The BRCA1ness signature is associated significantly with response to PARP inhibitor treatment versus control in the I-SPY 2 randomized neoadjuvant setting

Tesa M Severson, Denise M Wolf, Christina Yau, Justine Peeters, Diederik Wehkam, Philip C Schouten, Suet-Feung Chin, Ian J Majewski, Magali Michaut, Astrid Bosma, Bernard Pereira, Tycho Bismeijer, Lodewyk Wessels, Carlos Caldas, René Bernards, Iris M Simon, Annuska M Glas, Sabine Linn, Laura van 't Veer, Tesa M Severson, Denise M Wolf, Christina Yau, Justine Peeters, Diederik Wehkam, Philip C Schouten, Suet-Feung Chin, Ian J Majewski, Magali Michaut, Astrid Bosma, Bernard Pereira, Tycho Bismeijer, Lodewyk Wessels, Carlos Caldas, René Bernards, Iris M Simon, Annuska M Glas, Sabine Linn, Laura van 't Veer

Abstract

Background: Patients with BRCA1-like tumors correlate with improved response to DNA double-strand break-inducing therapy. A gene expression-based classifier was developed to distinguish between BRCA1-like and non-BRCA1-like tumors. We hypothesized that these tumors may also be more sensitive to PARP inhibitors than standard treatments.

Methods: A diagnostic gene expression signature (BRCA1ness) was developed using a centroid model with 128 triple-negative breast cancer samples from the EU FP7 RATHER project. This BRCA1ness signature was then tested in HER2-negative patients (n = 116) from the I-SPY 2 TRIAL who received an oral PARP inhibitor veliparib in combination with carboplatin (V-C), or standard chemotherapy alone. We assessed the association between BRCA1ness and pathologic complete response in the V-C and control arms alone using Fisher's exact test, and the relative performance between arms (biomarker × treatment interaction, likelihood ratio p < 0.05) using a logistic model and adjusting for hormone receptor status (HR).

Results: We developed a gene expression signature to identify BRCA1-like status. In the I-SPY 2 neoadjuvant setting the BRCA1ness signature associated significantly with response to V-C (p = 0.03), but not in the control arm (p = 0.45). We identified a significant interaction between BRCA1ness and V-C (p = 0.023) after correcting for HR.

Conclusions: A genomic-based BRCA1-like signature was successfully translated to an expression-based signature (BRC1Aness). In the I-SPY 2 neoadjuvant setting, we determined that the BRCA1ness signature is capable of predicting benefit of V-C added to standard chemotherapy compared to standard chemotherapy alone.

Trial registration: I-SPY 2 TRIAL beginning December 31, 2009: Neoadjuvant and Personalized Adaptive Novel Agents to Treat Breast Cancer (I-SPY 2), NCT01042379 .

Keywords: BRCAness; Breast cancer; Neoadjuvant; PARP inhibition; Triple-negative breast cancer.

Conflict of interest statement

Ethics approval and consent to participate

All patients for the I-SPY 2 clinical trial provided written informed consent. All participating sites received institutional review board approval (Additional file 2: Table S2).

Competing interests

SL, TMS, IMS and JP are all named coinventors on a patent application for a BRCAness gene expression classifier. PCS has a close relative employed by Astra-Zeneca. The remaining authors declare that they have no competing interests.

Consent for publication

All authors consent to publication.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
CONSORT diagram. CONSORT diagram indicating how patients were randomized for the I-SPY 2 TRIAL
Fig. 2
Fig. 2
Unsupervised hierarchical clustering of 77 genes in the 128 discovery set samples. The 77 genes were derived from a supervised analysis to identify those genes most informative in distinguishing BRCA1-like from non-BRCA1-like TN breast cancers [33]. Scaled expression value denoted as Z score (red–blue scale: red indicates high expression and blue indicates low expression). Information bar indicates MLPA BRCA1-like status: true (green) or false (brown). MLPA multiplex ligation-dependent probe amplification (Color figure online)
Fig. 3
Fig. 3
The 77-gene signature network analysis. a Significant canonical pathways (top) and molecular functions (bottom). Negative log p value is on the x axis. b Network analysis of the 77 genes in the BRCA1ness signature. Grey shading indicates genes found in signature, solid lines show direct relationships between proteins and dashed lines show indirect relationships
Fig. 4
Fig. 4
I-SPY 2 TRIAL. a Mosaic plot depicting the number of patients with pathological complete response (pCR) in each treatment group and signature group. Top row indicates patients in the trial enrolled in the control arm and bottom row indicates patients in the V-C arm. Number of patients with pCR is shown in green and number of patients without pCR is shown in tan. Black outlined boxes indicate the patients with a non-BRCA1ness status (left), red outlined boxes depict those with BRCA1ness status (right). b Histological subtype of the patients in the trial divided by treatment arm (V-C) and control arm and pCR rate per group. c Odds ratio (OR) and likelihood ratio test (LR) for treatment and control arms of the trial and the biomarker x treatment interaction test. HER2 human epidermal growth factor receptor 2, HR hormone receptor status, TN triple-negative, V/C veliparib-carboplatin (Color figure online)

