Arterial Stiffness and Indices of Left Ventricular Diastolic Dysfunction in Patients with Embolic Stroke of Undetermined Etiology

Paulina Gąsiorek, Agata Sakowicz, Maciej Banach, Stephan von Haehling, Agata Bielecka-Dabrowa, Paulina Gąsiorek, Agata Sakowicz, Maciej Banach, Stephan von Haehling, Agata Bielecka-Dabrowa

Abstract

Purpose: The study is aimed at identifying echocardiographic and circulating biomarkers as well as hemodynamic indices of embolic stroke of undetermined etiology (ESUS) in patients aged <65.

Methods: We prospectively investigated 520 patients with confirmed ischemic stroke and selected those 65 patients who were diagnosed with ESUS (age 54 (47-58) years, 42% male). An additional 36 without stroke but with a similar risk profile were included as a control group (age 53 (47-58) years, 61% male). All patients underwent echocardiography, noninvasive assessment of hemodynamic parameters using a SphygmoCor tonometer (AtCor Med., Australia), and measurements of selected biomarkers.

Results: ESUS patients and controls were well matched for baseline characteristics including blood pressure and left ventricular ejection fraction (LVEF). Compared to controls, patients with ESUS had lower mean early diastolic (E') and systolic (S') mitral annular velocities and a higher ratio of the peak velocity of early diastolic transmitral flow to the peak velocity of early diastolic mitral annular motion (all p < 0.01). The peak velocity flow in the late diastole (A wave) value and LV mass indexed to the body surface area (LVMI) (g/m2) were higher in the ESUS group than in the control group (both p < 0.01). The isovolumetric relaxation time (IVRT) was longer and the mean left atrial volume index (LAVI) was higher in ESUS patients compared to the control group. Parameters of arterial stiffness such as augmentation pressure, augmentation index, and augmentation index adjusted to a heart rate of 75 bpm (AIx75) were higher in ESUS patients compared to controls (p < 0.05). Patients in the ESUS group had higher levels of asymmetric dimethylarginine, interleukin 6, and N-terminal probrain natriuretic peptide (NT-proBNP, all p < 0.05) than those in the control group. In multivariate analysis, the following factors were significantly associated with the presence of ESUS: AIx75 (odds ratio (OR) 1.095, 95% confidence interval (CI) 1.004-1.194; p = 0.04), IVRT (OR 1.045, 95% CI: 1.009-1.082; p = 0.014), LAVI (OR 1.3, 95% CI: 1.099-1.537; p = 0.002), and NT-proBNP (OR 1.003, 95% CI: 1.001-1.005; p = 0.005).

Conclusions: Increased arterial stiffness and indices of diastolic dysfunction as well as a higher NT-proBNP level are significantly associated with ESUS. These parameters require further scrutiny over time to understand their impact on the development of symptomatic heart failure. The ClinicalTrials.gov identifier is NCT03377465.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Copyright © 2019 Paulina Gąsiorek et al.

Figures

Figure 1
Figure 1
ROC chart for LAVI.
Figure 2
Figure 2
ROC chart for NT-proBNP.

