeking: Potential need and demand for infertility medical care. Hum. Reprod. 2007;22:1506–1512.
    1. Farhi J., Ben-Haroush A. Distribution of causes of infertility in patients attending primary fertility clinics in Israel. Isr. Med. Assoc. J. 2011;13:51–54.
    1. Dorjpurev U., Kuwahara A., Yano Y., Taniguchi T., Yamamoto Y., Suto A., Tanaka Y., Matsuzaki T., Yasui T., Irahara M. Effect of semen characteristics on pregnancy rate following intrauterine insemination. J. Med. Invest. 2011;58:127–133.
    1. Azziz R., Marin C., Hoq L., Badamgarav E., Song P. Health care-related economic burden of the polycystic ovary syndrome during the reproductive life span. J. Clin. Endocrinol. Metab. 2005;90:4650–4658.
    1. Wu X., Lu K., Su Y. Renin-angiotensin system: Involvement in polycystic ovarian syndrome. Zhonghua Fu Chan Ke Za Zhi. 1997;32:428–431.
    1. Arefi S., Mottaghi S., Sharifi A.M. Studying the correlation of renin-angiotensin-system (RAS) components and insulin resistance in polycystic ovary syndrome (PCOs) Gynecol. Endocrinol. 2013;29:1–4.
    1. Kessler S.P., Rowe T.M., Gomos J.B., Kessler P.M., Sen G.C. Physiological non-equivalence of the two isoforms of angiotensin-converting enzyme. J. Biol. Chem. 2000;275:26259–26264.
    1. Crackower M.A., Sarao R., Oudit G.Y., Yagil C., Kozieradzki I., Scanga S.E., Oliveira-dos-Santos A.J., da Costa J., Zhang L., Pei Y. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417:822–828.
    1. Inoue N., Kasahara T., Ikawa M., Okabe M. Identification and disruption of sperm-specific angiotensin converting enzyme-3 (ACE3) in mouse. PLoS One. 2010;5:e10301.
    1. De Kloet A.D., Krause E.G., Kim D.-H., Sakai R.R., Seeley R.J., Woods S.C. The effect of angiotensin-converting enzyme inhibition using captopril on energy balance and glucose homeostasis. Endocrinology. 2009;150:4114–4123.
    1. Jayasooriya A.P., Mathai M.L., Walker L.L., Begg D.P., Denton D.A., Cameron-Smith D., Egan G.F., McKinley M.J., Rodger P.D., Sinclair A.J. Mice lacking angiotensin-converting enzyme have increased energy expenditure, with reduced fat mass and improved glucose clearance. Proc. Natl. Acad. Sci. USA. 2008;105:6531–6536.
    1. De Kloet A.D., Krause E.G., Woods S.C. The renin angiotensin system and the metabolic syndrome. Physiol. Behav. 2010;100:525–534.
    1. Mbah A., Ndukwu G., Ghasi S., Shu E., Ozoemena F., Mbah J., Onodugo O., Ejim E., Eze M., Nkwo P. Low-dose lisinopril in normotensive men with idiopathic oligospermia and infertility: A 5-year randomized, controlled, crossover pilot study. Clin. Pharmacol. Ther. 2012;91:582–589.
    1. Shiuchi T., Cui T.-X., Wu L., Nakagami H., Takeda-Matsubara Y., Iwai M., Horiuchi M. ACE inhibitor improves insulin resistance in diabetic mouse via bradykinin and NO. Hypertension. 2002;40:329–334.
    1. Carey R.M., Siragy H.M. Newly recognized components of the renin-angiotensin system: Potential roles in cardiovascular and renal regulation. Endocr. Rev. 2003;24:261–271.
    1. Gonçalves P.B., Ferreira R., Gasperin B., Oliveira J.F. Role of angiotensin in ovarian follicular development and ovulation in mammals: A review of recent advances. Reproduction. 2012;143:11–20.