References

    1. Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346–52.
    1. Linn SC, van ‘t Veer LJ. Clinical relevance of the triple-negative breast cancer concept: genetic basis and clinical utility of the concept. Eur J Cancer Oxf Engl 1990. 2009;45(Suppl 1):11–26.
    1. Prat A, Adamo B, Cheang MCU, Anders CK, Carey LA, Perou CM. Molecular characterization of basal-like and non-basal-like triple-negative breast cancer. Oncologist. 2013;18(2):123–33. doi: 10.1634/theoncologist.2012-0397.
    1. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10(16):5367–74. doi: 10.1158/1078-0432.CCR-04-0220.
    1. Blows FM, Driver KE, Schmidt MK, Broeks A, van Leeuwen FE, Wesseling J, et al. Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med. 2010;7(5):e1000279. doi: 10.1371/journal.pmed.1000279.
    1. Collins LC, Martyniak A, Kandel MJ, Stadler ZK, Masciari S, Miron A, et al. Basal cytokeratin and epidermal growth factor receptor expression are not predictive of BRCA1 mutation status in women with triple-negative breast cancers. Am J Surg Pathol. 2009;33(7):1093–7. doi: 10.1097/PAS.0b013e31819c1c93.
    1. Foulkes WD, Stefansson IM, Chappuis PO, Bégin LR, Goffin JR, Wong N, et al. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst. 2003;95(19):1482–5. doi: 10.1093/jnci/djg050.
    1. Hartman A-R, Kaldate RR, Sailer LM, Painter L, Grier CE, Endsley RR, et al. Prevalence of BRCA mutations in an unselected population of triple-negative breast cancer. Cancer. 2012;118(11):2787–95. doi: 10.1002/cncr.26576.
    1. Bouwman P, Jonkers J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer. 2012;12(9):587–98. doi: 10.1038/nrc3342.
    1. Moynahan ME, Chiu JW, Koller BH, Jasin M. Brca1 controls homology-directed DNA repair. Mol Cell. 1999;4(4):511–8. doi: 10.1016/S1097-2765(00)80202-6.
    1. Hedenfalk I, Duggan D, Chen Y, Radmacher M, Bittner M, Simon R, et al. Gene-expression profiles in hereditary breast cancer. N Engl J Med. 2001;344(8):539–48. doi: 10.1056/NEJM200102223440801.
    1. Jönsson G, Naylor TL, Vallon-Christersson J, Staaf J, Huang J, Ward MR, et al. Distinct genomic profiles in hereditary breast tumors identified by array-based comparative genomic hybridization. Cancer Res. 2005;65(17):7612–21. doi: 10.1158/0008-5472.CAN-05-0570.
    1. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AAM, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530–6. doi: 10.1038/415530a.
    1. Larsen MJ, Kruse TA, Tan Q, Lænkholm A-V, Bak M, Lykkesfeldt AE, et al. Classifications within molecular subtypes enables identification of BRCA1/BRCA2 mutation carriers by RNA tumor profiling. PLoS One. 2013;8(5):e64268. doi: 10.1371/journal.pone.0064268.
    1. Pereira B, Chin S-F, Rueda OM, Vollan H-KM, Provenzano E, Bardwell HA, et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun. 2016;7:11479. doi: 10.1038/ncomms11479.
    1. Lips EH, Laddach N, Savola SP, Vollebergh MA, Oonk AMM, Imholz ALT, et al. Quantitative copy number analysis by Multiplex Ligation-dependent Probe Amplification (MLPA) of BRCA1-associated breast cancer regions identifies BRCAness. Breast Cancer Res. 2011;13(5):R107. doi: 10.1186/bcr3049.
    1. Lips EH, Mulder L, Hannemann J, Laddach N, Vrancken Peeters MTFD, van de Vijver MJ, et al. Indicators of homologous recombination deficiency in breast cancer and association with response to neoadjuvant chemotherapy. Ann Oncol. 2011;22(4):870–6. doi: 10.1093/annonc/mdq468.
