Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist)

Tomas Ros, Stefanie Enriquez-Geppert, Vadim Zotev, Kymberly D Young, Guilherme Wood, Susan Whitfield-Gabrieli, Feng Wan, Patrik Vuilleumier, François Vialatte, Dimitri Van De Ville, Doron Todder, Tanju Surmeli, James S Sulzer, Ute Strehl, Maurice Barry Sterman, Naomi J Steiner, Bettina Sorger, Surjo R Soekadar, Ranganatha Sitaram, Leslie H Sherlin, Michael Schönenberg, Frank Scharnowski, Manuel Schabus, Katya Rubia, Agostinho Rosa, Miriam Reiner, Jaime A Pineda, Christian Paret, Alexei Ossadtchi, Andrew A Nicholson, Wenya Nan, Javier Minguez, Jean-Arthur Micoulaud-Franchi, David M A Mehler, Michael Lührs, Joel Lubar, Fabien Lotte, David E J Linden, Jarrod A Lewis-Peacock, Mikhail A Lebedev, Ruth A Lanius, Andrea Kübler, Cornelia Kranczioch, Yury Koush, Lilian Konicar, Simon H Kohl, Silivia E Kober, Manousos A Klados, Camille Jeunet, T W P Janssen, Rene J Huster, Kerstin Hoedlmoser, Laurence M Hirshberg, Stephan Heunis, Talma Hendler, Michelle Hampson, Adrian G Guggisberg, Robert Guggenberger, John H Gruzelier, Rainer W Göbel, Nicolas Gninenko, Alireza Gharabaghi, Paul Frewen, Thomas Fovet, Thalía Fernández, Carlos Escolano, Ann-Christine Ehlis, Renate Drechsler, R Christopher deCharms, Stefan Debener, Dirk De Ridder, Eddy J Davelaar, Marco Congedo, Marc Cavazza, Marinus H M Breteler, Daniel Brandeis, Jerzy Bodurka, Niels Birbaumer, Olga M Bazanova, Beatrix Barth, Panagiotis D Bamidis, Tibor Auer, Martijn Arns, Robert T Thibault, Tomas Ros, Stefanie Enriquez-Geppert, Vadim Zotev, Kymberly D Young, Guilherme Wood, Susan Whitfield-Gabrieli, Feng Wan, Patrik Vuilleumier, François Vialatte, Dimitri Van De Ville, Doron Todder, Tanju Surmeli, James S Sulzer, Ute Strehl, Maurice Barry Sterman, Naomi J Steiner, Bettina Sorger, Surjo R Soekadar, Ranganatha Sitaram, Leslie H Sherlin, Michael Schönenberg, Frank Scharnowski, Manuel Schabus, Katya Rubia, Agostinho Rosa, Miriam Reiner, Jaime A Pineda, Christian Paret, Alexei Ossadtchi, Andrew A Nicholson, Wenya Nan, Javier Minguez, Jean-Arthur Micoulaud-Franchi, David M A Mehler, Michael Lührs, Joel Lubar, Fabien Lotte, David E J Linden, Jarrod A Lewis-Peacock, Mikhail A Lebedev, Ruth A Lanius, Andrea Kübler, Cornelia Kranczioch, Yury Koush, Lilian Konicar, Simon H Kohl, Silivia E Kober, Manousos A Klados, Camille Jeunet, T W P Janssen, Rene J Huster, Kerstin Hoedlmoser, Laurence M Hirshberg, Stephan Heunis, Talma Hendler, Michelle Hampson, Adrian G Guggisberg, Robert Guggenberger, John H Gruzelier, Rainer W Göbel, Nicolas Gninenko, Alireza Gharabaghi, Paul Frewen, Thomas Fovet, Thalía Fernández, Carlos Escolano, Ann-Christine Ehlis, Renate Drechsler, R Christopher deCharms, Stefan Debener, Dirk De Ridder, Eddy J Davelaar, Marco Congedo, Marc Cavazza, Marinus H M Breteler, Daniel Brandeis, Jerzy Bodurka, Niels Birbaumer, Olga M Bazanova, Beatrix Barth, Panagiotis D Bamidis, Tibor Auer, Martijn Arns, Robert T Thibault

Abstract

Neurofeedback has begun to attract the attention and scrutiny of the scientific and medical mainstream. Here, neurofeedback researchers present a consensus-derived checklist that aims to improve the reporting and experimental design standards in the field.