    1. Speth R., Daubert D., Grove K, Angiotensin II. A reproductive hormone too? Regul. Pept. 1999;79:25–40.
    1. Mitsube K., Mikuni M., Matousek M., Zackrisson U., Brannstrom M. Role of the angiotensin II system in regulation of ovulation and blood flow in the rat ovary. Reproduction. 2003;125:425–435.
    1. Reis A., Viana G., Pereira V., Santos R. Angiotensin-(1–7) in the rabbit ovary: A novel local regulator of ovulation. Biol. Reprod. 2009;81:566–566.
    1. Ferreira R., Gasperin B., Santos J., Rovani M., Santos R.A., Gutierrez K., Oliveira J.F., Reis A.M., Gonçalves P.B. Angiotensin II profile and mRNA encoding RAS proteins during bovine follicular wave. J. Renin Angiotensin Aldosterone Syst. 2011;12:475–482.
    1. Reis A.B., Araújo F.C., Pereira V.M., Dos Reis A.M., Santos R.A., Reis F.M. Angiotensin (1–7) and its receptor Mas are expressed in the human testis: Implications for male infertility. J. Mol. Histol. 2010;41:75–80.
    1. Reis F.M., Bouissou D.R., Pereira V.M., Camargos A.F., dos Reis A.M., Santos R.A. Angiotensin-(1–7) its receptor Mas, and the angiotensin-converting enzyme type 2 are expressed in the human ovary. Fertil. Steril. 2011;95:176–181.
    1. Rella M., Elliot J.L., Revett T.J., Lanfear J., Phelan A., Jackson R.M., Turner A.J., Hooper N.M. Identification and characterisation of the angiotensin converting enzyme-3 (ACE3) gene: A novel mammalian homologue of ACE. BMC Genomics. 2007 doi: 10.1186/1471-2164-8-194..
    1. Acosta E., Peña Ó., Naftolin F., Ávila J., Palumbo A. Angiotensin II induces apoptosis in human mural granulosa-lutein cells, but not in cumulus cells. Fertil. Steril. 2009;91:1984–1989.
    1. Peña Ó., Palumbo A., González-Fernández R., Hernández J., Naftolin F., Ávila J. Expression of angiotensin II type 1 (AT1) and angiotensin II type 2 (AT2) receptors in human granulosa-lutein (GL) cells: Correlation with infertility diagnoses. Fertil. Steril. 2010;93:1601–1608.
    1. De Gooyer T., Skinner S., Wlodek M., Kelly D., Wilkinson-Berka J. Angiotensin II influences ovarian follicle development in the transgenic (mRen-2) 27 and Sprague-Dawley rat. J. Endocrinol. 2004;180:311–324.
    1. Pereira V.M., Reis F.M., Santos R.A., Cassali G.D., Santos S.H., Honorato-Sampaio K., dos Reis A.M. Gonadotropin stimulation increases the expression of angiotensin-(1–7) and Mas receptor in the rat ovary. Reprod. Sci. 2009;16:1165–1174.
    1. Leung P.S., Sernia C. The renin–angiotensin system and male reproduction: New functions for old hormones. J. Mol. Endocrinol. 2003;30:263–270.
    1. Leung P., Wong T., Chung Y., Chan H. Androgen dependent expression of AT1 receptor and its regulation of anion secretion in rat epididymis. Cell Biol. Int. 2002;26:117–122.
    1. Ehlers M.R., Riordan J.F. Angiotensin-converting enzyme: New concepts concerning its biological role. Biochemistry. 1989;28:5311–5318.
    1. Donoghue M., Hsieh F., Baronas E., Godbout K., Gosselin M., Stagliano N., Donovan M., Woolf B., Robison K., Jeyaseelan R. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ. Res. 2000;87:e1–e9.
    1. Hubert C., Houot A.-M., Corvol P., Soubrier F. Structure of the angiotensin I-converting enzyme gene. Two alternate promoters correspond to evolutionary steps of a duplicated gene. J. Biol. Chem. 1991;266:15377–15383.
    1. Xu J., Baulding J., Palli S.R. Proteomics of Tribolium castaneum seminal fluid proteins: Identification of an angiotensin-converting enzyme as a key player in regulation of reproduction. J. Proteomics. 2012;78:83–93.
