The effects of beta-endorphin: state change modification

Jan G Veening, Henk P Barendregt, Jan G Veening, Henk P Barendregt

Abstract

Beta-endorphin (β-END) is an opioid neuropeptide which has an important role in the development of hypotheses concerning the non-synaptic or paracrine communication of brain messages. This kind of communication between neurons has been designated volume transmission (VT) to differentiate it clearly from synaptic communication. VT occurs over short as well as long distances via the extracellular space in the brain, as well as via the cerebrospinal fluid (CSF) flowing through the ventricular spaces inside the brain and the arachnoid space surrounding the central nervous system (CNS). To understand how β-END can have specific behavioral effects, we use the notion behavioral state, inspired by the concept of machine state, coming from Turing (Proc London Math Soc, Series 2,42:230-265, 1937). In section 1.4 the sequential organization of male rat behavior is explained showing that an animal is not free to switch into another state at any given moment. Funneling-constraints restrict the number of possible behavioral transitions in specific phases while at other moments in the sequence the transition to other behavioral states is almost completely open. The effects of β-END on behaviors like food intake and sexual behavior, and the mechanisms involved in reward, meditation and pain control are discussed in detail. The effects on the sequential organization of behavior and on state transitions dominate the description of these effects.

Figures

Figure 1
Figure 1
The Funnel-Model of the sequential organization of the male rat behavior. The model is based on a transition analysis of the behavioral elements of the male rat occurring during a series of experiments, which included feeding behavior, sexual behavior and territorial aggression, combined with the effects of electrical stimulation of the ventromedial hypothalamic nucleus (VMH). Explanation: see text. We have coined this model the ‘Funnel-Model’, because it illustrates clearly that in phase 1 of the behavioral sequence the animal is relatively free to make choices leading to any possible ‘consummatory act’, or in a wider view, to any behavioral state. Phase 1 can be characterized as a transitional situation, from where any behavioral sequence leading to a specific consummatory act can be performed or from where any possible behavioral state can be reached. At the end of phase 2 the situation is completely different: the male is ‘bound to’ perform the consummatory act, (mostly consisting of a series of physiological reflexes) and the opportunity to select other behavioral transitions is temporarily blocked. Only after completing the consummatory behavior, the ‘freedom’ of phase 1 is available again. The ‘Funnel-model’ illustrates on the one hand that physiological and brain mechanisms are working to support behavioral perseverance and to keep behavior directed to a specific goal, while on the other hand, especially in phase 1, the opportunity is raised to choose another strategy, or to pursue another goal or to reach another state.

References

    1. Turing A. On computable numbers, with an application to theEntscheidungsproblem. Proc London Mathematical Soc, Series 2. 1937;42(1):230–65.
    1. Salzman CD, Fusi S. Emotion, cognition, and mental state representation in amygdala and prefrontal cortex. Annu Rev Neurosci. 2010;33:173–202.
    1. Veening JG, Barendregt HP. The regulation of brain states by neuroactive substances distributed via the cerebrospinal fluid; a review. Cerebrospinal Fluid Res. 2010;7:1.
    1. Veening JG, de Jong T, Barendregt HP. Oxytocin-messages via the cerebrospinal fluid: behavioral effects; a review. Physiol Behav. 2010;101:193–210.
    1. Veening JG, Gerrits PO, Barendregt HP. Volume transmission of beta-endorphin via the cerebrospinal fluid; a review. Fluids Barriers CNS. 2012;9:16.
    1. Agnati LF, Bjelke B, Fuxe K. Volume versus wiring transmission in the brain: a new theoretical frame for neuropsychopharmacology. Med Res Rev. 1995;15:33–45.
    1. Agnati LF, Cortelli P, Biagini G, Bjelke B, Fuxe K. Different classes of volume transmission signals exist in the central nervous system and are affected by metabolic signals, temperature gradients and pressure waves. Neuroreport. 1994;6:9–12.
    1. Agnati LF, Fuxe K. Volume transmission as a key feature of information handling in the central nervous system possible new interpretative value of the Turing’s B-type machine. Prog Brain Res. 2000;125:3–19.
    1. Agnati LF, Fuxe K, Zoli M, Ozini I, Toffano G, Ferraguti F. A correlation analysis of the regional distribution of central enkephalin and beta-endorphin immunoreactive terminals and of opiate receptors in adult and old male rats. Evidence for the existence of two main types of communication in the central nervous system: the volume transmission and the wiring transmission. Acta Physiol Scand. 1986;128:201–7.
    1. Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Ciruela F, Manger P, Leo G, et al. On the role of volume transmission and receptor-receptor interactions in social behaviour: focus on central catecholamine and oxytocin neurons. Brain Res. 2012;1476:119–31.
    1. Fuxe K, Rivera A, Jacobsen KX, Hoistad M, Leo G, Horvath TL, et al. Dynamics of volume transmission in the brain. Focus on catecholamine and opioid peptide communication and the role of uncoupling protein 2. J Neural Transm. 2005;112:65–76.
    1. Agnati LF, Guidolin D, Guescini M, Genedani S, Fuxe K. Understanding wiring and volume transmission. Brain Res Rev. 2010;64:137–59.
    1. Agnati LF, Leo G, Zanardi A, Genedani S, Rivera A, Fuxe K, et al. Volume transmission and wiring transmission from cellular to molecular networks: history and perspectives. Acta Physiol (Oxf) 2006;187:329–44.
    1. Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Zhang WB, Agnati LF. Volume transmission and its different forms in the central nervous system. Chin J Integr Med. 2013;19:323–9.
    1. Fuxe K, Dahlstrom AB, Jonsson G, Marcellino D, Guescini M, Dam M, et al. The discovery of central monoamine neurons gave volume transmission to the wired brain. Prog Neurobiol. 2010;90:82–100.
    1. Agnati LF, Zoli M, Stromberg I, Fuxe K. Intercellular communication in the brain: wiring versus volume transmission. Neuroscience. 1995;69:711–26.
    1. Malpaux B, Daveau A, Maurice-Mandon F, Duarte G, Chemineau P. Evidence that melatonin acts in the premammillary hypothalamic area to control reproduction in the ewe: presence of binding sites and stimulation of luteinizing hormone secretion by in situ microimplant delivery. Endocrinology. 1998;139:1508–16.
    1. Skinner DC, Malpaux B. High melatonin concentrations in third ventricular cerebrospinal fluid are not due to Galen vein blood recirculating through the choroid plexus. Endocrinology. 1999;140:4399–405.
    1. Sliwowska JH, Billings HJ, Goodman RL, Coolen LM, Lehman MN. The premammillary hypothalamic area of the ewe: anatomical characterization of a melatonin target area mediating seasonal reproduction. Biol Reprod. 2004;70:1768–75.
    1. Tricoire H, Locatelli A, Chemineau P, Malpaux B. Melatonin enters the cerebrospinal fluid through the pineal recess. Endocrinology. 2002;143:84–90.
    1. Tricoire H, Moller M, Chemineau P, Malpaux B. Origin of cerebrospinal fluid melatonin and possible function in the integration of photoperiod. Reprod Suppl. 2003;61:311–21.
    1. Veening JG, Olivier B. Intranasal administration of oxytocin: behavioral and clinical effects, a review. Neurosci Biobehav Rev. 2013;37:1445–65.
    1. Barendregt H, Raffone A. Conscious cognition as a discrete, deterministic, and universal Turing Machine process. In: Cooper B, van Leeuwen J, editors. The selected works of AM Turing. Amsterdam: Elsevier; 2013. pp. 92–7.
    1. Teuscher C. Turing’s Connectionism. An investigation of Neural Network Architectures. London: Springer-Verlag; 2002.
    1. Turing AM. Intelligent machinery. In: Meltzer B, Michie D, editors. Machine intelligence. Volume 5. Edinburgh: Edinburgh University Press; 1969. pp. 3–23.
    1. Zylberberg A, Dehaene S, Roelfsema PR, Sigman M. The human Turing machine: a neural framework for mental programs. Trends in Cognnitive Sci. 2011;15:293–300.
    1. VanRullen R, Koch C. Is perception discrete or continuous? Trends in Cognnitive Sci. 2003;7:207–13.
    1. Pascual-Marqui RD, Michel RD, Lehmann D. Segmentation of brain electrical activity into microstates. IEEE Trans Biomed Eng. 1995;42:658–65.
    1. Veening JG. Behavioural functions of the VMH in the rat: an ethological approach. the Netherlands, Zoology: University of Groningen; 1975.
    1. Veening JG. Brain and behaviour: morphological and functional aspects of the hypothalamus in the rat. Eur J Morphol. 1992;30:53–66.
    1. Veening JG, Coolen LM. Neural mechanisms of sexual behavior in the male rat: Emphasis on ejaculation-related circuits. Pharmacol Biochem Behav. 2014;121:170–83.
    1. Coolen LM. Neural control of ejaculation. J Comp Neurol. 2005;493:39–45.
    1. Coolen LM, Allard J, Truitt WA, McKenna KE. Central regulation of ejaculation. Physiol Behav. 2004;83:203–15.
    1. Coolen LM, Hull EM. Male sexual function. Physiol Behav. 2004;83:175–6.
    1. Ahmed B, Kastin AJ, Banks WA, Zadina JE. CNS effects of peptides: a cross-listing of peptides and their central actions published in the journal Peptides, 1986–1993. Peptides. 1994;15:1105–55.
    1. Bodnar RJ. Endogenous opiates and behavior: 2011. Peptides. 2012;38:463–522.
    1. Font L, Lujan MA, Pastor R. Involvement of the endogenous opioid system in the psychopharmacological actions of ethanol: the role of acetaldehyde. Front Behav Neurosci. 2013;7:93.
    1. Herbert J. Peptides in the limbic system: neurochemical codes for co-ordinated adaptive responses to behavioural and physiological demand. Prog Neurobiol. 1993;41:723–91.