    1. Vollebergh MA, Jonkers J, Linn SC. Genomic instability in breast and ovarian cancers: translation into clinical predictive biomarkers. Cell Mol Life Sci. 2012;69(2):223–45. doi: 10.1007/s00018-011-0809-0.
    1. Schouten PC, van Dyk E, Braaf LM, Mulder L, Lips EH, de Ronde JJ, et al. Platform comparisons for identification of breast cancers with a BRCA-like copy number profile. Breast Cancer Res Treat. 2013;139(2):317–27. doi: 10.1007/s10549-013-2558-2.
    1. Wessels LFA, van Welsem T, Hart AAM, van’t Veer LJ, Reinders MJT, Nederlof PM. Molecular classification of breast carcinomas by comparative genomic hybridization: a specific somatic genetic profile for BRCA1 tumors. Cancer Res. 2002;62(23):7110–7.
    1. Lord CJ, Ashworth A. BRCAness revisited. Nat Rev Cancer. 2016;16(2):110–20. doi: 10.1038/nrc.2015.21.
    1. Turner N, Tutt A, Ashworth A. Hallmarks of “BRCAness” in sporadic cancers. Nat Rev Cancer. 2004;4(10):814–9. doi: 10.1038/nrc1457.
    1. Schouten PC, Marmé F, Aulmann S, Sinn H-P, van Essen HF, Ylstra B, et al. Breast cancers with a BRCA1-like DNA copy number profile recur less often than expected after high-dose alkylating chemotherapy. Clin Cancer Res. 2015;21(4):763–70. doi: 10.1158/1078-0432.CCR-14-1894.
    1. Vollebergh MA, Lips EH, Nederlof PM, Wessels LFA, Schmidt MK, van Beers EH, et al. An aCGH classifier derived from BRCA1-mutated breast cancer and benefit of high-dose platinum-based chemotherapy in HER2-negative breast cancer patients. Ann Oncol. 2011;22(7):1561–70. doi: 10.1093/annonc/mdq624.
    1. Konstantinopoulos PA, Spentzos D, Karlan BY, Taniguchi T, Fountzilas E, Francoeur N, et al. Gene expression profile of BRCAness that correlates with responsiveness to chemotherapy and with outcome in patients with epithelial ovarian cancer. J Clin Oncol. 2010;28(22):3555–61. doi: 10.1200/JCO.2009.27.5719.
    1. Peng G, Chun-Jen Lin C, Mo W, Dai H, Park Y-Y, Kim SM, et al. Genome-wide transcriptome profiling of homologous recombination DNA repair. Nat Commun. 2014;5:3361.
    1. Tutt A, Ellis P, Kilburn L, Gilett C, Pinder S, Abraham J, et al. [S3-01] The TNT trial: a randomized phase III trial of carboplatin (C) compared with docetaxel (D) for patients with metastatic or recurrent locally advanced triple negative or BRCA1/2 breast cancer (CRUK/07/012). Cancer Res. 2015;75(9 Supplement):S3-01-S3-01.
    1. Schouten PC, Linn SC. Challenges in the use of DNA repair deficiency as a biomarker in breast cancer. J Clin Oncol. 2015;33(17):1867–9. doi: 10.1200/JCO.2014.60.5501.
    1. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67. doi: 10.1172/JCI45014.
    1. Masuda H, Baggerly KA, Wang Y, Zhang Y, Gonzalez-Angulo AM, Meric-Bernstam F, et al. Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res. 2013;19(19):5533–40. doi: 10.1158/1078-0432.CCR-13-0799.
    1. Yu K-D, Zhu R, Zhan M, Rodriguez AA, Yang W, Wong S, et al. Identification of prognosis-relevant subgroups in patients with chemoresistant triple-negative breast cancer. Clin Cancer Res. 2013;19(10):2723–33. doi: 10.1158/1078-0432.CCR-12-2986.
    1. Farmer H, McCabe N, Lord CJ, Tutt ANJ, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–21. doi: 10.1038/nature03445.
    1. Severson TM, Peeters J, Majewski I, Michaut M, Bosma A, Schouten PC, et al. BRCA1-like signature in triple negative breast cancer: molecular and clinical characterization reveals subgroups with therapeutic potential. Mol Oncol. 2015;8(7):1528–38.