    1. Shibahara H., Kamata M., Hu J., Nakagawa H., Obara H., Kondoh N., Shima H., Sato I. Activity of testis angiotensin converting enzyme (ACE) in ejaculated human spermatozoa. Int. J. Androl. 2001;24:295–299.
    1. Hagaman J.R., Moyer J.S., Bachman E.S., Sibony M., Magyar P.L., Welch J.E., Smithies O., Krege J.H., O’Brien D.A. Angiotensin-converting enzyme and male fertility. Proc. Natl. Acad. Sci. USA. 1998;95:2552–2557.
    1. Pauls K., Fink L., Franke F. Angiotensin-converting enzyme (CD143) in neoplastic germ cells. Lab. Invest. 1999;79:1425–1435.
    1. Franke F.E., Pauls K., Metzger R., Danilov S.M. Angiotensin I-converting enzyme and potential substrates in human testis and testicular tumours. APMIS. 2003;111:234–244.
    1. Pauls K., Metzger R., Steger K., Klonisch T., Danilov S., Franke F. Isoforms of angiotensin I-converting enzyme in the development and differentiation of human testis and epididymis. Andrologia. 2003;35:32–43.
    1. Tipnis S.R., Hooper N.M., Hyde R., Karran E., Christie G., Turner A.J. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem. 2000;275:33238–33243.
    1. Zhang H., Wada J., Hida K., Tsuchiyama Y., Hiragushi K., Shikata K., Wang H., Lin S., Kanwar Y.S., Makino H. Collectrin, a collecting duct-specific transmembrane glycoprotein, is a novel homolog of ACE2 and is developmentally regulated in embryonic kidneys. J. Biol. Chem. 2001;276:17132–17139.
    1. Brentjens J., Matsuo S., Andres G., Caldwell P., Zamboni L. Gametes contain angiotensin converting enzyme (kininase II) Experientia. 1986;42:399–402.
    1. Ferreira R., Gasperin B., Rovani M., Santos J., Barreta M., Bohrer R., Price C., Gonçalves P.B.D. Angiotensin II signaling promotes follicle growth and dominance in cattle. Endocrinology. 2011;152:4957–4965.
    1. Feral C., le Gall S., Leymarie P. Angiotensin II modulates steroidogenesis in granulosa and theca in the rabbit ovary: Its possible involvement in atresia. Eur. J. Endocrinol. 1995;133:747–753.
    1. Li Y., Jiao L., Liu R., Chen X., Wang H., Wang W. Localization of angiotensin II in pig ovary and its effects on oocyte maturation in vitro. Theriogenology. 2004;61:447–459.
    1. Stefanello J.R., Barreta M.H., Porciuncula P.M., Arruda J.N., Oliveira J.F., Oliveira M.A., Gonçalves P.B. Effect of angiotensin II with follicle cells and insulin-like growth factor-I or insulin on bovine oocyte maturation and embryo development. Theriogenology. 2006;66:2068–2076.
    1. Yoshimura Y., Karube M., Aoki H., Oda T., Koyama N., Nagai A., Akimoto Y., Hirano H., Nakamura Y. Angiotensin II induces ovulation and oocyte maturation in rabbit ovaries via the AT2 receptor subtype. Endocrinology. 1996;137:1204–1211.
    1. Agarwal A., Gupta S., Sharma R.K. Role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 2005;3:1–21.
    1. Gupta S., Goldberg J.M., Aziz N., Goldberg E., Krajcir N., Agarwal A. Pathogenic mechanisms in endometriosis-associated infertility. Fertil. Steril. 2008;90:247–257.
    1. Ruder E.H., Hartman T.J., Goldman M.B. Impact of oxidative stress on female fertility. Curr. Opin. Obstet Gynecol. 2009;21:219–222.
    1. Ruder E.H., Hartman T.J., Blumberg J., Goldman M.B. Oxidative stress and antioxidants: Exposure and impact on female fertility. Hum. Reprod. Update. 2008;14:345–357.