    1. Olson GA, Olson RD, Kastin AJ. Endogenous opiates: 1982. Peptides. 1983;4:563–76.
    1. Olson GA, Olson RD, Kastin AJ. Endogenous opiates: 1983. Peptides. 1984;5:975–92.
    1. Olson GA, Olson RD, Kastin AJ. Endogenous opiates: 1984. Peptides. 1985;6:769–91.
    1. Olson GA, Olson RD, Kastin AJ. Endogenous opiates: 1985. Peptides. 1986;7:907–33.
    1. Olson GA, Olson RD, Kastin AJ. Endogenous opiates: 1986. Peptides. 1987;8:1135–64.
    1. Olson GA, Olson RD, Kastin AJ. Endogenous opiates: 1988. Peptides. 1989;10:1253–80.
    1. Olson GA, Olson RD, Kastin AJ. Endogenous opiates: 1987. Peptides. 1989;10:205–36.
    1. Olson GA, Olson RD, Kastin AJ. Endogenous opiates: 1989. Peptides. 1990;11:1277–304.
    1. Olson GA, Olson RD, Kastin AJ. Endogenous opiates: 1990. Peptides. 1991;12:1407–32.
    1. Olson GA, Olson RD, Kastin AJ. Endogenous opiates: 1991. Peptides. 1992;13:1247–87.
    1. Olson GA, Olson RD, Kastin AJ. Endogenous opiates: 1992. Peptides. 1993;14:1339–78.
    1. Olson GA, Olson RD, Kastin AJ. Endogenous opiates: 1993. Peptides. 1994;15:1513–56.
    1. Olson GA, Olson RD, Kastin AJ. Endogenous opiates: 1994. Peptides. 1995;16:1517–55.
    1. Olson GA, Olson RD, Kastin AJ. Endogenous opiates: 1995. Peptides. 1996;17:1421–66.
    1. Olson GA, Olson RD, Kastin AJ. Endogenous opiates: 1996. Peptides. 1997;18:1651–88.
    1. Olson GA, Olson RD, Kastin AJ, Coy DH. Endogenous opiates: through 1978. Neurosci Biobehav Rev. 1979;3:285–99.
    1. Olson GA, Olson RD, Kastin AJ, Coy DH. Endogenous opiates: 1979(1) Peptides. 1980;1:365–79.
    1. Olson GA, Olson RD, Kastin AJ, Coy DH. Endogenous opiates: 1980. Peptides. 1981;2:349–69.
    1. Olson GA, Olson RD, Kastin AJ, Coy DH. Endogenous opiates: 1981. Peptides. 1982;3:1039–72.
    1. Olson GA, Olson RD, Vaccarino AL, Kastin AJ. Endogenous opiates: 1997. Peptides. 1998;19:1791–843.
    1. Panksepp J. The neurochemistry of behavior. Annu Rev Psychol. 1986;37:77–107.
    1. Roy A, Roy M, Deb S, Unwin G, Roy A. J Intellect Disabil Res. 2014. Are opioid antagonists effective in attenuating the core symptoms of autism spectrum conditions in children: a systematic review.
    1. Sarkar DK, Zhang C. Beta-endorphin neuron regulates stress response and innate immunity to prevent breast cancer growth and progression. Vitam Horm. 2013;93:263–76.
    1. Vaccarino AL, Olson GA, Olson RD, Kastin AJ. Endogenous opiates: 1998. Peptides. 1999;20:1527–74.
    1. Zhao K. Acupuncture for the treatment of insomnia. Int Rev Neurobiol. 2013;111:217–34.
    1. Benedetti F: Placebo and endogenous mechanisms of analgesia.Handb Exp Pharmacol 2007, (177):393–413. Review. PubMed PMID: 17087131
    1. Butcher BE, Carmody JJ. Sex differences in analgesic response to ibuprofen are influenced by expectancy: a randomized, crossover, balanced placebo-designed study. Eur J Pain. 2012;16:1005–13.
    1. Jaksic N, Aukst-Margetic B, Jakovljevic M. Does personality play a relevant role in the placebo effect? Psychiatr Danub. 2013;25:17–23.
    1. Lemoine P. The placebo mystery or neurobiology of the soul. Bull Acad Natl Med. 2011;195:1465–76.
    1. Mommaerts JL, Devroey D. The placebo effect: how the subconscious fits in. Perspect Biol Med. 2012;55:43–58.
    1. Zubieta JK, Stohler CS. Neurobiological mechanisms of placebo responses. Ann N Y Acad Sci. 2009;1156:198–210.
    1. Diederich NJ, Goetz CG. The placebo treatments in neurosciences: New insights from clinical and neuroimaging studies. Neurology. 2008;71:677–84.
    1. Henry JL. Circulating opioids: possible physiological roles in central nervous function. Neurosci Biobehav Rev. 1982;6:229–45.
    1. Akil H, Watson SJ, Young E, Lewis ME, Khachaturian H, Walker JM. Endogenous opioids: biology and function. Annu Rev Neurosci. 1984;7:223–55.
    1. Izquierdo I, Netto CA. The brain beta-endorphin system and behavior: the modulation of consecutively and simultaneously processed memories. Behav Neural Biol. 1985;44:249–65.
    1. Izquierdo I, Netto CA. Role of beta-endorphin in behavioral regulation. Ann N Y Acad Sci. 1985;444:162–77.
    1. Izquierdo I, Netto CA, Carrasco MA, Dias RD, Volkmer N. The course of the decrease of hypothalamic beta-endorphin induced by training, and the development of the effect of beta-endorphin on the retrieval of inhibitory avoidance in rats. Braz J Med Biol Res. 1985;18:391–5.
    1. Keverne EB, Martensz ND, Tuite B. Beta-endorphin concentrations in cerebrospinal fluid of monkeys are influenced by grooming relationships. Psychoneuroendocrinology. 1989;14:155–61.
    1. Martensz ND, Vellucci SV, Keverne EB, Herbert J. beta-Endorphin levels in the cerebrospinal fluid of male talapoin monkeys in social groups related to dominance status and the luteinizing hormone response to naloxone. Neuroscience. 1986;18:651–8.
    1. Roberts AC, Martensz ND, Hastings MH, Herbert J. The effects of castration, testosterone replacement and photoperiod upon hypothalamic beta-endorphin levels in the male Syrian hamster. Neuroscience. 1987;23:1075–82.
    1. Henry JL. Role of circulating opioids in the modulation of pain. Ann N Y Acad Sci. 1986;467:169–81.
    1. Hughes AM, Everitt BJ, Herbert J. Selective effects of beta-endorphin infused into the hypothalamus, preoptic area and bed nucleus of the stria terminalis on the sexual and ingestive behaviour of male rats. Neuroscience. 1987;23:1063–73.
    1. Hughes AM, Everitt BJ, Herbert J. The effects of simultaneous or separate infusions of some pro-opiomelanocortin-derived peptides (beta-endorphin, melanocyte stimulating hormone, and corticotrophin-like intermediate polypeptide) and their acetylated derivatives upon sexual and ingestive behaviour of male rats. Neuroscience. 1988;27:689–98.
    1. Hughes AM, Everitt BJ, Herbert J. Comparative effects of preoptic area infusions of opioid peptides, lesions and castration on sexual behaviour in male rats: studies of instrumental behaviour, conditioned place preference and partner preference. Psychopharmacology (Berl) 1990;102:243–56.
    1. McGregor A, Herbert J. The effects of beta-endorphin infusions into the amygdala on visual and olfactory sensory processing during sexual behaviour in the male rat. Neuroscience. 1992;46:173–9.
    1. McGregor A, Herbert J. Specific effects of beta-endorphin infused into the amygdala on sexual behaviour in the male rat. Neuroscience. 1992;46:165–72.
    1. Stavy M, Herbert J. Differential effects of beta-endorphin infused into the hypothalamic preoptic area at various phases of the male rat’s sexual behaviour. Neuroscience. 1989;30:433–42.
    1. Mercer AJ, Stuart RC, Attard CA, Otero-Corchon V, Nillni EA, Low MJ. Temporal changes in nutritional state affect hypothalamic POMC peptide levels independently of leptin in adult male mice. Am J Physiol Endocrinol Metab. 2014;306:E904–15.
    1. Cheung CC, Clifton DK, Steiner RA. Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology. 1997;138:4489–92.
    1. Pritchard LE, White A. Neuropeptide processing and its impact on melanocortin pathways. Endocrinology. 2007;148:4201–7.
    1. Pritchard LE, Oliver RL, McLoughlin JD, Birtles S, Lawrence CB, Turnbull AV, et al. Proopiomelanocortin-derived peptides in rat cerebrospinal fluid and hypothalamic extracts: evidence that secretion is regulated with respect to energy balance. Endocrinology. 2003;144:760–6.
    1. Millington GW. The role of proopiomelanocortin (POMC) neurones in feeding behaviour. Nutr Metab (Lond) 2007;4:18.
    1. Ma J, Xia J, Miele L, Sarkar FH, Wang Z: Notch signaling pathway in pancreatic cancer progression.Pancreat Disord Ther 2013.,30(114): pii: 1000114. PubMed PMID: 24027656; PubMed Central PMCID: PMC3767173
    1. Lee M, Kim A, Conwell IM, Hruby V, Mayorov A, Cai M, et al. Effects of selective modulation of the central melanocortin-3-receptor on food intake and hypothalamic POMC expression. Peptides. 2008;29:440–7.
    1. Kim MS, Rossi M, Abusnana S, Sunter D, Morgan DG, Small CJ, et al. Hypothalamic localization of the feeding effect of agouti-related peptide and alpha-melanocyte-stimulating hormone. Diabetes. 2000;49:177–82.
    1. Zheng H, Patterson LM, Rhodes CJ, Louis GW, Skibicka KP, Grill HJ, et al. A potential role for hypothalamomedullary POMC projections in leptin-induced suppression of food intake. Am J Physiol Regul Integr Comp Physiol. 2010;298:R720–8.
    1. Seeley RJ, Drazen DL, Clegg DJ. The critical role of the melanocortin system in the control of energy balance. Annu Rev Nutr. 2004;24:133–49.
    1. de Backer MW, la Fleur SE, Brans MA, van Rozen AJ, Luijendijk MC, Merkestein M, et al. Melanocortin receptor-mediated effects on obesity are distributed over specific hypothalamic regions. Int J Obes (Lond) 2011;35:629–41.
    1. Werner L, Muller-Fielitz H, Ritzal M, Werner T, Rossner M, Schwaninger M. Involvement of doublecortin-expressing cells in the arcuate nucleus in body weight regulation. Endocrinology. 2012;153:2655–64.
    1. Kim JW, Park TJ, Ryu DD, Kim JY. High cell density culture of Yarrowia lipolytica using a one-step feeding process. Biotechnol Prog. 2000;16:657–60.
    1. Petervari E, Balasko M, Garami A, Soos S, Szekely M. Suppression of food intake by intracerebroventricular injection of alpha-MSH varies with age in rats. Acta Physiol Hung. 2009;96:483–7.
    1. Zheng H, Patterson LM, Phifer CB, Berthoud HR. Brain stem melanocortinergic modulation of meal size and identification of hypothalamic POMC projections. Am J Physiol Regul Integr Comp Physiol. 2005;289:R247–58.
    1. Dutta J, Tripathi S, Dutta PK. Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food applications. Food Sci Technol Int. 2012;18:3–34.
    1. Barfield ET, Moser VA, Hand A, Grisel JE. beta-endorphin modulates the effect of stress on novelty-suppressed feeding. Front Behav Neurosci. 2013;7:19.
    1. Skibicka KP, Grill HJ. Hypothalamic and hindbrain melanocortin receptors contribute to the feeding, thermogenic, and cardiovascular action of melanocortins. Endocrinology. 2009;150:5351–61.