References

    1. Feigin V. L., Forouzanfar M. H., Krishnamurthi R., et al. Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. The Lancet. 2014;383(9913):245–255. doi: 10.1016/S0140-6736(13)61953-4.
    1. Shirwany N. A., Zou M. H. Arterial stiffness: a brief review. Acta Pharmacologica Sinica. 2010;31(10):1267–1276. doi: 10.1038/aps.2010.123.
    1. Hart R. G., Catanese L., Perera K. S., Ntaios G., Connolly S. J. Embolic stroke of undetermined source. Stroke. 2017;48(4):867–872. doi: 10.1161/strokeaha.116.016414.
    1. Hui C., Patti L. Ischemic Stroke. Source StatPearls [Internet] Treasure Island (FL): StatPearls Publishing; 2018.
    1. Ladeira F., Barbosa R., Caetano A., Mendonça M. D., Calado S., Viana-Baptista M. Embolic stroke of unknown source (ESUS) in young patients. International Journal of Stroke. 2015;10(Supplement A100):p. 165. doi: 10.1111/ijs.12596.
    1. Gąsiorek P. E., Banach M., Maciejewski M., et al. Established and potential echocardiographic markers of embolism and their therapeutic implications in patients with ischemic stroke. Cardiology Journal. 2013 doi: 10.5603/CJ.a2018.0046.
    1. Abdul-Rahim A. H., Perez A. C., MacIsaac R. L., et al. Candesartan in Heart failure Assessment of Reduction in Mortality and Morbidity-Preserved (CHARM-Preserved) and the Irbesartan in Heart Failure with Preserved Systolic Function (I-Preserve) Steering Committees. Risk of stroke in chronic heart failure patients with preserved ejection fraction, but without atrial fibrillation: analysis of the CHARM-Preserved and I-Preserve trials. European Heart Journal. 2017;38(10):742–750.
    1. Han E. Y., Kim B. R., Joo S. J., et al. Arterial stiffness in subacute stroke: changing pattern and relationship with functional recovery. Journal of Stroke and Cerebrovascular Diseases. 2017;26(5):922–929. doi: 10.1016/j.jstrokecerebrovasdis.2016.10.040.
    1. Gąsiorek P., Banach M., Sakowicz A., et al. The potential role of inflammation in cryptogenic stroke. Advances in Medical Sciences. 2019;64(2):381–387. doi: 10.1016/j.advms.2019.06.001.
    1. Gójska-Grymajło A., Zieliński M., Gąsecki D., et al. CD271+, CXCR7+, CXCR4+, and CD133+ stem/progenitor cells and clinical characteristics of acute ischemic stroke patients. Neuromolecular Medicine. 2018;20(3):301–311. doi: 10.1007/s12017-018-8494-x.
    1. Bielecka-Dabrowa A., Gasiorek P., Sakowicz A., Banach M. P6389Arterial stiffness and indices of diastolic heart failure as predictors of ischemic strokes of undetermined etiology. European Heart Journal. 2018;39(suppl_1) doi: 10.1093/eurheartj/ehy566.P6389.
    1. Hart R. G., Diener H. C., Coutts S. B., et al. Embolic strokes of undetermined source: the case for a new clinical construct. The Lancet Neurology. 2014;13(4):429–438. doi: 10.1016/s1474-4422(13)70310-7.
    1. Saric M., Armour A. C., Arnaout M. S., et al. Guidelines for the use of echocardiography in the evaluation of a cardiac source of embolism. Journal of the American Society of Echocardiography. 2016;29(1):1–42. doi: 10.1016/j.echo.2015.09.011.
    1. Nagueh S. F., Smiseth O. A., Appleton C. P., et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. European Heart Journal – Cardiovascular Imaging. 2016;17(12):1321–1360. doi: 10.1093/ehjci/jew082.
    1. Nilsson B. M., Lindström L., Mohsen I., Holmlöv K., Bodén R. Persistent tachycardia in clozapine treated patients: a 24-hour ambulatory electrocardiogram study. Schizophrenia Research. 2018;199:403–406. doi: 10.1016/j.schres.2018.03.017.