Keywords: checklist; consensus; guidelines; neurofeedback; regulation.

© The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain.

Figures

Figure 1
Figure 1
Multiple mechanisms drive the effects of neurofeedback training. Neurofeedback participants may benefit from: (i) the specific neurophysiological process of training a particular brain signal (green). Non-specific factors, including (ii) those unique to the neurofeedback environment (e.g. trainer-participant interaction in a neurotechnology context) (dark blue); and (iii) those that are common across interventions (e.g. all other benefits from engaging in a form of cognitive training as well as the psychosocial and placebo mechanisms related to participating in an experiment) (light blue). (iv) Repetition-related effects (purple). (v) Natural effects, which can be positive (e.g. cognitive development in childhood) or negative (e.g. cognitive decline in older age) (orange). These mechanisms may interact synergistically to create a greater overall effect, interact antagonistically to lessen the total benefit, or combine additively (for a discussion of this topic, see Rothman, 1974; Finnerup et al., 2010). By including control groups, carefully designing experiments, and measuring both brain activity and behaviour, researchers can better estimate the contribution from each of these mechanisms.
Figure 2
Figure 2
Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf) best practices checklist 2020. An online tool to complete this checklist is available at rtfin.org/CREDnf. Darker shaded boxes represent ‘essential’ checklist items; lightly shaded boxes represent ‘encouraged’ checklist items. We recommend using this checklist in conjunction with the standardized CRED-nf online tool (rtfin.org/CREDnf) and the CRED-nf article, which explains the motivation behind this checklist and provides details regarding many of the checklist items.

