COSIMO - patients with active cancer changing to rivaroxaban for the treatment and prevention of recurrent venous thromboembolism: a non-interventional study

Alexander T Cohen, Anthony Maraveyas, Jan Beyer-Westendorf, Agnes Y Y Lee, Lorenzo G Mantovani, Miriam Bach, COSIMO Investigators, Hayley Dawson, Alexander T Cohen, Anthony Maraveyas, Jan Beyer-Westendorf, Agnes Y Y Lee, Lorenzo G Mantovani, Miriam Bach, COSIMO Investigators, Hayley Dawson

Abstract

Background: Around 20% of venous thromboembolism (VTE) cases occur in patients with cancer. Current guidelines recommend low molecular weight heparin (LMWH) as the preferred anticoagulant for VTE treatment. However, some guidelines state that vitamin K antagonists (VKAs) and direct oral anticoagulants (DOACs) are acceptable alternatives for long-term therapy in some patients if LMWHs are not available. LMWHs and VKAs have a number of drawbacks that can increase the burden on patients. DOACs, such as rivaroxaban, can ameliorate some burdens and may offer an opportunity to increase patient satisfaction and health-related quality of life (HRQoL). The Cancer-associated thrOmboSIs - patient-reported outcoMes with rivarOxaban (COSIMO) study is designed to provide real-world information on treatment satisfaction in patients with active cancer who switch from LMWH or VKA to rivaroxaban for the treatment of acute VTE or to prevent recurrent VTE.

Methods: COSIMO is a prospective, non-interventional, single-arm cohort study that aims to recruit 500 patients in Europe, Canada and Australia. Adults with active cancer who are switching to rivaroxaban having received LMWH/VKA for the treatment and secondary prevention of recurrent VTE for at least the previous 4 weeks are eligible. Patients will be followed for 6 months. The primary outcome is treatment satisfaction assessed as change in the Anti-Clot Treatment Scale (ACTS) Burdens score at week 4 after enrolment compared with baseline. Secondary outcomes include treatment preferences, measured using a discrete choice experiment, change in ACTS Burdens score at months 3 and 6, and change in HRQoL (assessed using the Functional Assessment of Chronic Illness Therapy - Fatigue questionnaire). COSIMO will collect data on patients' medical history, patterns of anticoagulant use and incidence of bleeding and thromboembolic events. Study recruitment started in autumn 2016.

Conclusions: COSIMO will provide information on outcomes associated with switching from LMWH or VKA therapy to rivaroxaban for the treatment or secondary prevention of cancer-associated thrombosis in a real-life setting. The key goal is to assess whether there is a change in patient-reported treatment satisfaction. In addition, COSIMO will facilitate the evaluation of the safety and effectiveness of rivaroxaban in preventing recurrent VTE in this patient population.

Trial registration: NCT02742623. Registered 19 April 2016.

Keywords: Active cancer; Health-related quality of life; Low molecular weight heparin; Patient preference; Recurrent venous thromboembolism; Rivaroxaban; Vitamin K antagonist.