    1. Dutia R, Meece K, Dighe S, Kim AJ, Wardlaw SL. beta-Endorphin antagonizes the effects of alpha-MSH on food intake and body weight. Endocrinology. 2012;153:4246–55.
    1. Sanger DJ, McCarthy PS. Increased food and water intake produced in rats by opiate receptor agonists. Psychopharmacology (Berl) 1981;74:217–20.
    1. Sanger DJ, McCarthy PS, Metcalf G. The effects of opiate antagonists on food intake are stereospecific. Neuropharmacology. 1981;20:45–7.
    1. Morley JE, Levine AS, Murray SS, Kneip J. Peptidergic regulation of norepinephrine induced feeding. Pharmacol Biochem Behav. 1982;16:225–8.
    1. Morley JE, Levine AS, Plotka ED, Seal US. The effect of naloxone on feeding and spontaneous locomotion in the wolf. Physiol Behav. 1983;30:331–4.
    1. Morley JE, Bartness TJ, Gosnell BA, Levine AS. Peptidergic regulation of feeding. Int Rev Neurobiol. 1985;27:207–98.
    1. Grandison L, Guidotti A. Stimulation of food intake by muscimol and beta endorphin. Neuropharmacology. 1977;16:533–6.
    1. Sanger DJ. Endorphinergic mechanisms in the control of food and water intake. Appetite. 1981;2:193–208.
    1. Morley JE, Levine AS, Grace M, Kniep J. An investigation of the role of kappa opiate receptor agonists in the initiation of feeding. Life Sci. 1982;31:2617–26.
    1. Dube MG, Horvath TL, Leranth C, Kalra PS, Kalra SP. Naloxone reduces the feeding evoked by intracerebroventricular galanin injection. Physiol Behav. 1994;56:811–3.
    1. Wang QP, Guan JL, Nakai Y. Beta-endorphinergic innervation of mu and delta receptor containing neurons in the dorsal raphe nucleus. Neuroreport. 1998;9:3033–6.
    1. Wang QP, Ochiai H, Guan JL, Nakai Y. Ultrastructural localization of mu-1 opioid receptor in the dorsal raphe nucleus of the rat. Synapse. 1998;29:240–7.
    1. Robert JJ, Orosco M, Rouch C, Cohen Y, Jacquot C. Effects of dexfenfluramine and opioid peptides, alone or in combination, on food intake and brain serotonin turnover in rats. Pharmacol Biochem Behav. 1991;38:775–80.
    1. Yamamoto T, Sako N, Maeda S. Effects of taste stimulation on beta-endorphin levels in rat cerebrospinal fluid and plasma. Physiol Behav. 2000;69:345–50.
    1. Matsumura S, Eguchi A, Okafuji Y, Tatsu S, Mizushige T, Tsuzuki S, et al. Dietary fat ingestion activates beta-endorphin neurons in the hypothalamus. FEBS Lett. 2012;586:1231–5.
    1. Mizushige T, Saitoh K, Manabe Y, Nishizuka T, Taka Y, Eguchi A, et al. Preference for dietary fat induced by release of beta-endorphin in rats. Life Sci. 2009;84:760–5.
    1. Low MJ, Hayward MD, Appleyard SM, Rubinstein M. State-dependent modulation of feeding behavior by proopiomelanocortin-derived beta-endorphin. Ann N Y Acad Sci. 2003;994:192–201.
    1. Appleyard SM, Hayward M, Young JI, Butler AA, Cone RD, Rubinstein M, et al. A role for the endogenous opioid beta-endorphin in energy homeostasis. Endocrinology. 2003;144:1753–60.
    1. Hill C, Lapanowski K, Dunbar JC. The effects of beta-endorphin (beta-END) on cardiovascular and behavioral dynamics in conscious rats. Brain Res Bull. 2002;59:29–34.
    1. Carr KD, Simon EJ. The role of opioids in feeding and reward elicited by lateral hypothalamic electrical stimulation. Life Sci. 1983;33(Suppl 1):563–6.
    1. Carr KD, Bak TH. Rostral and caudal ventricular infusion of antibodies to dynorphin A(1–17) and dynorphin A(1–8): effects on electrically-elicited feeding in the rat. Brain Res. 1990;507:289–94.
    1. Carr KD, Wolinsky TD. Regulation of feeding by multiple opioid receptors in cingulate cortex; follow-up to an in vivo autoradiographic study. Neuropeptides. 1994;26:207–13.
    1. Papadouka V, Carr KD. The role of multiple opioid receptors in the maintenance of stimulation-induced feeding. Brain Res. 1994;639:42–8.
    1. de Ruiter L, Wiepkema PR, Veening JG. Models of behavior and the hypothalamus. Prog Brain Res. 1974;41:481–507.
    1. Wiepkema PR. Behavioural factors in the regulation of food intake. Proc Nutr Soc. 1971;30:142–9.
    1. Wiepkema PR. Positive feedbacks at work during feeding. Behaviour. 1971;39:266–73.
    1. Argiolas A, Melis MR. Neuropeptides and central control of sexual behaviour from the past to the present: a review. Prog Neurobiol. 2013;108:80–107.
    1. Mahler SV, Berridge KC. What and when to “want”? Amygdala-based focusing of incentive salience upon sugar and sex. Psychopharmacology (Berl) 2012;221:407–26.
    1. Pfaus JG, Gorzalka BB. Opioids and sexual behavior. Neurosci Biobehav Rev. 1987;11:1–34.
    1. Pfaus JG, Kippin TE, Coria-Avila GA, Gelez H, Afonso VM, Ismail N, et al. Who, what, where, when (and maybe even why)? How the experience of sexual reward connects sexual desire, preference, and performance. Arch Sex Behav. 2012;41:31–62.
    1. McIntosh TK, Vallano ML, Barfield RJ. Effects of morphine, beta-endorphin and naloxone on catecholamine levels and sexual behavior in the male rat. Pharmacol Biochem Behav. 1980;13:435–41.
    1. Dornan WA, Malsbury CW. Neuropeptides and male sexual behavior. Neurosci Biobehav Rev. 1989;13:1–15.
    1. Meyerson BJ, Terenius L. Beta-endorphin and male sexual behavior. Eur J Pharmacol. 1977;42:191–2.
    1. Teodorov E, Camarini R, Bernardi MM, Felicio LF. Treatment with steroid hormones and morphine alters general activity, sexual behavior, and opioid gene expression in female rats. Life Sci. 2014;104((1-2)):47–54.
    1. Parada M, Vargas EB, Kyres M, Burnside K, Pfaus JG. The role of ovarian hormones in sexual reward states of the female rat. Horm Behav. 2012;62:442–7.
    1. Gessa GL, Paglietti E, Quarantotti BP. Induction of copulatory behavior in sexually inactive rats by naloxine. Science. 1979;204:203–5.
    1. Myers BM, Baum MJ. Facilitation by opiate antagonists of sexual performance in the male rat. Pharmacol Biochem Behav. 1979;10:615–8.
    1. Glick BB, Baughman WL, Jensen JN, Phoenix CH. Endogenous opiate systems and primate reproduction: inability of naloxone to induce sexual activity in rhesus males. Arch Sex Behav. 1982;11:267–75.
    1. Fabbri A, Jannini EA, Gnessi L, Moretti C, Ulisse S, Franzese A, et al. Endorphins in male impotence: evidence for naltrexone stimulation of erectile activity in patient therapy. Psychoneuroendocrinology. 1989;14:103–11.
    1. Bishop JD, Malven PV, Singleton WL, Weesner GD. Hormonal and behavioral correlates of emotional states in sexually trained boars. J Anim Sci. 1999;77:3339–45.
    1. Carani C, Bancroft J, Del Rio G, Granata AR, Facchinetti F, Marrama P. The endocrine effects of visual erotic stimuli in normal men. Psychoneuroendocrinology. 1990;15:207–16.
    1. Daly RC, Su TP, Schmidt PJ, Pickar D, Murphy DL, Rubinow DR. Cerebrospinal fluid and behavioral changes after methyltestosterone administration: preliminary findings. Arch Gen Psychiatry. 2001;58:172–7.
    1. Szechtman H, Hershkowitz M, Simantov R. Sexual behavior decreases pain sensitivity and stimulated endogenous opioids in male rats. Eur J Pharmacol. 1981;70:279–85.
    1. Forsberg G, Wiesenfeld-Hallin Z, Eneroth P, Sodersten P. Sexual behavior induces naloxone-reversible hypoalgesia in male rats. Neurosci Lett. 1987;81:151–4.
    1. Meyerson BJ. Comparison of the effects of beta-endorphin and morphine on exploratory and socio-sexual behaviour in the male rat. Eur J Pharmacol. 1981;69:453–63.
    1. Burkett JP, Spiegel LL, Inoue K, Murphy AZ, Young LJ. Activation of mu-opioid receptors in the dorsal striatum is necessary for adult social attachment in monogamous prairie voles. Neuropsychopharmacology. 2011;36:2200–10.
    1. McGrady AV. Effects of psychological stress on male reproduction: a review. Arch Androl. 1984;13:1–7.
    1. Taylor GT, Weiss J, Rupich R. Male rat behavior, endocrinology and reproductive physiology in a mixed-sex, socially stressful colony. Physiol Behav. 1987;39:429–33.
    1. Retana-Marquez S, Salazar ED, Velazquez-Moctezuma J. Effect of acute and chronic stress on masculine sexual behavior in the rat. Psychoneuroendocrinology. 1996;21:39–50.
    1. Sato Y, Suzuki N, Horita H, Wada H, Shibuya A, Adachi H, et al. Effects of long-term psychological stress on sexual behavior and brain catecholamine levels. J Androl. 1996;17:83–90.
    1. Brotto LA, Gorzalka BB, LaMarre AK. Melatonin protects against the effects of chronic stress on sexual behaviour in male rats. Neuroreport. 2001;12:3465–9.
    1. Cameron N, Erskine MS. c-FOS expression in the forebrain after mating in the female rat is altered by adrenalectomy. Neuroendocrinology. 2003;77:305–13.
    1. Gonzalez-Mariscal G, Gomora P, Beyer C. Participation of opiatergic, GABAergic, and serotonergic systems in the expression of copulatory analgesia in male rats. Pharmacol Biochem Behav. 1994;49:303–7.
    1. D’Amato FR, Pavone F. Modulation of nociception by social factors in rodents: contribution of the opioid system. Psychopharmacology (Berl) 2012;224:189–200.
    1. Burgdorf J, Panksepp J. Tickling induces reward in adolescent rats. Physiol Behav. 2001;72:167–73.
    1. Van Ree JM, Niesink RJ, Van Wolfswinkel L, Ramsey NF, Kornet MM, Van Furth WR, et al. Endogenous opioids and reward. Eur J Pharmacol. 2000;405:89–101.