    1. Benicky J., Sánchez-Lemus E., Pavel J., Saavedra J.M. Anti-inflammatory effects of angiotensin receptor blockers in the brain and the periphery. Cell. Mol. Neurobiol. 2009;29:781–792.
    1. Inserra F., Martínez-Maldonado M. Inflammation and the metabolic syndrome: Role of angiotensin II and oxidative stress. Curr. Hypertens. Rep. 2006;8:191–198.
    1. Yoshimura Y., Koyama N., Karube M., Oda T., Akiba M., Yoshinaga A., Shiokawa S., Jinno M., Nakamura Y. Gonadotropin stimulates ovarian renin–angiotensin system in the rabbit. J. Clin. Invest. 1994;93:180–187.
    1. Daud A.I., Bumpus F.M., Husain A. Characterization of angiotensin I-converting enzyme (ACE)-containing follicles in the rat ovary during the estrous cycle and effects of ACE inhibitor on ovulation. Endocrinology. 1990;126:2927–2935.
    1. Costa A.P., Fagundes-Moura C.R., Pereira V.M., Silva L.F., Vieira M.A.R., Santos R.A., Dos Reis A.M. Angiotensin-(1–7): A novel peptide in the ovary. Endocrinology. 2003;144:1942–1948.
    1. Honorato-Sampaio K., Pereira V.M., Santos R.A., Reis A.M. Evidence that angiotensin-(1–7) is an intermediate of gonadotrophin-induced oocyte maturation in the rat preovulatory follicle. Exp. Physiol. 2012;97:642–650.
    1. Cushman D., Cheung H. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 1971;20:1637–1648.
    1. Langford K.G., Zhou Y., Russell L.D., Wilcox J.N., Bernstein K.E. Regulated expression of testis angiotensin-converting enzyme during spermatogenesis in mice. Biol. Reprod. 1993;48:1210–1218.
    1. Köhn F.-M., Dammshäuser I., Neukamm C., Renneberg H., Siems W.-E., Schill W.-B., Aumüller G. Ultrastructural localization of angiotensin-converting enzyme in ejaculated human spermatozoa. Hum. Reprod. 1998;13:604–610.
    1. Nikolaeva M.A., Balyasnikova I.V., Alexinskaya M.A., Metzger R., Franke F.E., Albrecht R.F., Kulakov V.I., Sukhikh G.T., Danilov S.M. Testicular isoform of angiotensin I-converting enzyme (ACE, CD143) on the surface of human spermatozoa: Revelation and quantification using monoclonal antibodies. Am. J. Reprod. Immunol. 2006;55:54–68.
    1. Yokoyama M., Takada Y., Iwata H., Ochi K., Takeuchi M., Hiwada K., Kokubu T. Correlation between angiotensin-converting enzyme activity and histologic patterns in benign prostatic hypertrophy tissue. J. Urol. 1982;127:368–379.
    1. Dacheux J.-L., Belleannée C., Guyonnet B., Labas V., Teixeira-Gomes A.-P., Ecroyd H., Druart X., Gatti J.-L., Dacheux F. The contribution of proteomics to understanding epididymal maturation of mammalian spermatozoa. Syst. Biol. Reprod. Med. 2012;58:197–210.
    1. Cesari A., de Monclus M. L., Tejón G.P., Clementi M., Fornes M.W. Regulated serine proteinase lytic system on mammalian sperm surface: There must be a role. Theriogenology. 2010;74:699–711.
    1. Yamaguchi R., Yamagata K., Ikawa M., Moss S.B., Okabe M. Aberrant distribution of ADAM3 in sperm from both angiotensin-converting enzyme (Ace)-and calmegin (Clgn)-deficient mice. Biol. Reprod. 2006;75:760–766.
    1. Zhu G.Z., Gupta S., Myles D.G., Primakoff P. Testase 1 (ADAM 24) a sperm surface metalloprotease is required for normal fertility in mice. Mol. Reprod. Dev. 2009;76:1106–1114.