Conflict of interest statement

Documented approval from appropriate independent ethics committees/institutional review boards will be obtained for all participating centres prior to study start. Patients will be asked to provide signed informed consent forms before joining the study. Few patients have yet completed the study, and so no data are available to share.Not applicable.ATC reports grants and personal fees from Bayer during the conduct of the study; personal fees from Boehringer Ingelheim, grants and personal fees from Bristol-Myers Squibb, grants and personal fees from Daiichi Sankyo Europe, personal fees from Johnson & Johnson, grants and personal fees from Pfizer, personal fees from Portola, personal fees from Sanofi, personal fees from XO1, personal fees from Janssen, personal fees from ONO Pharmaceuticals, outside the submitted work; AM reports personal fees and non-financial support from Bayer, during the conduct of the study; personal fees and non-financial support from Bayer, grants from Bristol-Myers Squibb, other from Pfizer, outside the submitted work; JB-W reports grants and personal fees from Bayer, grants and personal fees from Boehringer Ingelheim, grants and personal fees from Daiichi Sankyo, grants and personal fees from Pfizer, outside the submitted work; AYYL reports other from Bayer, during the conduct of the study; LGM reports personal fees from Bayer, during the conduct of the study; grants and personal fees from Boehringer Ingelheim, personal fees from Pfizer, grants from Daiichi Sankyo, outside the submitted work; MB is an employee of Bayer AG.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Initial and long-term anticoagulant therapy in patients with cancerb and a first episode of VTE – data from the RIETE registry [22]. aIncludes unfractionated heparin and thrombolytic agents. bDefined as newly diagnosed cancer, metastatic cancer or cancer undergoing treatment. LMWH, low molecular weight heparin; PE, pulmonary embolism; VKA, vitamin K antagonist; VTE, venous thromboembolism
Fig. 2
Fig. 2
COSIMO – study design and data collection. aDCE per telephone interview 4–12 weeks after starting rivaroxaban treatment. bPatients treated for at least 4 weeks of SOC anticoagulation therapy with LMWH or VKA therapy. cFor previous anticoagulation therapy. dFor rivaroxaban treatment. eIncluding anti-cancer medication. fHaemoglobin, haematocrit, white blood cells, platelets, electrolytes, C-reactive protein, serum creatinine, CrCl, liver enzymes and haemoccult test. ACTS, Anti-Clot Treatment Scale; CrCl, creatinine clearance; DCE, discrete choice experiment; DVT, deep vein thrombosis; FACIT, Functional Assessment of Chronic Illness Therapy – Fatigue questionnaire; LMWH, low molecular weight heparin; PE, pulmonary embolism; SOC, standard of care; VKA, vitamin K antagonist