    1. van Furth WR, van Emst MG, van Ree JM. Opioids and sexual behavior of male rats: involvement of the medial preoptic area. Behav Neurosci. 1995;109:123–34.
    1. Van Furth WR, Van Ree JM. Appetitive sexual behavior in male rats: 2. sexual reward and level-changing behavior. Physiol Behav. 1996;60:1007–12.
    1. van Furth WR, van Ree JM. Sexual motivation: involvement of endogenous opioids in the ventral tegmental area. Brain Res. 1996;729:20–8.
    1. Agmo A, Gomez M. Sexual reinforcement is blocked by infusion of naloxone into the medial preoptic area. Behav Neurosci. 1993;107:812–8.
    1. Mitchell JB, Gratton A. Opioid modulation and sensitization of dopamine release elicited by sexually relevant stimuli: a high speed chronoamperometric study in freely behaving rats. Brain Res. 1991;551:20–7.
    1. Agmo A, Berenfeld R. Reinforcing properties of ejaculation in the male rat: role of opioids and dopamine. Behav Neurosci. 1990;104:177–82.
    1. Balfour ME, Yu L, Coolen LM. Sexual behavior and sex-associated environmental cues activate the mesolimbic system in male rats. Neuropsychopharmacology. 2004;29:718–30.
    1. Davis BA, Fitzgerald ME, Brown JL, Amstalden KA, Coolen LM. Activation of POMC neurons during general arousal but not sexual behavior in male rats. Behav Neurosci. 2007;121:1012–22.
    1. Sinchak K, Dewing P, Ponce L, Gomez L, Christensen A, Berger M, et al. Modulation of the arcuate nucleus-medial preoptic nucleus lordosis regulating circuit: a role for GABAB receptors. Horm Behav. 2013;64:136–43.
    1. Agnati LF, Genedani S, Leo G, Forni A, Woods AS, Filaferro M, et al. Abeta peptides as one of the crucial volume transmission signals in the trophic units and their interactions with homocysteine. Physiological implications and relevance for Alzheimer’s disease. J Neural Transm. 2007;114:21–31.
    1. Bach FW, Yaksh TL. Release into ventriculo-cisternal perfusate of beta-endorphin- and Met-enkephalin-immunoreactivity: effects of electrical stimulation in the arcuate nucleus and periaqueductal gray of the rat. Brain Res. 1995;690:167–76.
    1. van Furth WR, van Ree JM. Endogenous opioids and sexual motivation and performance during the light phase of the diurnal cycle. Brain Res. 1994;636:175–9.
    1. van Furth WR, Wolterink G, van Ree JM. Regulation of masculine sexual behavior: involvement of brain opioids and dopamine. Brain Res Brain Res Rev. 1995;21:162–84.
    1. Coolen LM, Fitzgerald ME, Yu L, Lehman MN. Activation of mu opioid receptors in the medial preoptic area following copulation in male rats. Neuroscience. 2004;124:11–21.
    1. Meyerson BJ, Hoglund AU. Exploratory and socio-sexual behaviour in the male laboratory rat: a methodological approach for the investigation of drug action. Acta Pharmacol Toxicol (Copenh) 1981;48:168–80.
    1. Wu FM, Noble RG. Opiate antagonists and copulatory behavior of male hamsters. Physiol Behav. 1986;38:817–25.
    1. Truitt WA, Coolen LM. Identification of a potential ejaculation generator in the spinal cord. Science. 2002;297:1566–9.
    1. Alves DP, da Motta PG, Lima PP, Queiroz-Junior CM, Caliari MV, Pacheco DF, et al. Inflammation mobilizes local resources to control hyperalgesia: the role of endogenous opioid peptides. Pharmacology. 2012;89:22–8.
    1. Imaizumi T, Numata A, Yano C, Yoshida H, Meng P, Hayakari R, et al. ISG54 and ISG56 are induced by TLR3 signaling in U373MG human astrocytoma cells: Possible involvement in CXCL10 expression. Neurosci Res. 2014;84:34–42.
    1. Ishikawa T, Miyagi M, Yamashita M, Kamoda H, Eguchi Y, Arai G, et al. In-vivo transfection of the proopiomelanocortin gene, precursor of endogenous endorphin, by use of radial shock waves alleviates neuropathic pain. J Orthop Sci. 2013;18:636–45.
    1. Nakamoto K, Nishinaka T, Sato N, Mankura M, Koyama Y, Kasuya F, et al. Hypothalamic GPR40 signaling activated by free long chain fatty acids suppresses CFA-induced inflammatory chronic pain. PLoS One. 2013;8:e81563.
    1. Slominski AT, Zmijewski MA, Skobowiat C, Zbytek B, Slominski RM, Steketee JD. Sensing the environment: regulation of local and global homeostasis by the skin's neuroendocrine system. Adv Anat Embryol Cell Biol. 2012;212:v–vii.
    1. Yu JS, Zeng BY, Hsieh CL. Acupuncture stimulation and neuroendocrine regulation. Int Rev Neurobiol. 2013;111:125–40.
    1. Zhang Y, Liu B, Ma Y, Yi J, Zhang C, Zhang Y, et al. Hantaan virus infection induces CXCL10 expression through TLR3, RIG-I, and MDA-5 pathways correlated with the disease severity. Mediators Inflamm. 2014;2014:697837.
    1. Coolen LM, Peters HJ, Veening JG. Fos immunoreactivity in the rat brain following consummatory elements of sexual behavior: a sex comparison. Brain Res. 1996;738:67–82.
    1. Coolen LM, Peters HJ, Veening JG. Anatomical interrelationships of the medial preoptic area and other brain regions activated following male sexual behavior: a combined fos and tract-tracing study. J Comp Neurol. 1998;397:421–35.
    1. Pfaus JG, Gorzalka BB. Selective activation of opioid receptors differentially affects lordosis behavior in female rats. Peptides. 1987;8:309–17.
    1. Pfaus JG, Pendleton N, Gorzalka BB. Dual effect of morphiceptin on lordosis behavior: possible mediation by different opioid receptor subtypes. Pharmacol Biochem Behav. 1986;24:1461–4.
    1. Sirinathsinghji DJ. Modulation of lordosis behavior of female rats by naloxone, beta-endorphin and its antiserum in the mesencephalic central gray: possible mediation via GnRH. Neuroendocrinology. 1984;39:222–30.
    1. Sirinathsinghji DJ. Regulation of lordosis behaviour in the female rat by corticotropin-releasing factor, beta-endorphin/corticotropin and luteinizing hormone-releasing hormone neuronal systems in the medial preoptic area. Brain Res. 1986;375:49–56.
    1. Sirinathsinghji DJ, Rees LH, Rivier J, Vale W. Corticotropin-releasing factor is a potent inhibitor of sexual receptivity in the female rat. Nature. 1983;305:232–5.
    1. Wiesner JB, Moss RL. Behavioral specificity of beta-endorphin suppression of sexual behavior: differential receptor antagonism. Pharmacol Biochem Behav. 1986;24:1235–9.
    1. Wiesner JB, Moss RL. Suppression of receptive and proceptive behavior in ovariectomized, estrogen-progesterone-primed rats by intraventricular beta-endorphin: studies of behavioral specificity. Neuroendocrinology. 1986;43:57–62.
    1. Kubo K. Modulation of estrogen-activated sexual receptivity by opioid peptides. In: Oomura Y, editor. Emotions: neuronal and chemical control. Basel: Karger; 1986. pp. 267–80.
    1. Sirinathsinghji DJ, Whittington PE, Audsley A, Fraser HM. beta-Endorphin regulates lordosis in female rats by modulating LH-RH release. Nature. 1983;301:62–4.
    1. Mills RH, Sohn RK, Micevych PE. Estrogen-induced mu-opioid receptor internalization in the medial preoptic nucleus is mediated via neuropeptide Y-Y1 receptor activation in the arcuate nucleus of female rats. J Neurosci. 2004;24:947–55.
    1. Torii M, Kubo K, Sasaki T. Facilitatory and inhibitory effects of beta-endorphin on lordosis in female rats: relation to time of administration. Horm Behav. 1999;35:271–8.
    1. Torii M, Kubo K, Sasaki T. Differential effects of beta-endorphin and Met- and Leu-enkephalin on steroid hormone-induced lordosis in ovariectomized female rats. Pharmacol Biochem Behav. 1997;58:837–42.
    1. Torii M, Kubo K, Sasaki T. Influence of opioid peptides on the priming action of estrogen on lordosis in ovariectomized rats. Neurosci Lett. 1996;212:68–70.
    1. Torii M, Kubo K, Sasaki T. Naloxone and initial estrogen action to induce lordosis in ovariectomized rats: the effect of a cut between the septum and preoptic area. Neurosci Lett. 1995;195:167–70.
    1. Chen WP, Witkin JW, Silverman AJ. beta-Endorphin and gonadotropin-releasing hormone synaptic input to gonadotropin-releasing hormone neurosecretory cells in the male rat. J Comp Neurol. 1989;286:85–95.
    1. Drouva SV, Epelbaum J, Tapia-Arancibia L, Laplante E, Kordon C. Opiate receptors modulate LHRH and SRIF release from mediobasal hypothalamic neurons. Neuroendocrinology. 1981;32:163–7.
    1. Adler BA, Crowley WR. Modulation of luteinizing hormone release and catecholamine activity by opiates in the female rat. Neuroendocrinology. 1984;38:248–53.
    1. Leranth C, MacLusky NJ, Shanabrough M, Naftolin F. Immunohistochemical evidence for synaptic connections between pro-opiomelanocortin-immunoreactive axons and LH-RH neurons in the preoptic area of the rat. Brain Res. 1988;449:167–76.
    1. Babu GN, Marco J, Bona-Gallo A, Gallo RV. Steroid-independent endogenous opioid peptide suppression of pulsatile luteinizing hormone release between estrus and diestrus in the rat estrous cycle. Brain Res. 1987;416:235–42.
    1. Gallo RV, Babu GN, Bona-Gallo A, Devorshak-Harvey E, Leipheimer RE, Marco J. Regulation of pulsatile luteinizing hormone release during the estrous cycle and pregnancy in the rat. Adv Exp Med Biol. 1987;219:109–30.
    1. Martensz ND. Changes in the processing of beta-endorphin in the hypothalamus and pituitary gland of female rats during sexual maturation. Neuroscience. 1985;16:625–40.
    1. Kawano H, Masuko S. Beta-endorphin-, adrenocorticotrophic hormone- and neuropeptide y-containing projection fibers from the arcuate hypothalamic nucleus make synaptic contacts on to nucleus preopticus medianus neurons projecting to the paraventricular hypothalamic nucleus in the rat. Neuroscience. 2000;98:555–65.
    1. Berglund LA, Simpkins JW. Alterations in brain opiate receptor mechanisms on proestrous afternoon. Neuroendocrinology. 1988;48:394–400.