    1. Park JW, Liu MC, Yee D, Yau C, van’t Veer LJ, Symmans WF, et al. Adaptive randomization of neratinib in early breast cancer. N Engl J Med. 2016;375(1):11–22. doi: 10.1056/NEJMoa1513750.
    1. Rugo HS, Olopade OI, DeMichele A, Yau C, van ‘t Veer LJ, Buxton MB, et al. Adaptive randomization of veliparib-carboplatin treatment in breast cancer. N Engl J Med. 2016;375(1):23–34. doi: 10.1056/NEJMoa1513749.
    1. Wolf DM, Yau C, Sanil A, Glas A, Petricoin C, Wulfkuhle J, et al. DNA repair deficiency biomarkers and the 70-gene ultra-high risk signature as predictors of veliparib/carboplatin response in the I-SPY 2 breast cancer trial. NPJ Breast Cancer (2017).
    1. Michaut M, Chin S-F, Majewski I, Severson TM, Bismeijer T, de Koning L, et al. Integration of genomic, transcriptomic and proteomic data identifies two biologically distinct subtypes of invasive lobular breast cancer. Sci Rep. 2016;6:18517. doi: 10.1038/srep18517.
    1. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostat Oxf Engl. 2007;8(1):118–27. doi: 10.1093/biostatistics/kxj037.
    1. Glas AM, Floore A, Delahaye LJMJ, Witteveen AT, Pover RCF, Bakx N, et al. Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics. 2006;7:278. doi: 10.1186/1471-2164-7-278.
    1. Criscitiello C, Azim HA, Jr, Schouten PC, Linn SC, Sotiriou C. Understanding the biology of triple-negative breast cancer. Ann Oncol. 2012;23(Suppl 6):vi13–8. doi: 10.1093/annonc/mds188.
    1. Hudis CA, Gianni L. Triple-negative breast cancer: an unmet medical need. Oncologist. 2011;16(Suppl 1):1–11. doi: 10.1634/theoncologist.2011-S1-01.
    1. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361(2):123–34. doi: 10.1056/NEJMoa0900212.
    1. Lee J-M, Ledermann JA, Kohn EC. PARP Inhibitors for BRCA1/2 mutation-associated and BRCA-like malignancies. Ann Oncol. 2014;25(1):32–40. doi: 10.1093/annonc/mdt384.
    1. Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010;376(9737):235–44. doi: 10.1016/S0140-6736(10)60892-6.
    1. Lim S-O, Li C-W, Xia W, Lee H-H, Chang S-S, Shen J, et al. EGFR signaling enhances aerobic glycolysis in triple-negative breast cancer cells to promote tumor growth and immune escape. Cancer Res. 2016;76(5):1284–96. doi: 10.1158/0008-5472.CAN-15-2478.
    1. Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature. 2011;476(7360):346–50. doi: 10.1038/nature10350.
    1. von Minckwitz G, Schneeweiss A, Loibl S, Salat C, Denkert C, Rezai M, et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol. 2014;15(7):747–56. doi: 10.1016/S1470-2045(14)70160-3.
    1. von Minckwitz G, Loibl S, Schneeweiss A, Salat C, Rezai M, Zahm DM, et al. Early survival analysis of the randomized phase II trial investigating the addition of carboplatin to neoadjuvant therapy for triple-negative and HER2-positive early breast cancer (GeparSixto). Cancer Res. 2016;76(4 Supplement):S2-04-S2-04.
    1. Sikov WM, Berry DA, Perou CM, Singh B, Cirrincione CT, Tolaney SM, et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance) J Clin Oncol. 2015;33(1):13–21. doi: 10.1200/JCO.2014.57.0572.
    1. Sikov WM, Berry DA, Perou CM, Singh B, Cirrincione CT, Tolaney SM, et al. Event-free and overall survival following neoadjuvant weekly paclitaxel and dose-dense AC +/– carboplatin and/or bevacizumab in triple-negative breast cancer: outcomes from CALGB 40603 (Alliance). Cancer Res. 2016;76(4 Supplement):S2-05-S2-05.

Source: PubMed

3
구독하다