References

    1. Ay C, Pabinger I, Cohen AT. Cancer-associated venous thromboembolism: burden, mechanisms, and management. Thromb Haemost. 2017;117:219–230. doi: 10.1160/TH16-08-0615.
    1. Horsted F, West J, Grainge MJ. Risk of venous thromboembolism in patients with cancer: a systematic review and meta-analysis. PLoS Med. 2012;9:e1001275. doi: 10.1371/journal.pmed.1001275.
    1. Cohen AT, Katholing A, Rietbrock S, Bamber L, Martinez C. Epidemiology of first and recurrent venous thromboembolism in patients with active cancer. A population-based cohort study. Thromb Haemost. 2017;117:57–65. doi: 10.1160/TH16-10-0793.
    1. Khorana AA, Francis CW, Culakova E, Kuderer NM, Lyman GH. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J Thromb Haemost. 2007;5:632–634. doi: 10.1111/j.1538-7836.2007.02374.x.
    1. Prandoni P, Lensing AWA, Piccioli A, Bernardi E, Simioni P, Girolami B, et al. Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis. Blood. 2002;100:3484–3488. doi: 10.1182/blood-2002-01-0108.
    1. Lee AY, Levine MN, Baker RI, Bowden C, Kakkar AK, Prins M, et al. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N Engl J Med. 2003;349:146–153. doi: 10.1056/NEJMoa025313.
    1. Lee AY, Kamphuisen PW, Meyer G, Bauersachs R, Janas MS, Jarner MF, et al. Tinzaparin vs warfarin for treatment of acute venous thromboembolism in patients with active cancer: a randomized clinical trial. JAMA. 2015;314:677–686. doi: 10.1001/jama.2015.9243.
    1. Francis CW, Kessler CM, Goldhaber SZ, Kovacs MJ, Monreal M, Huisman MV, et al. Treatment of venous thromboembolism in cancer patients with dalteparin for up to 12 months: the DALTECAN Study. J Thromb Haemost. 2015;13:1028–1035. doi: 10.1111/jth.12923.
    1. Noble S, Prout H, Nelson A. Patients' Experiences of LIving with CANcer-associated thrombosis: the PELICAN study. Patient Prefer Adherence. 2015;9:337–345. doi: 10.2147/PPA.S79373.
    1. Blom JW, Doggen CJ, Osanto S, Rosendaal FR. Malignancies, prothrombotic mutations, and the risk of venous thrombosis. JAMA. 2005;293:715–722. doi: 10.1001/jama.293.6.715.
    1. Qureshi W, Ali Z, Amjad W, Alirhayim Z, Farooq H, Qadir S, et al. Venous thromboembolism in cancer: an update of treatment and prevention in the era of newer anticoagulants. Front Cardiovasc Med. 2016;3:24. doi: 10.3389/fcvm.2016.00024.
    1. Mandala M, Falanga A, Roila F. Management of venous thromboembolism (VTE) in cancer patients: ESMO Clinical Practice Guidelines. Ann Oncol. 2011;22(Suppl 6):vi85–vi92.
    1. Lyman GH, Bohlke K, Khorana AA, Kuderer NM, Lee AY, Arcelus JI, et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: American Society of Clinical Oncology clinical practice guideline update 2014. J Clin Oncol. 2015;33:654–656. doi: 10.1200/JCO.2014.59.7351.
    1. National Comprehensive Cancer Network. Cancer-associated venous thromboembolic disease, version 1.2016. National Comprehensive Cancer Network, Inc. 2016. . Accessed 27 October 2017.
    1. Kearon C, Akl EA, Ornelas J, Blaivas A, Jimenez D, Bounameaux H, et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest. 2016;149:315–352. doi: 10.1016/j.chest.2015.11.026.
    1. Lyman GH, Khorana AA, Kuderer NM, Lee AY, Arcelus JI, Balaban EP, et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2013;31:2189–2204. doi: 10.1200/JCO.2013.49.1118.
    1. Wharin C, Tagalakis V. Management of venous thromboembolism in cancer patients and the role of the new oral anticoagulants. Blood Rev. 2014;28:1–8. doi: 10.1016/j.blre.2013.11.001.
    1. Konstantinides SV, Torbicki A, Agnelli G, Danchin N, Fitzmaurice D, Galiè N, et al. 2014 ESC Guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J. 2014;35:3033–3069. doi: 10.1093/eurheartj/ehu243.
    1. Raskob GE, van Es N, Verhamme P, Carrier M, Di Nisio M, Garcia D, et al. Edoxaban for the treatment of cancer-associated venous thromboembolism. N Engl J Med. 2018;378:615–624. doi: 10.1056/NEJMoa1711948.
    1. Young AM, Marshall A, Thirlwall J, Chapman O, Lokare A, Hill C, et al. Comparison of an oral factor Xa inhibitor with low molecular weight heparin in patients with cancer with venous thromboembolism: results of a randomized trial (select-d). J Clin Oncol. 2018 10.1200/jco.2018.78.8034. Jco2018788034