    1. Berglund LA, Derendorf H, Simpkins JW. Desensitization of brain opiate receptor mechanisms by gonadal steroid treatments that stimulate luteinizing hormone secretion. Endocrinology. 1988;122:2718–26.
    1. Leranth C, MacLusky NJ, Shanabrough M, Naftolin F. Catecholaminergic innervation of luteinizing hormone-releasing hormone and glutamic acid decarboxylase immunopositive neurons in the rat medial preoptic area. An electron-microscopic double immunostaining and degeneration study. Neuroendocrinology. 1988;48:591–602.
    1. Hammer RP, Jr, Zhou L, Cheung S. Gonadal steroid hormones and hypothalamic opioid circuitry. Horm Behav. 1994;28:431–7.
    1. Sinchak K, Romeo HE, Micevych PE. Site-specific estrogen and progestin regulation of orphanin FQ/nociceptin and nociceptin opioid receptor mRNA expression in the female rat limbic hypothalamic system. J Comp Neurol. 2006;496:252–68.
    1. Sinchak K, Shahedi K, Dewing P, Micevych P. Sexual receptivity is reduced in the female mu-opioid receptor knockout mouse. Neuroreport. 2005;16:1697–700.
    1. Sinchak K, Micevych P. Visualizing activation of opioid circuits by internalization of G protein-coupled receptors. Mol Neurobiol. 2003;27:197–222.
    1. Micevych PE, Rissman EF, Gustafsson JA, Sinchak K. Estrogen receptor-alpha is required for estrogen-induced mu-opioid receptor internalization. J Neurosci Res. 2003;71:802–10.
    1. Sinchak K, Micevych PE. Progesterone blockade of estrogen activation of mu-opioid receptors regulates reproductive behavior. J Neurosci. 2001;21:5723–9.
    1. Sinchak K, Mills RH, Eckersell CB, Micevych PE. Medial preoptic area delta-opioid receptors inhibit lordosis. Behav Brain Res. 2004;155:301–6.
    1. Jirikowski GF, Merchenthaler I, Rieger GE, Stumpf WE. Estradiol target sites immunoreactive for beta-endorphin in the arcuate nucleus of rat and mouse hypothalamus. Neurosci Lett. 1986;65:121–6.
    1. Thornton JE, Loose MD, Kelly MJ, Ronnekleiv OK. Effects of estrogen on the number of neurons expressing beta-endorphin in the medial basal hypothalamus of the female guinea pig. J Comp Neurol. 1994;341:68–77.
    1. Miller MM, Tousignant P, Yang U, Pedvis S, Billiar RB. Effects of age and long-term ovariectomy on the estrogen-receptor containing subpopulations of beta-endorphin-immunoreactive neurons in the arcuate nucleus of female C57BL/6J mice. Neuroendocrinology. 1995;61:542–51.
    1. Cheung S, Hammer RP., Jr Gonadal steroid hormone regulation of proopiomelanocortin gene expression in arcuate neurons that innervate the medial preoptic area of the rat. Neuroendocrinology. 1995;62:283–92.
    1. Cheung S, Salinas J, Hammer RP., Jr Gonadal steroid hormone-dependence of beta-endorphin-like immunoreactivity in the medial preoptic area of the rat. Brain Res. 1995;675:83–8.
    1. Horvath TL, Kalra SP, Naftolin F, Leranth C. Morphological evidence for a galanin-opiate interaction in the rat mediobasal hypothalamus. J Neuroendocrinol. 1995;7:579–88.
    1. Allen DL, Johnson AE, Tempel A, Zukin RS, Luine VN, McEwen BS. Serotonergic lesions decrease mu- and delta-opiate receptor binding in discrete areas of the hypothalamus and in the midbrain central gray. Brain Res. 1993;625:269–75.
    1. Torii M, Kubo K. The effects of intraventricular injection of beta-endorphin on initial estrogen action to induce lordosis behavior. Physiol Behav. 1994;55:157–62.
    1. Gorzalka BB, Heddema GM, Lester GL, Hanson LA. beta-endorphin inhibits and facilitates lordosis behaviour in rats depending on ventricular site of administration. Neuropeptides. 1997;31:517–21.
    1. Charbogne P, Kieffer BL, Befort K. 15 years of genetic approaches in vivo for addiction research: Opioid receptor and peptide gene knockout in mouse models of drug abuse. Neuropharmacology. 2014;76 Pt B:204–17.
    1. Roth-Deri I, Green-Sadan T, Yadid G. Beta-endorphin and drug-induced reward and reinforcement. Prog Neurobiol. 2008;86:1–21.
    1. Monteleone P. New frontiers in endocrinology of eating disorders. Curr Top Behav Neurosci. 2011;6:189–208.
    1. Pecina S, Smith KS. Hedonic and motivational roles of opioids in food reward: implications for overeating disorders. Pharmacol Biochem Behav. 2010;97:34–46.
    1. Kringelbach ML, Berridge KC. The functional neuroanatomy of pleasure and happiness. Discov Med. 2010;9:579–87.
    1. Kringelbach ML, Berridge KC. The neuroscience of happiness and pleasure. Soc Res (New York) 2010;77:659–78.
    1. Berridge KC, Ho CY, Richard JM, DiFeliceantonio AG. The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res. 2010;1350:43–64.
    1. Berridge KC. ‘Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders. Physiol Behav. 2009;97:537–50.
    1. Benton D. The plausibility of sugar addiction and its role in obesity and eating disorders. Clin Nutr. 2010;29:288–303.
    1. Fulton S. Appetite and reward. Front Neuroendocrinol. 2010;31:85–103.
    1. Gosnell BA, Levine AS. Reward systems and food intake: role of opioids. Int J Obes (Lond) 2009;33(Suppl 2):S54–8.
    1. Mahler SV, Berridge KC. Which cue to “want?” Central amygdala opioid activation enhances and focuses incentive salience on a prepotent reward cue. J Neurosci. 2009;29:6500–13.
    1. Nathan PJ, Bullmore ET. From taste hedonics to motivational drive: central mu-opioid receptors and binge-eating behaviour. Int J Neuropsychopharmacol. 2009;12:995–1008.
    1. Reece AS. Hypothalamic opioid-melanocortin appetitive balance and addictive craving. Med Hypotheses. 2011;76:132–7.
    1. Yamamoto T. Central mechanisms of roles of taste in reward and eating. Acta Physiol Hung. 2008;95:165–86.
    1. Cox LA, Nathanielsz PW. The importance of altered gene promoter methylation and transcription factor binding in developmental programming of central appetitive drive. J Physiol. 2009;587:4763–4.
    1. Hasan TF, Hasan H. Anorexia nervosa: a unified neurological perspective. Int J Med Sci. 2011;8:679–703.
    1. Bandelow B, Schmahl C, Falkai P, Wedekind D. Borderline personality disorder: a dysregulation of the endogenous opioid system? Psychol Rev. 2010;117:623–36.
    1. Camacho FJ, Portillo W, Quintero-Enriquez O, Paredes RG. Reward value of intromissions and morphine in male rats evaluated by conditioned place preference. Physiol Behav. 2009;98:602–7.
    1. Kippin TE, van der Kooy D. Excitotoxic lesions of the tegmental pedunculopontine nucleus impair copulation in naive male rats and block the rewarding effects of copulation in experienced male rats. Eur J Neurosci. 2003;18:2581–91.
    1. Nocjar C, Panksepp J. Prior morphine experience induces long-term increases in social interest and in appetitive behavior for natural reward. Behav Brain Res. 2007;181:191–9.
    1. Olivier JD, de Jong TR, Jos Dederen P, van Oorschot R, Heeren D, Pattij T, et al. Effects of acute and chronic apomorphine on sex behavior and copulation-induced neural activation in the male rat. Eur J Pharmacol. 2007;576:61–76.
    1. Paredes RG. Evaluating the neurobiology of sexual reward. ILAR J. 2009;50:15–27.
    1. Pfaus JG. Pathways of sexual desire. J Sex Med. 2009;6:1506–33.
    1. Pitchers KK, Frohmader KS, Vialou V, Mouzon E, Nestler EJ, Lehman MN, et al. DeltaFosB in the nucleus accumbens is critical for reinforcing effects of sexual reward. Genes Brain Behav. 2010;9:831–40.
    1. Riters LV. Evidence for opioid involvement in the motivation to sing. J Chem Neuroanat. 2010;39:141–50.
    1. Tenk CM, Wilson H, Zhang Q, Pitchers KK, Coolen LM. Sexual reward in male rats: effects of sexual experience on conditioned place preferences associated with ejaculation and intromissions. Horm Behav. 2009;55:93–7.
    1. Pitchers KK, Balfour ME, Lehman MN, Richtand NM, Yu L, Coolen LM. Neuroplasticity in the mesolimbic system induced by natural reward and subsequent reward abstinence. Biol Psychiatry. 2010;67:872–9.
    1. Camacho FJ, Garcia-Horsman P, Paredes RG. Hormonal and testing conditions for the induction of conditioned place preference by paced mating. Horm Behav. 2009;56:410–5.
    1. Nguyen AT, Marquez P, Hamid A, Kieffer B, Friedman TC, Lutfy K. The rewarding action of acute cocaine is reduced in beta-endorphin deficient but not in mu opioid receptor knockout mice. Eur J Pharmacol. 2012;686:50–4.
    1. Simmons D, Self DW. Role of mu- and delta-opioid receptors in the nucleus accumbens in cocaine-seeking behavior. Neuropsychopharmacology. 2009;34:1946–57.
    1. Tseng A, Nguyen K, Hamid A, Garg M, Marquez P, Lutfy K. The role of endogenous beta-endorphin and enkephalins in ethanol reward. Neuropharmacology. 2013;73:290–300.
    1. Zellner MR, Watt DF, Solms M, Panksepp J. Affective neuroscientific and neuropsychoanalytic approaches to two intractable psychiatric problems: why depression feels so bad and what addicts really want. Neurosci Biobehav Rev. 2011;35:2000–8.
    1. Niikura K, Narita M, Butelman ER, Kreek MJ, Suzuki T. Neuropathic and chronic pain stimuli downregulate central mu-opioid and dopaminergic transmission. Trends Pharmacol Sci. 2010;31:299–305.
    1. Trezza V, Damsteegt R, Achterberg EJ, Vanderschuren LJ. Nucleus accumbens mu-opioid receptors mediate social reward. J Neurosci. 2011;31:6362–70.
    1. Nestler EJ. The neurobiology of cocaine addiction. Sci Pract Perspect. 2005;3:4–10.
    1. Nestler EJ. Is there a common molecular pathway for addiction? Nat Neurosci. 2005;8:1445–9.
    1. Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A. 1988;85:5274–8.
    1. Spanagel R, Herz A, Shippenberg TS. Identification of the opioid receptor types mediating beta-endorphin-induced alterations in dopamine release in the nucleus accumbens. Eur J Pharmacol. 1990;190:177–84.