    1. Holland D. J., Sacre J. W., Leano R. L., Marwick T. H., Sharman J. E. Contribution of abnormal central blood pressure to left ventricular filling pressure during exercise in patients with heart failure and preserved ejection fraction. Journal of Hypertension. 2011;29(7):1422–1430. doi: 10.1097/HJH.0b013e3283480ddc.
    1. Zhang Y., Qi L., Xu L., Yao Y., Lv W., Du C. Acute effects of incremental exercise on central hemodynamics in young basketball athletes. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2017;
    1. Martin J. S., Borges A. R., Christy IV J. B., Beck D. T. Considerations for SphygmoCor radial artery pulse wave analysis: side selection and peripheral arterial blood pressure calibration. Hypertension Research. 2015;38(10):675–683. doi: 10.1038/hr.2015.36.
    1. Abraham J. E. M., Connolly S. J. Atrial fibrillation in heart failure: stroke risk stratification and anticoagulation. Heart Failure Reviews. 2014;19(3):305–313. doi: 10.1007/s10741-014-9420-4.
    1. The Cochrane Collaboration, Lip G. Y., Wrigley B. J., Pisters R. Anticoagulation versus placebo for heart failure in sinus rhythm. Cochrane Database of Systematic Reviews. 2012 doi: 10.1002/14651858.CD003336.pub2.
    1. Ryu W.-S., Bae E.-K., Park S.-H., et al. Increased left ventricular filling pressure and arterial occlusion in stroke related to atrial fibrillation. Journal of Stroke and Cerebrovascular Diseases. 2018;27(5):1275–1282. doi: 10.1016/j.jstrokecerebrovasdis.2017.12.009.
    1. Najafi-Dalui M., Shemirani H., Zavar R., Eghbal A. The evaluation of left ventricular diastolic dysfunction in patients with non-hemorrhagic stroke and atrial fibrillation. ARYA atherosclerosis. 2017;13(6):299–303.
    1. Campbell R. T., Jhund P. S., Castagno D., Hawkins N. M., Petrie M. C., McMurray J. J. V. What have we learned about patients with heart failure and preserved ejection fraction from DIG-PEF, CHARM-preserved, and I-PRESERVE? Journal of the American College of Cardiology. 2012;60(23):2349–2356. doi: 10.1016/j.jacc.2012.04.064.
    1. Scherbakov N., Haeusler K. G., Doehner W. Ischemic stroke and heart failure: facts and numbers. ESC Heart Failure. 2015;2(1):1–4. doi: 10.1002/ehf2.12026.
    1. Schumacher K., Kornej J., Shantsila E., Lip G. Y. H. Heart failure and stroke. Current Heart Failure Reports. 2018;15(5):287–296. doi: 10.1007/s11897-018-0405-9.
    1. Cogswell R. J., Norby F. L., Gottesman R. F., et al. High prevalence of subclinical cerebral infarction in patients with heart failure with preserved ejection fraction. European Journal of Heart Failure. 2017;19(10):1303–1309. doi: 10.1002/ejhf.812.
    1. Alagiakrishnan K., Banach M., Jones L. G., Datta S., Ahmed A., Aronow W. S. Update on diastolic heart failure or heart failure with preserved ejection fraction in the older adults. Annals of Medicine. 2013;45(1):37–50. doi: 10.3109/07853890.2012.660493.
    1. Hoit B. D. Left atrial size and function. Journal of the American College of Cardiology. 2014;63(6):493–505. doi: 10.1016/j.jacc.2013.10.055.
    1. Bombelli M., Cuspidi C., Facchetti R., et al. New-onset left atrial enlargement in a general population. Journal of Hypertension. 2016;34(9):1838–1845. doi: 10.1097/HJH.0000000000001022.
    1. Jang A. Y., Yu J., Park Y. M., Shin M. S., Chung W. J., Moon J. Cardiac structural or functional changes associated with CHA2DS2-VASc scores in nonvalvular atrial fibrillation: a cross-sectional study using echocardiography. Journal of Cardiovascular Imaging. 2018;26(3):135–143. doi: 10.4250/jcvi.2018.26.e17.
    1. Lee M. J., Park S. J., Yoon C. H., et al. Association of left atrial enlargement with cortical infarction in subjects with patent foramen ovale. Journal of Stroke. 2016;18(3):304–311. doi: 10.5853/jos.2016.00290.