    1. Farge D, Bounameaux H, Brenner B, Cajfinger F, Debourdeau P, Khorana AA, et al. International clinical practice guidelines including guidance for direct oral anticoagulants in the treatment and prophylaxis of venous thromboembolism in patients with cancer. Lancet Oncol. 2016;17:e452–e466. doi: 10.1016/S1470-2045(16)30369-2.
    1. Ageno W, Samperiz A, Caballero R, Dentali F, Di Micco P, Prandoni P, et al. Duration of anticoagulation after venous thromboembolism in real world clinical practice. Thromb Res. 2015;135:666–672. doi: 10.1016/j.thromres.2015.02.001.
    1. Khorana AA, Yannicelli D, McCrae KR, Milentijevic D, Crivera C, Nelson WW, et al. Evaluation of US prescription patterns: Are treatment guidelines for cancer-associated venous thromboembolism being followed? Thromb Res. 2016;145:51–53. doi: 10.1016/j.thromres.2016.07.013.
    1. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37:2893–2962. doi: 10.1093/eurheartj/ehw210.
    1. Noble S, Matzdorff A, Maraveyas A, Holm MV, Pisa G. Assessing patients' anticoagulation preferences for the treatment of cancer-associated thrombosis using conjoint methodology. Haematologica. 2015;100:1486–1492. doi: 10.3324/haematol.2015.127126.
    1. Cano SJ, Lamping DL, Bamber L, Smith S. The Anti-Clot Treatment Scale (ACTS) in clinical trials: cross-cultural validation in venous thromboembolism patients. Health Qual Life Outcomes. 2012;10:120. doi: 10.1186/1477-7525-10-120.
    1. Böttger B, Thate-Waschke IM, Bauersachs R, Kohlmann T, Wilke T. Preferences for anticoagulation therapy in atrial fibrillation: the patients' view. J Thromb Thrombolysis. 2015;40:406–415. doi: 10.1007/s11239-015-1263-x.
    1. Kapoor A, Singhal MK, Bagri PK, Narayan S, Beniwal S, Kumar HS. Cancer related fatigue: A ubiquitous problem yet so under reported under recognized and under treated. South Asian J Cancer. 2015;4:21–23. doi: 10.4103/2278-330X.149942.
    1. Ageno W, Mantovani LG, Haas S, Kreutz R, Monje D, Schneider J, et al. Subgroup analysis of patients with cancer in XALIA: a noninterventional study of rivaroxaban versus standard anticoagulation for VTE. TH Open. 2017;1:e33–e42. doi: 10.1055/s-0037-1603924.
    1. Lee AY, Bauersachs R, Janas MS, Jarner MF, Kamphuisen PW, Meyer G, et al. CATCH: a randomised clinical trial comparing long-term tinzaparin versus warfarin for treatment of acute venous thromboembolism in cancer patients. BMC Cancer. 2013;13:284. doi: 10.1186/1471-2407-13-284.
    1. Bamber L, Wang MY, Prins MH, Ciniglio C, Bauersachs R, Lensing AWA, et al. Patient-reported treatment satisfaction with oral rivaroxaban versus standard therapy in the treatment of acute symptomatic deep-vein thrombosis. Thromb Haemost. 2013;110:732–741. doi: 10.1160/TH13-03-0243.
    1. Prins MH, Bamber L, Cano SJ, Wang MY, Erkens PM, Bauersachs R, et al. Patient-reported treatment satisfaction with oral rivaroxaban versus standard therapy in the treatment of pulmonary embolism; results from the EINSTEIN PE trial. Thromb Res. 2015;135:281–288. doi: 10.1016/j.thromres.2014.11.008.
    1. Prins MH, Lensing AWA, Brighton TA, Lyons RM, Rehm J, Trajanovic M, et al. Oral rivaroxaban versus enoxaparin with vitamin K antagonist for the treatment of symptomatic venous thromboembolism in patients with cancer (EINSTEIN-DVT and EINSTEIN-PE): a pooled subgroup analysis of two randomised controlled trials. Lancet Haematol. 2014;1:e37–e46. doi: 10.1016/S2352-3026(14)70018-3.
    1. Raskob GE, Van Es N, Verhamme P, Carrier M, Di Nisio M, Garcia DA, et al. Randomized, open-label, blinded outcome assessment trial evaluating the efficacy and safety of LMWH/edoxaban versus dalteparin for venous thromboembolism associated with cancer: Hokusai VTE-Cancer study. American Society of Hematology 59th Annual Meeting and Exposition. Atlanta, USA, 9–12 December 2017, Abstract LBA-6 A.