    1. Köhn F.M., Miska W., Schill W.B. Release of angiotensin-converting enzyme (ACE) from human spermatozoa during capacitation and acrosome reaction. J. Androl. 1995;16:259–265.
    1. Kamata M., Hu J., Shibahara H., Nakagawa H. Assay of testicular angiotensin-converting enzyme activity in human spermatozoa. Int. J. Androl. 2001;24:225–231.
    1. Kondoh G., Tojo H., Nakatani Y., Komazawa N., Murata C., Yamagata K., Maeda Y., Kinoshita T., Okabe M., Taguchi R. Angiotensin-converting enzyme is a GPI-anchored protein releasing factor crucial for fertilization. Nat. Med. 2005;11:160–166.
    1. Deguchi E., Tani T., Watanabe H., Yamada S., Kondoh G. Dipeptidase-inactivated tACE action in vivo: Selective inhibition of sperm-zona pellucida binding in the mouse. Biol. Reprod. 2007;77:794–802.
    1. Fuchs S., Frenzel K., Hubert C., Lyng R., Muller L., Michaud A., Xiao H.D., Adams J.W., Capecchi M.R., Corvol P. Male fertility is dependent on dipeptidase activity of testis ACE. Nat. Med. 2005;11:1140–1142.
    1. Leisle L., Parkin E.T., Turner A.J., Hooper N.M. Angiotensin-converting enzyme as a GPIase: A critical reevaluation. Nat. Med. 2005;11:1139–1140.
    1. Leal M.C., Pinheiro S.V., Ferreira A.J., Santos R.A., Bordoni L.S., Alenina N., Bader M., França L.R. The role of angiotensin-(1–7) receptor Mas in spermatogenesis in mice and rats. J. Anat. 2009;214:736–743.
    1. Kondoh G., Watanabe H., Tashima Y., Maeda Y., Kinoshita T. Testicular angiotensin-converting enzyme with different glycan modification: Characterization on glycosylphosphatidylinositol-anchored protein releasing and dipeptidase activities. J. Biochem. 2009;145:115–121.
    1. Inoue N., Ikawa M., Isotani A., Okabe M. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature. 2005;434:234–238.
    1. Hudecova M., Holte J., Olovsson M., Larsson A., Berne C., Sundstrom-Poromaa I. Prevalence of the metabolic syndrome in women with a previous diagnosis of polycystic ovary syndrome: Long-term follow-up. Fertil. Steril. 2011;96:1271–1274.
    1. Jia H., Wang B., Yu L., Jiang Z. Association of angiotensin-converting enzyme gene insertion/deletion polymorphism with polycystic ovary syndrome: A meta-analysis. J. Renin Angiotensin Aldosterone Syst. 2012;14:255–262.
    1. Gard P.R. Implications of the angiotensin converting enzyme gene insertion/deletion polymorphism in health and disease: A snapshot review. Int. J. Mol. Epidemiol. Genet. 2010;1:145–157.
    1. Celik O., Yesilada E., Hascalik S., Celik N., Sahin I., Keskin L., Ozerol E. Angiotensin-converting enzyme gene polymorphism and risk of insulin resistance in PCOS. Reprod. Biomed. Online. 2010;20:492–498.
    1. Che Y., Cao Y., Wu X., Sun H.-X., Liang F., Yi L., Wang Y. Association between ACE gene I/D polymorphisms and hyperandrogenism in women with polycystic ovary syndrome (PCOS) and controls. BMC Med. Genet. 2009 doi: 10.1186/1471-2350-10-64..
    1. Nandi A., Wang X., Accili D., Wolgemuth D.J. The effect of insulin signaling on female reproductive function independent of adiposity and hyperglycemia. Endocrinology. 2010;151:1863–1871.
    1. Vandermolen D.T., Ratts V.S., Evans W.S., Stovall D.W., Kauma S.W., Nestler J.E. Metformin increases the ovulatory rate and pregnancy rate from clomiphene citrate in patients with polycystic ovary syndrome who are resistant to clomiphene citrate alone. Fertil. Steril. 2001;75:310–315.