    1. Wei J., Sun C., Liu C., Zhang Q. Effects of rat anti-mouse interleukin-6 receptor antibody on the recovery of cognitive function in stroke mice. Cellular and Molecular Neurobiology. 2018;38(2):507–515. doi: 10.1007/s10571-017-0499-8.
    1. Baturova M. A., Sheldon S. H., Carlson J., et al. Electrocardiographic and echocardiographic predictors of paroxysmal atrial fibrillation detected after ischemic stroke. BMC Cardiovascular Disorders. 2016;16(1):p. 209. doi: 10.1186/s12872-016-0384-2.
    1. Bielecka-Dabrowa A., Michalska-Kasiczak M., Gluba A., et al. Biomarkers and echocardiographic predictors of myocardial dysfunction in patients with hypertension. Scientific Reports. 2015;5(1) doi: 10.1038/srep08916.
    1. Jia G., Aroor A. R., Martinez-Lemus L. A., Sowers J. R. Potential role of antihypertensive medications in preventing excessive arterial stiffening. Current Hypertension Reports. 2018;20(9):p. 76. doi: 10.1007/s11906-018-0876-9.
    1. Chen Y., Shen F., Liu J., Yang G. Y. Arterial stiffness and stroke: de-stiffening strategy, a therapeutic target for stroke. BMJ. 2017;2(2):65–72. doi: 10.1136/svn-2016-000045.
    1. Stepien M., Banach M., Jankowski P., Rysz J. Clinical implications of non-invasive measurement of central aortic blood pressure. Current Vascular Pharmacology. 2010;8(6):747–752. doi: 10.2174/157016110793563852.
    1. van Sloten T. T., Stehouwer C. D. A. Carotid stiffness: a novel cerebrovascular disease risk factor. Pulse. 2016;4(1):24–27. doi: 10.1159/000445354.
    1. Bielecka-Dabrowa A., Sakowicz A., Misztal M., et al. Differences in biochemical and genetic biomarkers in patients with heart failure of various etiologies. International Journal of Cardiology. 2016;221:1073–1080. doi: 10.1016/j.ijcard.2016.07.150.
    1. Kwarciany M., Gąsecki D., Kowalczyk K., et al. Acute hypertensive response in ischemic stroke is associated with increased aortic stiffness. Atherosclerosis. 2016;251:1–5. doi: 10.1016/j.atherosclerosis.2016.04.027.
    1. Tang A., Eng J. J., Brasher P. M., et al. Physical activity correlates with arterial stiffness in community-dwelling individuals with stroke. Journal of Stroke and Cerebrovascular Diseases. 2014;23(2):259–266. doi: 10.1016/j.jstrokecerebrovasdis.2013.01.020.
    1. Acampa M., Camarri S., Lazzerini P. E., et al. Increased arterial stiffness is an independent risk factor for hemorrhagic transformation in ischemic stroke undergoing thrombolysis. International Journal of Cardiology. 2017;243:466–470. doi: 10.1016/j.ijcard.2017.03.129.
    1. Song T.-J., Kim J., Kim Y. D., et al. The distribution of cerebral microbleeds determines their association with arterial stiffness in non-cardioembolic acute stroke patients. European Journal of Neurology. 2014;21(3):463–469. doi: 10.1111/ene.12332.
    1. Caravaca J. M. R., Ruiz-Nodar J. M., Tello-Montoliu A., et al. P6391Differences in the glomerular filtration rate by using the Cockcroft-Gault, MDRD-4 and CKD-EPI equations and relation with adverse events in patients with acute coronary syndrome. European Heart Journal. 2018;39(suppl_1) doi: 10.1093/eurheartj/ehy566.P6391.
    1. Byun D. S., Han S. W., Park J. H., Kim J. Y., Baik J. S., Park J. H. Relationship between augmentation index and acute ischemic stroke subtype. Journal of Clinical Neuroscience. 2014;21(7):1220–1224. doi: 10.1016/j.jocn.2013.10.032.
    1. Sanna T., Ziegler P. D., Crea F. Detection and management of atrial fibrillation after cryptogenic stroke or embolic stroke of undetermined source. Clinical Cardiology. 2018;41(3):426–432. doi: 10.1002/clc.22876.

Source: PubMed

3
구독하다