    1. Bott-Kitslaar DM, Saadiq RA, McBane RD, Loprinzi CL, Ashrani AA, Ransone TR, et al. Efficacy and safety of rivaroxaban in patients with venous thromboembolism and active malignancy: a single-center registry. Am J Med. 2016;129:615–619. doi: 10.1016/j.amjmed.2015.12.025.
    1. Mantha S, Laube E, Miao Y, Sarasohn DM, Parameswaran R, Stefanik S, et al. Safe and effective use of rivaroxaban for treatment of cancer-associated venous thromboembolic disease: a prospective cohort study. J Thromb Thrombolysis. 2017;43:166–171. doi: 10.1007/s11239-016-1429-1.
    1. Hummert SE, Gilreath J, Rodgers GM, Wilson N, Stenehjem DD. Comparative evaluation of the safety and effectiveness of rivaroxaban (riva) and enoxaparin (enox) for treatment of venous thromboembolism (VTE) in cancer patients. J Clin Oncol. 2017;35:suppl.e18268.
    1. Bamber L, Cano SJ, Lamping DL, Wang MY, Prins MH, Bauersachs R, et al. Patient-reported treatment satisfaction with oral rivaroxaban versus standard therapy in the treatment of symptomatic deep vein thrombosis (DVT) J Thromb Haemost. 2011;9:859. doi: 10.1111/j.1538-7836.2011.04197.x.
    1. Fadoi Foundation, University of Perugia. Apixaban for the treatment of venous thromboembolism in patients with cancer (CARAVAGGIO). 2018. . Accessed 19 June 2018.
    1. McBane RD, Loprinzi CL, Ashrani A, Perez-Botero J, Leon Ferre RA, Henkin S, et al. Apixaban and dalteparin in active malignancy associated venous thromboembolism. The ADAM VTE Trial. Thromb Haemost. 2017;117:1952–1961. doi: 10.1160/TH17-03-0193.
    1. Assistance Publique Hopitaux de Paris. Cancer associated thrombosis, a pilot treatment study using rivaroxaban (CASTA-DIVA). 2017. . Accessed 19 June 2018.
    1. Riess H, Sinn M, Kreher S, für den Arbeitskreis Hämostaseologie der Deutschen Gesellschaft für Hämatologie und Medizinische Onkologie (DGHO). [CONKO-011: Evaluation of patient satisfaction with the treatment of acute venous thromboembolism with rivaroxaban or low molecular weight heparin in cancer patients. A randomized phase III study]. Dtsch Med Wochenschr. 2015;140(Suppl 1):S22–S3.
    1. Alliance Foundation Trials LLC, Patient-Centered Outcomes Research Institute. Direct oral anticoagulants versus LMWH +/- warfarin for VTE in cancer (CANVAS). 2017. . Accessed 19 June 2018.
    1. Bach M, Bauersachs R. Spotlight on advances in VTE management: CALLISTO and EINSTEIN CHOICE. Thromb Haemost. 2016;116:S24–S32. doi: 10.1160/TH16-06-0486.
    1. Samsa G, Matchar DB, Dolor RJ, Wiklund I, Hedner E, Wygant G, et al. A new instrument for measuring anticoagulation-related quality of life: development and preliminary validation. Health Qual Life Outcomes. 2004;2:22. doi: 10.1186/1477-7525-2-22.
    1. The EINSTEIN Investigators Oral rivaroxaban for symptomatic venous thromboembolism. N Engl J Med. 2010;363:2499–2510. doi: 10.1056/NEJMoa1007903.
    1. Moia M, Mantovani LG, Carpenedo M, Scalone L, Monzini MS, Cesana G, et al. Patient preferences and willingness to pay for different options of anticoagulant therapy. Intern Emerg Med. 2013;8:237–243. doi: 10.1007/s11739-012-0844-3.
    1. Reed Johnson F, Lancsar E, Marshall D, Kilambi V, Muhlbacher A, Regier DA, et al. Constructing experimental designs for discrete-choice experiments: report of the ISPOR Conjoint Analysis Experimental Design Good Research Practices Task Force. Value Health. 2013;16:3–13. doi: 10.1016/j.jval.2012.08.2223.
    1. Ryan M. Discrete choice experiments in health care. BMJ. 2004;328:360–361. doi: 10.1136/bmj.328.7436.360.
    1. Cella D, Peterman A, Passik S, Jacobsen P, Breitbart W. Progress toward guidelines for the management of fatigue. Oncology (Williston Park ). 1998;12:369–377.
    1. Acaster S, Dickerhoof R, DeBusk K, Bernard K, Strauss W, Allen LF. Qualitative and quantitative validation of the FACIT-fatigue scale in iron deficiency anemia. Health Qual Life Outcomes. 2015;13:60. doi: 10.1186/s12955-015-0257-x.
    1. Webster K, Cella D, Yost K. The functional assessment of chronic illness therapy (FACIT) measurement system: properties, applications. and interpretation. Health Qual Life Outcomes. 2003;1:79. doi: 10.1186/1477-7525-1-79.

Source: PubMed

3
구독하다