    1. Spanagel R, Herz A, Shippenberg TS. The effects of opioid peptides on dopamine release in the nucleus accumbens: an in vivo microdialysis study. J Neurochem. 1990;55:1734–40.
    1. Spanagel R, Weiss F. The dopamine hypothesis of reward: past and current status. Trends Neurosci. 1999;22:521–7.
    1. Hadjiconstantinou M, Neff NH. Nicotine and endogenous opioids: neurochemical and pharmacological evidence. Neuropharmacology. 2011;60:1209–20.
    1. Charmandari E, Tsigos C, Chrousos G. Endocrinology of the stress response. Annu Rev Physiol. 2005;67:259–84.
    1. Sarnyai Z, Shaham Y, Heinrichs SC. The role of corticotropin-releasing factor in drug addiction. Pharmacol Rev. 2001;53:209–43.
    1. Sauriyal DS, Jaggi AS, Singh N. Extending pharmacological spectrum of opioids beyond analgesia: multifunctional aspects in different pathophysiological states. Neuropeptides. 2011;45:175–88.
    1. Tsigos C, Chrousos GP. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res. 2002;53:865–71.
    1. Esch T, Stefano GB. The neurobiology of stress management. Neuro Endocrinol Lett. 2010;31:19–39.
    1. Goeders NE, Guerin GF. Non-contingent electric footshock facilitates the acquisition of intravenous cocaine self-administration in rats. Psychopharmacology (Berl) 1994;114:63–70.
    1. Bilavsky E, Dagan A, Yarden-Bilavsky H, Davidovits M, Shapiro R, Mor E, et al. Adrenal insufficiency during physiological stress in children after kidney or liver transplantation. Pediatr Transplant. 2011;15:314–20.
    1. Green-Sadan T, Kinor N, Roth-Deri I, Geffen-Aricha R, Schindler CJ, Yadid G. Transplantation of glial cell line-derived neurotrophic factor-expressing cells into the striatum and nucleus accumbens attenuates acquisition of cocaine self-administration in rats. Eur J Neurosci. 2003;18:2093–8.
    1. Hadjiconstantinou M, Duchemin AM, Zhang H, Neff NH. Enhanced dopamine transporter function in striatum during nicotine withdrawal. Synapse. 2011;65:91–8.
    1. Shi J, Li SX, Zhang XL, Wang X, Le Foll B, Zhang XY, et al. Time-dependent neuroendocrine alterations and drug craving during the first month of abstinence in heroin addicts. Am J Drug Alcohol Abuse. 2009;35:267–72.
    1. Bachtell RK, Self DW. Effects of adenosine A2A receptor stimulation on cocaine-seeking behavior in rats. Psychopharmacology (Berl) 2009;206:469–78.
    1. Ahmed SH, Koob GF. Transition to drug addiction: a negative reinforcement model based on an allostatic decrease in reward function. Psychopharmacology (Berl) 2005;180:473–90.
    1. Barfield ET, Barry SM, Hodgin HB, Thompson BM, Allen SS, Grisel JE. Beta-endorphin mediates behavioral despair and the effect of ethanol on the tail suspension test in mice. Alcohol Clin Exp Res. 2010;34:1066–72.
    1. Sapolsky RM. Why zebra's don’t get ulcers. 3. New York: Henry Holt & Cy; 2004.
    1. Swanson LW, Sawchenko PE. Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci. 1983;6:269–324.
    1. Swanson LW, Sawchenko PE, Lind RW, Rho JH. The CRH motoneuron: differential peptide regulation in neurons with possible synaptic, paracrine, and endocrine outputs. Ann N Y Acad Sci. 1987;512:12–23.
    1. Swanson LW. The hypothalamus. In: Björklund A, Hökfelt T, Swanson LW, editors. Integrated systems of the CNS, part 1. Amsterdam: Elsevier; 1987. pp. 1–124.
    1. Veening JG, van der Meer MJ, Joosten H, Hermus AR, Rijnnkels CE, Geeraedts LM, et al. Intravenous administration of interleukin-1 beta induces Fos-like immunoreactivity in corticotropin-releasing hormone neurons in the paraventricular hypothalamic nucleus of the rat. J Chem Neuroanat. 1993;6:391–7.
    1. Veening JG, Coolen LM, Spooren WJ, Joosten H, van Oorschot R, Mos J, et al. Patterns of c-fos expression induced by fluvoxamine are different after acute vs. chronic oral administration. Eur Neuropsychopharmacol. 1998;8:213–26.
    1. Veening JG, Bouwknecht JA, Joosten HJ, Dederen PJ, Zethof TJ, Groenink L, et al. Stress-induced hyperthermia in the mouse: c-fos expression, corticosterone and temperature changes. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28:699–707.
    1. Groenink L, Dirks A, Verdouw PM, Schipholt M, Veening JG, van der Gugten J, et al. HPA axis dysregulation in mice overexpressing corticotropin releasing hormone. Biol Psychiatry. 2002;51:875–81.
    1. Veening JG, Bocker KB, Verdouw PM, Olivier B, De Jongh R, Groenink L. Activation of the septohippocampal system differentiates anxiety from fear in startle paradigms. Neuroscience. 2009;163:1046–60.
    1. Grisel JE, Bartels JL, Allen SA, Turgeon VL. Influence of beta-Endorphin on anxious behavior in mice: interaction with EtOH. Psychopharmacology (Berl) 2008;200:105–15.
    1. Bergasa NV, Rothman RB, Mukerjee E, Vergalla J, Jones EA. Up-regulation of central mu-opioid receptors in a model of hepatic encephalopathy: a potential mechanism for increased sensitivity to morphine in liver failure. Life Sci. 2002;70:1701–8.
    1. Quang PN, Schmidt BL. Peripheral endothelin B receptor agonist-induced antinociception involves endogenous opioids in mice. Pain. 2010;149:254–262.
    1. Hagerty MR, Isaacs J, Brasington L, Shupe L, Fetz EE, Cramer SC. Case study of ecstatic meditation: fMRI and EEG evidence of self-stimulating a reward system. Neural Plast. 2013;2013:653572.
    1. Harte JL, Eifert GH. The effects of running, environment, and attentional focus on athletes’ catecholamine and cortisol levels and mood. Psychophysiology. 1995;32:49–54.
    1. Harte JL, Eifert GH, Smith R. The effects of running and meditation on beta-endorphin, corticotropin-releasing hormone and cortisol in plasma, and on mood. Biol Psychol. 1995;40:251–65.
    1. Infante JR, Peran F, Martinez M, Roldan A, Poyatos R, Ruiz C, et al. ACTH and beta-endorphin in transcendental meditation. Physiol Behav. 1998;64:311–5.
    1. Koob GF, Le Moal M. Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nat Neurosci. 2005;8:1442–4.
    1. Papathanassoglou ED, Giannakopoulou M, Mpouzika M, Bozas E, Karabinis A. Potential effects of stress in critical illness through the role of stress neuropeptides. Nurs Crit Care. 2010;15:204–16.
    1. Roth-Deri I, Zangen A, Aleli M, Goelman RG, Pelled G, Nakash R, et al. Effect of experimenter-delivered and self-administered cocaine on extracellular beta-endorphin levels in the nucleus accumbens. J Neurochem. 2003;84:930–8.
    1. Veehof MM, Oskam MJ, Schreurs KM, Bohlmeijer ET. Acceptance-based interventions for the treatment of chronic pain: a systematic review and meta-analysis. Pain. 2011;152:533–42.
    1. Yadav RK, Magan D, Mehta M, Mehta N, Mahapatra SC. A short-term, comprehensive, yoga-based lifestyle intervention is efficacious in reducing anxiety, improving subjective well-being and personality. Int J Yoga. 2012;5:134–9.
    1. Slominski A, Wortsman J, Luger T, Paus R, Solomon S. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol Rev. 2000;80:979–1020.
    1. Tsigos C, Crosby SR, Gibson S, Young RJ, White A. Proopiomelanocortin is the predominant adrenocorticotropin-related peptide in human cerebrospinal fluid. J Clin Endocrinol Metab. 1993;76:620–4.
    1. de Kloet ER. Stress: a neurobiological perspective. Tijdschr Psychiatr. 2009;51:541–50.
    1. de Kloet ER, Fitzsimons CP, Datson NA, Meijer OC, Vreugdenhil E. Glucocorticoid signaling and stress-related limbic susceptibility pathway: about receptors, transcription machinery and microRNA. Brain Res. 2009;1293:129–41.
    1. Yadav RK, Magan D, Mehta N, Sharma R, Mahapatra SC. Efficacy of a short-term yoga-based lifestyle intervention in reducing stress and inflammation: preliminary results. J Altern Complement Med. 2012;18:662–7.
    1. de Kloet ER. From vasotocin to stress and cognition. Eur J Pharmacol. 2010;626:18–26.
    1. Shapiro SL, Brown KW, Thoresen C, Plante TG. The moderation of Mindfulness-based stress reduction effects by trait mindfulness: results from a randomized controlled trial. J Clin Psychol. 2011;67:267–77.
    1. Dobkin PL, Zhao Q. Increased mindfulness–the active component of the mindfulness-based stress reduction program? Complement Ther Clin Pract. 2011;17:22–7.
    1. Schmidt S, Grossman P, Schwarzer B, Jena S, Naumann J, Walach H. Treating fibromyalgia with mindfulness-based stress reduction: results from a 3-armed randomized controlled trial. Pain. 2011;152:361–9.
    1. Esmer G, Blum J, Rulf J, Pier J. Mindfulness-based stress reduction for failed back surgery syndrome: a randomized controlled trial. J Am Osteopath Assoc. 2010;110:646–52.
    1. Merkes M. Mindfulness-based stress reduction for people with chronic diseases. Aust J Prim Health. 2010;16:200–10.
    1. Goldin PR, Gross JJ. Effects of mindfulness-based stress reduction (MBSR) on emotion regulation in social anxiety disorder. Emotion. 2010;10:83–91.
    1. Perlman DM, Salomons TV, Davidson RJ, Lutz A. Differential effects on pain intensity and unpleasantness of two meditation practices. Emotion. 2010;10:65–71.
    1. Rosenzweig S, Greeson JM, Reibel DK, Green JS, Jasser SA, Beasley D. Mindfulness-based stress reduction for chronic pain conditions: variation in treatment outcomes and role of home meditation practice. J Psychosom Res. 2010;68:29–36.
    1. Chiesa A. Vipassana meditation: systematic review of current evidence. J Altern Complement Med. 2010;16:37–46.
    1. Chiesa A, Calati R, Serretti A. Does mindfulness training improve cognitive abilities? A systematic review of neuropsychological findings. Clin Psychol Rev. 2011;31:449–64.
    1. Chiesa A, Serretti A. Mindfulness based cognitive therapy for psychiatric disorders: a systematic review and meta-analysis. Psychiatry Res. 2011;187:441–53.