References

    1. Albers C, Lakens D. When power analyses based on pilot data are biased: inaccurate effect size estimators and follow-up bias. J Exp Soc Psychol 2018; 74: 187–95.
    1. Algermissen J, Mehler DM. May the power be with you: are there highly powered studies in neuroscience, and how can we get more of them? J Neurophysiol 2018; 119: 2114–7.
    1. Arnold LE, Lofthouse N, Hersch S, Pan X, Hurt E, Bates B, et al.EEG neurofeedback for ADHD: double-blind sham-controlled randomized pilot feasibility trial. J Atten Disord 2013; 17: 410–9.
    1. Babapoor-Farrokhran S, Vinck M, Womelsdorf T, Everling S. Theta and beta synchrony coordinate frontal eye fields and anterior cingulate cortex during sensorimotor mapping. Nat Commun 2017; 8: 1–4.
    1. Campbell DT, Stanley JC. Experimental and quasi-experimental designs for research. Ravenio Books; 2015.
    1. Cao B, Wang J, Zhang X, Yang X, Poon DC, Jelfs B, et al.Impairment of decision making and disruption of synchrony between basolateral amygdala and anterior cingulate cortex in the maternally separated rat. Neurobiol Learn Mem 2016; 136: 74–85.
    1. Costa-Ribeiro A, Maux A, Bosford T, Aoki Y, Castro R, Baltar A, et al.Transcranial direct current stimulation associated with gait training in Parkinson’s disease: a pilot randomized clinical trial. Dev Neurorehabil 2017; 20: 121–8.
    1. Cox WM, Subramanian L, Linden DE, Lührs M, McNamara R, Playle R, et al.Neurofeedback training for alcohol dependence versus treatment as usual: study protocol for a randomized controlled trial. Trials 2016; 17: 480.
    1. Davelaar EJ, Barnby JM, Almasi S, Eatough V. Differential subjective experiences in learners and non-learners in frontal alpha neurofeedback: piloting a mixed-method approach. Front Hum Neurosci 2018; 12: 402.
    1. deCharms RC, Maeda F, Glover GH, Ludlow D, Pauly JM, Soneji D, et al.Control over brain activation and pain learned by using real-time functional MRI. Proc Natl Acad Sci U S A 2005; 102: 18626–31.
    1. Dempster T, Vernon D. Identifying indices of learning for alpha neurofeedback training. Appl Psychophysiol Biofeedback 2009; 34: 309.
    1. Dutilh G, Sarafoglou A, Wagenmakers EJ. Flexible yet fair: Blinding analyses in experimental psychology. Synthese 2019; 1–28. doi: 10.1007/s11229-019-02456-7.
    1. Engel L, Beaton DE, Touma Z. Minimal clinically important difference: a review of outcome measure score interpretation. Rheum Dis Clin N Am 2018; 44: 177–88.
    1. Enriquez-Geppert S, Huster RJ, Herrmann CS. Boosting brain functions: Improving executive functions with behavioral training, neurostimulation, and neurofeedback. Int J Psychophysiol 2013; 88: 1–6.
    1. Enriquez-Geppert S, Huster RJ, Herrmann CS. EEG-neurofeedback as a tool to modulate cognition and behavior: a review tutorial. Front Hum Neurosci 2017; 11: 51.
    1. Enriquez-Geppert S, Huster RJ, Scharfenort R, Mokom ZN, Zimmermann J, Herrmann CS, Modulation of frontal-midline theta by neurofeedback. Biol Psychol 2014; 95: 59–69.
    1. Fernández T, Bosch-Bayard J, Harmony T, Caballero MI, Díaz-Comas L, Galán L, et al.Neurofeedback in learning disabled children: visual versus auditory reinforcement. Appl Psychophysiol Biofeedback 2016; 41: 27–37.
    1. Finnerup NB, Sindrup SH, Jensen TS. The evidence for pharmacological treatment of neuropathic pain. Pain 2010; 150: 573–81.
    1. Fovet T, Micoulaud-Franchi JA, Vialatte FB, Lotte F, Daudet C, Batail JM, et al.On assessing neurofeedback effects: should double-blind replace neurophysiological mechanisms? Brain 2017; 140: e63.
    1. Gross J, Baillet S, Barnes GR, Henson RN, Hillebrand A, Jensen O, et al.Good practice for conducting and reporting MEG research. NeuroImage 2013; 65: 349–63.
    1. Holtmann M, Pniewski B, Wachtlin D, Wörz S, Strehl U. Neurofeedback in children with attention-deficit/hyperactivity disorder (ADHD)–a controlled multicenter study of a non-pharmacological treatment approach. BMC Pediatr 2014; 14: 202.
    1. Huster RJ, Mokom ZN, Enriquez-Geppert S, Herrmann CS. Brain-computer interfaces for EEG neurofeedback: peculiarities and solutions. Int J Psychophysiol 2014; 91: 36–45.