    1. Du Plessis S.S., Cabler S., McAlister D.A., Sabanegh E., Agarwal A. The effect of obesity on sperm disorders and male infertility. Nat. Rev. Urol. 2010;7:153–161.
    1. Sermondade N., Faure C., Fezeu L., Lévy R., Czernichow S. Obesity and increased risk for oligozoospermia and azoospermia. Arch. Intern. Med. 2012;172:440–442.
    1. Riera-Fortuny C., Real J.T., Chaves F.J., Morales-Suarez-Varela M., Martinez-Triguero M.L., Morillas-Arino C., Hernández-Mijares A. The relation between obesity, abdominal fat deposit and the angiotensin-converting enzyme gene I/D polymorphism and its association with coronary heart disease. Int. J. Obes. 2005;29:78–84.
    1. Muciaccia B., Pensini S., Culasso F., Padula F., Paoli D., Gandini L., Di Veroli C., Bianchini G., Stefanini M., D’Agostino A. Higher clusterin immunolabeling and sperm DNA damage levels in hypertensive men compared with controls. Hum. Reprod. 2012;27:2267–2276.
    1. Ramalho-Santos J., Amaral S., Oliveira P.J. Diabetes and the impairment of reproductive function: Possible role of mitochondria and reactive oxygen species. Curr. Diabetes Rev. 2008;4:46–54.
    1. Gwathmey T.M., Pendergrass K.D., Reid S.D., Rose J.C., Diz D.I., Chappell M.C. Angiotensin-(1–7)-angiotensin-converting enzyme 2 attenuates reactive oxygen species formation to angiotensin II within the cell nucleus. Hypertension. 2010;55:166–171.
    1. Dikalov S.I., Nazarewicz R.R. Angiotensin II-induced production of mitochondrial reactive oxygen species: Potential mechanisms and relevance for cardiovascular disease. Antioxid. Redox Signal. 2012;19:1085–1094.
    1. Hacıhanefioglu B., Seyisoglu H., Karsıdag K., Elter K., Aksu F., Yılmaz T., Gurol A.O. Influence of insulin resistance on total renin level in normotensive women with polycystic ovary syndrome. Fertil. Steril. 2000;73:261–265.
    1. Franks S. Genetic and environmental origins of obesity relevant to reproduction. Reprod. Biomed. Online. 2006;12:526–531.
    1. Nawano M., Anai M., Funaki M., Kobayashi H., Kanda A., Fukushima Y., Inukai K., Ogihara T., Sakoda H., Onishi Y. Imidapril, an angiotensin-converting enzyme inhibitor, improves insulin sensitivity by enhancing signal transduction via insulin receptor substrate proteins and improving vascular resistance in the Zucker fatty rat. Metabolism. 1999;48:1248–1255.
    1. Muscogiuri G., Chavez A.O., Gastaldelli A., Perego L., Tripathy D., Saad M.J., Velloso L., Folli F. The crosstalk between insulin and renin-angiotensin-aldosterone signaling systems and its effect on glucose metabolism and diabetes prevention. Curr. Vasc. Pharmacol. 2008;6:301–312.
    1. Okeahialam B., Amadi K., Ameh A. Effect of lisnopril, an angiotensin converting enzyme (ACE) inhibitor on spermatogenesis in rats. Syst. Biol. Reprod. Med. 2006;52:209–213.
    1. Siems W.E., Maul B., Wiesner B., Becker M., Walther T., Rothe L., Winkler A. Effects of kinins on mammalian spermatozoa and the impact of peptidolytic enzymes. Andrologia. 2003;35:44–54.
    1. Monsees T.K., Miska W., Schill W.-B. Characterization of kininases in testicular cells. Immunopharmacology. 1996;32:169–171.
    1. Saha L., Garg S.K., Bhargava V.K., Mazumdar S. Role of angiotensin-converting enzyme inhibitor, lisinopril, on spermatozoal functions in rats. Method Find. Exp. Clin. Pharmacol. 2000;22:159–162.

Source: PubMed

3
구독하다