    1. Zeidan F, Martucci KT, Kraft RA, Gordon NS, McHaffie JG, Coghill RC. Brain mechanisms supporting the modulation of pain by mindfulness meditation. J Neurosci. 2011;31:5540–8.
    1. Abbott RA, Whear R, Rodgers LR, Bethel A, Thompson Coon J, Kuyken W, et al. Effectiveness of mindfulness-based stress reduction and mindfulness based cognitive therapy in vascular disease: a systematic review and meta-analysis of randomised controlled trials. J Psychosom Res. 2014;76:341–51.
    1. Black DS. Mindfulness-based interventions: an antidote to suffering in the context of substance use, misuse, and addiction. Subst Use Misuse. 2014;49:487–91.
    1. Eisendrath SJ, Gillung EP, Delucchi KL, Chartier M, Mathalon DH, Sullivan JC, et al. Mindfulness-based cognitive therapy (MBCT) versus the health-enhancement program (HEP) for adults with treatment-resistant depression: a randomized control trial study protocol. BMC Complement Altern Med. 2014;14:95.
    1. Kopf S, Oikonomou D, Hartmann M, Feier F, Faude-Lang V, Morcos M, et al. Effects of stress reduction on cardiovascular risk factors in type 2 diabetes patients with early kidney disease - results of a randomized controlled trial (HEIDIS) Exp Clin Endocrinol Diabetes. 2014;122(6):341–9.
    1. Lenze EJ, Hickman S, Hershey T, Wendleton L, Ly K, Dixon D, et al. Mindfulness-based stress reduction for older adults with worry symptoms and co-occurring cognitive dysfunction. Int J Geriatr Psychiatry. 2014;29(10):991–1000.
    1. Smith SA. Mindfulness-Based Stress Reduction: An Intervention to Enhance the Effectiveness of Nurses' Coping With Work-Related Stress. Int J Nurs Knowl. 2014;25(2):119–30.
    1. Rapgay L, Bystrisky A. Classical mindfulness: an introduction to its theory and practice for clinical application. Ann N Y Acad Sci. 2009;1172:148–62.
    1. Chiesa A, Serretti A. A systematic review of neurobiological and clinical features of mindfulness meditations. Psychol Med. 2010;40:1239–52.
    1. Moynihan JA, Chapman BP, Klorman R, Krasner MS, Duberstein PR, Brown KW, et al. Mindfulness-based stress reduction for older adults: effects on executive function, frontal alpha asymmetry and immune function. Neuropsychobiology. 2013;68:34–43.
    1. Pickut BA, Van Hecke W, Kerckhofs E, Marien P, Vanneste S, Cras P, et al. Mindfulness based intervention in Parkinson’s disease leads to structural brain changes on MRI: a randomized controlled longitudinal trial. Clin Neurol Neurosurg. 2013;115:2419–25.
    1. Wells RE, Yeh GY, Kerr CE, Wolkin J, Davis RB, Tan Y, et al. Meditation’s impact on default mode network and hippocampus in mild cognitive impairment: a pilot study. Neurosci Lett. 2013;556:15–9.
    1. Holzel BK, Carmody J, Vangel M, Congleton C, Yerramsetti SM, Gard T, et al. Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry Res. 2011;191:36–43.
    1. Holzel BK, Carmody J, Evans KC, Hoge EA, Dusek JA, Morgan L, et al. Stress reduction correlates with structural changes in the amygdala. Soc Cogn Affect Neurosci. 2010;5:11–7.
    1. Jovanovic H, Perski A, Berglund H, Savic I. Chronic stress is linked to 5-HT(1A) receptor changes and functional disintegration of the limbic networks. Neuroimage. 2011;55:1178–88.
    1. Kerr CE, Sacchet MD, Lazar SW, Moore CI, Jones SR. Mindfulness starts with the body: somatosensory attention and top-down modulation of cortical alpha rhythms in mindfulness meditation. Front Hum Neurosci. 2013;7:12.
    1. Goldin P, Ziv M, Jazaieri H, Hahn K, Gross JJ. MBSR vs aerobic exercise in social anxiety: fMRI of emotion regulation of negative self-beliefs. Soc Cogn Affect Neurosci. 2013;8:65–72.
    1. Hegadoren KM, O’Donnell T, Lanius R, Coupland NJ, Lacaze-Masmonteil N. The role of beta-endorphin in the pathophysiology of major depression. Neuropeptides. 2009;43:341–53.
    1. Panksepp J. Affective neuroscience of the emotional BrainMind: evolutionary perspectives and implications for understanding depression. Dialogues Clin Neurosci. 2010;12:533–45.
    1. Coenen VA, Schlaepfer TE, Maedler B, Panksepp J. Cross-species affective functions of the medial forebrain bundle-implications for the treatment of affective pain and depression in humans. Neurosci Biobehav Rev. 2011;35:1971–81.
    1. Harro J, Kanarik M, Matrov D, Panksepp J. Mapping patterns of depression-related brain regions with cytochrome oxidase histochemistry: relevance of animal affective systems to human disorders, with a focus on resilience to adverse events. Neurosci Biobehav Rev. 2011;35:1876–89.
    1. Bernroider G, Panksepp J. Mirrors and feelings: have you seen the actors outside? Neurosci Biobehav Rev. 2011;35:2009–16.
    1. Panksepp J. Toward a cross-species neuroscientific understanding of the affective mind: do animals have emotional feelings? Am J Primatol. 2011;73:545–61.
    1. Stein DJ, van Honk J, Ipser J, Solms M, Panksepp J. Opioids: from physical pain to the pain of social isolation. CNS Spectr. 2007;12:669–70.
    1. Panksepp J, Herman BH, Vilberg T, Bishop P, DeEskinazi FG. Endogenous opioids and social behavior. Neurosci Biobehav Rev. 1980;4:473–87.
    1. Akil H, Richardson DE, Barchas JD, Li CH. Appearance of beta-endorphin-like immunoreactivity in human ventricular cerebrospinal fluid upon analgesic electrical stimulation. Proc Natl Acad Sci U S A. 1978;75:5170–2.
    1. Akil H, Richardson DE, Hughes J, Barchas JD. Enkephalin-like material elevated in ventricular cerebrospinal fluid of pain patients after analgetic focal stimulation. Science. 1978;201:463–5.
    1. Guillemin R, Ling N, Burgus R, Bloom F, Segal D. Characterization of the endorphins, novel hypothalamic and neurohypophysial peptides with opiate-like activity: evidence that they induce profound behavioral changes. Psychoneuroendocrinology. 1977;2:59–62.
    1. Guillemin R, Ling N, Lazarus L, Burgus R, Minick S, Bloom F, et al. The endorphins, novel peptides of brain and hypophysial origin, with opiate-like activity: biochemical and biologic studies. Ann N Y Acad Sci. 1977;297:131–57.
    1. Segal DS, Browne RG, Bloom F, Ling N, Guillemin R. beta-Endorphin: endogenous opiate or neuroleptic? Science. 1977;198:411–4.
    1. Bloom F, Battenberg E, Rossier J, Ling N, Leppaluoto J, Vargo TM, et al. Endorphins are located in the intermediate and anterior lobes of the pituitary gland, not in the neurohypophysis. Life Sci. 1977;20:43–7.
    1. Bloom F, Segal D, Ling N, Guillemin R. Endorphins: profound behavioral effects in rats suggest new etiological factors in mental illness. Science. 1976;194:630–2.
    1. Frederickson RC, Geary LE. Endogenous opioid peptides: review of physiological, pharmacological and clinical aspects. Prog Neurobiol. 1982;19:19–69.
    1. O’Donohue TL, Dorsa DM. The opiomelanotropinergic neuronal and endocrine systems. Peptides. 1982;3:353–95.
    1. Loh HH, Tseng LF, Wei E, Li CH. beta-endorphin is a potent analgesic agent. Proc Natl Acad Sci U S A. 1976;73:2895–8.
    1. Foley KM, Kourides IA, Inturrisi CE, Kaiko RF, Zaroulis CG, Posner JB, et al. beta-Endorphin: analgesic and hormonal effects in humans. Proc Natl Acad Sci U S A. 1979;76:5377–81.
    1. Backryd E, Ghafouri B, Larsson B, Gerdle B. Do low levels of beta-endorphin in the cerebrospinal fluid indicate defective top-down inhibition in patients with chronic neuropathic pain? A cross-sectional, comparative study. Pain Med. 2014;15:111–9.
    1. Feldreich A, Ernberg M, Lund B, Rosen A. Increased beta-endorphin levels and generalized decreased pain thresholds in patients with limited jaw opening and movement-evoked pain from the temporomandibular joint. J Oral Maxillofac Surg. 2012;70:547–56.
    1. Matejec R, Ruwoldt R, Bodeker RH, Hempelmann G, Teschemacher H. Release of beta-endorphin immunoreactive material under perioperative conditions into blood or cerebrospinal fluid: significance for postoperative pain? Anesth Analg. 2003;96:481–6.
    1. Morales AB, Vives F, Ros I, Mora F. Plasma and CSF levels of immunoreactive beta-endorphin in algic peaks of patients with herniated intervertebral discs. Rev Esp Fisiol. 1988;44:21–5.
    1. Salar G, Mingrino S, Trabucchi M, Bosio A, Semenza C. Evaluation of endorphin content in the CSF of patients with trigeminal neuralgia before and after Gasserian ganglion thermocoagulation. J Neurosurg. 1981;55:935–7.
    1. Imasato H, Nagata K, Hashimoto S, Komori H, Inoue A. Objective evaluation of pain in various spinal diseases: neuropeptide immunoreactivity in the cerebrospinal fluid. Spinal Cord. 1997;35:757–62.
    1. Tsigos C, Gibson S, Crosby SR, White A, Young RJ. Cerebrospinal fluid levels of beta endorphin in painful and painless diabetic polyneuropathy. J Diabetes Complications. 1995;9:92–6.
    1. Vaeroy H, Helle R, Forre O, Kass E, Terenius L. Cerebrospinal fluid levels of beta-endorphin in patients with fibromyalgia (fibrositis syndrome) J Rheumatol. 1988;15:1804–6.
    1. Vaeroy H, Nyberg F, Terenius L. No evidence for endorphin deficiency in fibromyalgia following investigation of cerebrospinal fluid (CSF) dynorphin A and Met-enkephalin-Arg6-Phe7. Pain. 1991;46:139–43.
    1. Nappi G, Facchinetti F, Martignoni E, Petraglia F, Bono G, Micieli G, et al. Plasma and CSF endorphin levels in primary and symptomatic headaches. Headache. 1985;25:141–4.
    1. Jorgensen LS, Bach FW, Christiansen P, Raundahl U, Ostgaard S, Ekman R. Decreased cerebrospinal fluid beta-endorphin and increased pain sensitivity in patients with functional abdominal pain. Scand J Gastroenterol. 1993;28:763–6.