    1. Kamiya J. The first communications about operant conditioning of the EEG. J Neurother 2011; 15: 65–73.
    1. Kober SE, Witte M, Ninaus M, Neuper C, Wood G. Learning to modulate one's own brain activity: the effect of spontaneous mental strategies. Front Hum Neurosci 2013; 7: 695.
    1. Kolahi J, Bang H, Park J. Towards a proposal for assessment of blinding success in clinical trials: up-to-date review. Community Dent Oral Epidemiol 2009; 37: 477–84.
    1. Kropotov JD, Grin-Yatsenko VA, Ponomarev VA, Chutko LS, Yakovenko EA, Nikishena IS. ERPs correlates of EEG relative beta training in ADHD children. Int J Psychophysiol 2005; 55: 23–34.
    1. Lakens D, Scheel AM, Isager PM. Equivalence testing for psychological research: a tutorial. Adv Methods Pract Psychol Sci 2018; 1: 259–69.
    1. Linden D. Brain control: developments in therapy and implications for society. 1st edn Basingstoke, Hampshire: Palgrave Macmillan; 2014.
    1. MacInnes JJ, Dickerson KC, Kuei Chen N, Adcock RA. Cognitive neurostimulation: learning to volitionally sustain ventral tegmental area activation. Neuron 2016; 89: 1331–42.
    1. Marxen M, Jacob MJ, Müller DK, Posse S, Ackley E, Hellrung L, et al.Amygdala regulation following fMRI-neurofeedback without instructed strategies. Front Hum Neurosci 2016; 10: 1–14.
    1. Mehler DM, Sokunbi MO, Habes I, Barawi K, Subramanian L, Range M, et al.Targeting the affective brain—a randomized controlled trial of real-time fMRI neurofeedback in patients with depression. Neuropsychopharmacology 2018; 43: 2578–85.
    1. Mehler DMA, Williams AN, Whittaker JR, Krause F, Lührs M, Wise RG, et al.Study pre-registration: Gradual real-time fMRI neurofeedback training of motor imagery in middle cerebral artery stroke patients [Internet]. 2017. Available from: .
    1. Micoulaud-Franchi J-A, Fovet T. Neurofeedback: time needed for a promising non-pharmacological therapeutic method. Lancet Psychiatry 2016; 3: e16.
    1. Micoulaud-Franchi J-A, Fovet T. A framework for disentangling the hyperbolic truth of neurofeedback: comment on Thibault and Raz (2017). Am Psychol 2018; 73: 933–5.
    1. Nan W, Rodrigues JP, Ma J, Qu X, Wan F, Mak PI, et al.Individual alpha neurofeedback training effect on short term memory. Int J Psychophysiol 2012; 86: 83–7.
    1. Nichols TE, Das S, Eickhoff SB, Evans AC, Glatard T, Hanke M, et al.Best practices in data analysis and sharing in neuroimaging using MRI. Nat Neurosci 2017; 20: 299–303.
    1. Nieuwenhuis S, Forstmann BU, Wagenmakers E. Erroneous analyses of interactions in neuroscience: a problem of significance. Nat Neurosci 2011; 14: 1105–9.
    1. Pernet C, Garrido M, Gramfort A, Maurits N, Michel C, Pang E, et al. Best practices in data analysis and sharing in neuroimaging using MEEG. PsyArXiv 2018
    1. Pichiorri F, Morone G, Petti M, Toppi J, Pisotta I, Molinari M, et al.Brain-computer interface boosts motor imagery practice during stroke recovery. Ann Neurol 2015; 77: 851–65.
    1. Pigott HE, Trullinger M, Harbin H, Cammack J, Harbin F, Cannon R. Confusion regarding operant conditioning of the EEG. Lancet Psychiatry 2017; 4: 897.
    1. Ros T, Baars BJ, Lanius RA, Vuilleumier P. Tuning pathological brain oscillations with neurofeedback: a systems neuroscience framework. Front Hum Neurosci 2014; 8: 1008.
    1. Ros T, Michela A, Bellman A, Vuadens P, Saj A, Vuilleumier P. Increased alpha-rhythm dynamic range promotes recovery from visuospatial neglect: a neurofeedback study. Neural Plast 2017; 2017: 7407241.
    1. Rothman KJ. Synergy and antagonism in cause-effect relationships. Am J Epidemiol 1974; 99: 385–88.
    1. Schabus M. Reply: on assessing neurofeedback effects: should double-blind replace neurophysiological mechanisms? Brain 2017; 140: e64.
    1. Schabus M. Reply: Noisy but not placebo: defining metrics for effects of neurofeedback. Brain 2018; 141: e41.
    1. Schabus M, Griessenberger H, Gnjezda MT, Heib DP, Wislowska M, Hoedlmoser K. Better than sham? A double-blind placebo-controlled neurofeedback study in primary insomnia. Brain 2017; 140: 1041–52.
    1. Schafer RJ, Moore T. Selective attention from voluntary control of neurons in prefrontal cortex. Science 2011; 332: 1568–71.
    1. Schönenberg M, Wiedemann E, Schneidt A, Scheeff J, Logemann A, Keune PM, et al.Neurofeedback, sham neurofeedback, and cognitive-behavioural group therapy in adults with attention-deficit hyperactivity disorder: a triple-blind, randomised, controlled trial. Lancet Psychiatry 2017a; 4: 673–84.
    1. Schönenberg M, Wiedemann E, Schneidt A, Scheeff J, Logemann A, Keune PM, et al.Confusion regarding operant conditioning of the EEG–authors’ reply. Lancet Psychiatry 2017b; 4: 897–8.
    1. Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials of TO. Ann Intern Med 2010; 152: 726–32.
    1. Sitaram R, Ros T, Stoeckel LE, Haller S, Scharnowski F, Lewis-Peacock J, et al.Closed-loop brain training: the science of neurofeedback. Nat Rev Neurosci 2017; 18: 86–100.
    1. Sorger B, Kamp T, Weiskopf N, Peters JC, Goebel R. When the brain takes ‘BOLD’ steps: real-time fMRI neurofeedback can further enhance the ability to gradually self-regulate regional brain activation. Neuroscience 2018; 378: 71–88.
    1. Sorger B, Scharnowski F, Linden DE, Hampson M, Young KD. Control freaks: Towards optimal selection of control conditions for fMRI neurofeedback studies. Neuroimage 2019; 186: 256–65.
    1. Steiner NJ, Frenette EC, Rene KM, Brennan RT, Perrin EC. Neurofeedback and cognitive attention training for children with attention-deficit hyperactivity disorder in schools. J Dev Behav Pediatr 2014; 35: 18–27.
    1. Sterman MB, Howe RC, Macdonald LR. Facilitation of spindle-burst sleep by conditioning of electroencephalographic activity while awake. Science 1970; 167: 1146–8.
    1. Strehl U, Aggensteiner P, Wachtlin D, Brandeis D, Albrecht B, Arana M, et al.Neurofeedback of slow cortical potentials in children with attention-deficit/hyperactivity disorder: a multicenter randomized trial controlling for unspecific effects. Front Hum Neurosci 2017; 11: 1–15.
    1. The Collaborative Neurofeedback Group. A proposed multisite double-blind randomized clinical trial of neurofeedback for ADHD: need, rationale, and strategy. J Atten Disord 2013; 17: 420–36.
    1. Thibault RT, Lifshitz M, Raz A. Neurofeedback or neuroplacebo? Brain 2017; 140: 862–4.
    1. Thibault RT, Lifshitz M, Raz A. The climate of neurofeedback: scientific rigour and the perils of ideology. Brain 2018; 141: e11.
    1. Thibault RT, Raz A. Neurofeedback: the power of psychosocial therapeutics. Lancet Psychiatry 2016; 3: e18.
    1. Thibault RT, Raz A. When can neurofeedback join the clinical armamentarium? Lancet Psychiatry 2016; 3: 497–8.
    1. Thibault RT, Raz A. The psychology of neurofeedback: clinical intervention even if applied placebo. Am Psychol 2017; 72: 679–88.
    1. Watanabe T, Sasaki Y, Shibata K, Kawato M. Advances in fMRI Real-Time Neurofeedback. Trends Cogn Sci 2017; 21: 997–1010.
    1. Witte M, Kober SE, Wood G. Noisy but not placebo: defining metrics for effects of neurofeedback. Brain 2018: 1–3.
    1. Wood G, Kober SE. EEG neurofeedback is under strong control of psychosocial factors. Appl Psychophysiol Biofeedback 2018; 43: 293–300.
    1. Young KD, Misaki M, Harmer CJ, Victor T, Zotev V, Phillips R, et al.Real-time functional magnetic resonance imaging amygdala neurofeedback changes positive information processing in major depressive disorder. Biol Psychiatry 2017a; 82: 578–86.
    1. Young KD, Siegle GJ, Zotev V, Phillips R, Misaki M, Yuan H, et al.Randomized clinical trial of real-time fMRI amygdala neurofeedback for major depressive disorder: effects on symptoms and autobiographical memory recall. Am J Psychiatry 2017b; 174: 748–55.
    1. Young KD, Zotev V, Phillips R, Misaki M, Yuan H, Drevets WC, et al.Real-time FMRI neurofeedback training of amygdala activity in patients with major depressive disorder. PLoS ONE 2014; 9: e88785.
    1. Zich C, Debener S, De Vos M, Frerichs S, Maurer S, Kranczioch C. Lateralization patterns of covert but not overt movements change with age: an EEG neurofeedback study. NeuroImage 2015; 116: 80–91.
    1. Zoefel B, Huster RJ, Herrmann CS. Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. NeuroImage 2011; 54: 1427–31.

Source: PubMed

3
구독하다