    1. Jorgensen LS, Bach FW, Christiansen PM, Raundahl U, Ostgaard SE, Ekman R. Reduced concentration of beta-endorphin in cerebrospinal fluid and reduced pain tolerance in patients with functional dyspepsia. Ugeskr Laeger. 1995;157:166–9.
    1. Genazzani AR, Nappi G, Facchinetti F, Micieli G, Petraglia F, Bono G, et al. Progressive impairment of CSF beta-EP levels in migraine sufferers. Pain. 1984;18:127–33.
    1. Misra UK, Kalita J, Tripathi GM, Bhoi SK. Is beta endorphin related to migraine headache and its relief? Cephalalgia. 2013;33:316–22.
    1. Wu XF, Zhang MK, Huang H. Chin J Integr Med. 2014. Evaluation of analgesic, sedative effects and antimigraine mechanism of Qilong Toutong Granule () in rodents.
    1. Zhao Y, Tian L, Sheng W, Miao J, Yang J. Hypalgesia effect of IL-24, a quite new mechanism for IL-24 application in cancer treatment. J Interferon Cytokine Res. 2013;33:606–11.
    1. Facchinetti F, Petraglia F, Nappi G, Martignoni E, Sinforiani E, Bono G, et al. Functional opioid activity variates according to the different fashion of alcohol abuse. Subst Alcohol Actions Misuse. 1984;5:281–91.
    1. Bach FW. Beta-endorphin in the brain. A role in nociception. Acta Anaesthesiol Scand. 1997;41:133–40.
    1. Bach FW, Chaplan SR, Jang J, Yaksh TL. Cerebrospinal fluid beta-endorphin in models of hyperalgesia in the rat. Regul Pept. 1995;59:79–86.
    1. Bach FW, Yaksh TL. Release of beta-endorphin immunoreactivity into ventriculo-cisternal perfusate by lumbar intrathecal capsaicin in the rat. Brain Res. 1995;701:192–200.
    1. Misra UK, Kalita J, Bhoi SK. High-rate repetitive transcranial magnetic stimulation in migraine prophylaxis: a randomized, placebo-controlled study. J Neurol. 2013;260:2793–801.
    1. Young RF, Bach FW, Van Norman AS, Yaksh TL. Release of beta-endorphin and methionine-enkephalin into cerebrospinal fluid during deep brain stimulation for chronic pain. Effects of stimulation locus and site of sampling. J Neurosurg. 1993;79:816–25.
    1. Hosobuchi Y. Periaqueductal gray stimulation in humans produces analgesia accompanied by elevation of beta-endorphin and ACTH in ventricular CSF. Mod Probl Pharmacopsychiatry. 1981;17:109–22.
    1. Shen J. Research on the neurophysiological mechanisms of acupuncture: review of selected studies and methodological issues. J Altern Complement Med. 2001;7(Suppl 1):S121–7.
    1. Zhao ZQ. Neural mechanism underlying acupuncture analgesia. Prog Neurobiol. 2008;85:355–75.
    1. Lee HJ, Lee JH, Lee EO, Lee HJ, Kim KH, Lee KS, et al. Substance P and beta endorphin mediate electroacupuncture induced analgesic activity in mouse cancer pain model. Acupunct Electrother Res. 2009;34:27–40.
    1. Zyloney CE, Jensen K, Polich G, Loiotile RE, Cheetham A, LaViolette PS, et al. Imaging the functional connectivity of the Periaqueductal Gray during genuine and sham electroacupuncture treatment. Mol Pain. 2010;6:80.
    1. He LF, Dong WQ. Activity of opioid peptidergic system in acupuncture analgesia. Acupunct Electrother Res. 1983;8:257–66.
    1. Ho WK, Wen HL. Opioid-like activity in the cerebrospinal fluid of pain patients treated by electroacupuncture. Neuropharmacology. 1989;28:961–6.
    1. Guo ZL, Longhurst JC. Activation of reciprocal pathways between arcuate nucleus and ventrolateral periaqueductal gray during electroacupuncture: involvement of VGLUT3. Brain Res. 2010;1360:77–88.
    1. Li P, Tjen ALSC, Guo ZL, Longhurst JC. An arcuate-ventrolateral periaqueductal gray reciprocal circuit participates in electroacupuncture cardiovascular inhibition. Auton Neurosci. 2010;158:13–23.
    1. Guo J, Liu J, Fu W, Ma W, Xu Z, Yuan M, et al. Effect of electroacupuncture stimulation of hindlimb on seizure incidence and supragranular mossy fiber sprouting in a rat model of epilepsy. J Physiol Sci. 2008;58:309–15.
    1. Guo J, Liu J, Fu W, Ma W, Xu Z, Yuan M, et al. The effect of electroacupuncture on spontaneous recurrent seizure and expression of GAD(67) mRNA in dentate gyrus in a rat model of epilepsy. Brain Res. 2008;1188:165–72.
    1. Cao X. Scientific bases of acupuncture analgesia. Acupunct Electrother Res. 2002;27:1–14.
    1. Cheng LL, Ding MX, Xiong C, Zhou MY, Qiu ZY, Wang Q. Effects of electroacupuncture of different frequencies on the release profile of endogenous opioid peptides in the central nerve system of goats. Evid Based Complement Alternat Med. 2012;2012:476457.
    1. Nakamura T, Tomida M, Yamamoto T, Ando H, Takamata T, Kondo E, et al. The endogenous opioids related with antinociceptive effects induced by electrical stimulation into the amygdala. Open Dent J. 2013;7:27–35.
    1. Ren XX, Guo MW, Zhao YF, Ding XY, Li CH, Ji B, et al. Effects of electroacupuncture on pain reactions, expression of spinal kappa-opioid receptor and contents of enkephalin and beta-endorphin in periaqueductal gray of midbrain in dysmenorrhea model rats. Zhen Ci Yan Jiu. 2012;37:1–7.
    1. Wang Y, Gehringer R, Mousa SA, Hackel D, Brack A, Rittner HL. CXCL10 Controls Inflammatory Pain via Opioid Peptide-Containing Macrophages in Electroacupuncture. PLoS One. 2014;9:e94696.
    1. Zhang Y, Zhang RX, Zhang M, Shen XY, Li A, Xin J, et al. Electroacupuncture inhibition of hyperalgesia in an inflammatory pain rat model: involvement of distinct spinal serotonin and norepinephrine receptor subtypes. Br J Anaesth. 2012;109:245–52.
    1. Chen P, Zhao BX, Qin W, Chen HY, Tian J, Fan YP, et al. Study on the mechanism of acupuncture at Daling (PC 7) for mental diseases by fMRI. Zhongguo Zhen Jiu. 2008;28:429–32.
    1. Alessi NE, Khachaturian H, Watson S, Akil H. Postnatal ontogeny of acetylated and non-acetylated B-endorphin in rat pituitary. Life Sci. 1983;33(Suppl 1):57–60.
    1. Banks WA, Kastin AJ. Quantifying carrier-mediated transport of peptides from the brain to the blood. Methods Enzymol. 1989;168:652–60.
    1. Scheef L, Jankowski J, Daamen M, Weyer G, Klingenberg M, Renner J, et al. An fMRI study on the acute effects of exercise on pain processing in trained athletes. Pain. 2012;153:1702–14.
    1. Bender T, Nagy G, Barna I, Tefner I, Kadas E, Geher P. The effect of physical therapy on beta-endorphin levels. Eur J Appl Physiol. 2007;100:371–82.
    1. Spaziante R, Merola B, Colao A, Gargiulo G, Cafiero T, Irace C, et al. Beta-endorphin concentrations both in plasma and in cerebrospinal fluid in response to acute painful stimuli. J Neurosurg Sci. 1990;34:99–106.
    1. Zangen A, Nakash R, Yadid G. Serotonin-mediated increases in the extracellular levels of beta-endorphin in the arcuate nucleus and nucleus accumbens: a microdialysis study. J Neurochem. 1999;73:2569–74.
    1. Basbaum AI, Fields HL. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci. 1984;7:309–38.
    1. Fields H. State-dependent opioid control of pain. Nat Rev Neurosci. 2004;5:565–75.
    1. Zelinski LM, Ohgami Y, Quock RM. Exposure to nitrous oxide stimulates a nitric oxide-dependent neuronal release of beta-endorphin in ventricular-cisternally-perfused rats. Brain Res. 2009;1300:37–40.
    1. Zubrzycka M, Janecka A. Effect of tooth pulp and periaqueductal central gray electrical stimulation on beta-endorphin release into the fluid perfusing the cerebral ventricles in rats. Brain Res. 2011;1405:15–22.
    1. Guo HF, Tian J, Wang X, Fang Y, Hou Y, Han J. Brain substrates activated by electroacupuncture of different frequencies (I): Comparative study on the expression of oncogene c-fos and genes coding for three opioid peptides. Brain Res Mol Brain Res. 1996;43:157–66.
    1. Guo X, Zhao H, Wang Y, Su W. Advances of clinical studies on acupuncture treatment of depression. Zhen Ci Yan Jiu. 2008;33:416–9.
    1. Spetea M. Opioid receptors and their ligands in the musculoskeletal system and relevance for pain control. Curr Pharm Des. 2013;19:7382–90.
    1. Akil H, Watson SJ, Sullivan S, Barchas JD. Enkephalin-like material in normal human CSF: measurement and levels. Life Sci. 1978;23:121–5.
    1. Bach FW, Yaksh TL. Release of beta-endorphin immunoreactivity from brain by activation of a hypothalamic N-methyl-D-aspartate receptor. Neuroscience. 1995;65:775–83.
    1. Yadid G, Zangen A, Herzberg U, Nakash R, Sagen J. Alterations in endogenous brain beta-endorphin release by adrenal medullary transplants in the spinal cord. Neuropsychopharmacology. 2000;23:709–16.
    1. Zubrzycka M, Szemraj J, Janecka A. Effect of tooth pulp and periaqueductal central gray stimulation on the expression of genes encoding the selected neuropeptides and opioid receptors in the mesencephalon, hypothalamus and thalamus in rats. Brain Res. 2011;1382:19–28.
    1. Baumgarten CR, Schmitz P, O’Connor A, Kunkel G. Effects of beta-endorphin on nasal allergic inflammation. Clin Exp Allergy. 2002;32:228–36.
    1. Niu H, Zheng Y, Huma T, Rizak JD, Li L, Wang G, et al. Lesion of olfactory epithelium attenuates expression of morphine-induced behavioral sensitization and reinstatement of drug-primed conditioned place preference in mice. Pharmacol Biochem Behav. 2013;103:526–34.
    1. Jagannadha Rao A, Moudal NR, Li CH. beta-Endorphin: intranasal administration increases the serum prolactin level in monkey. Int J Pept Protein Res. 1986;28:546–8.
    1. El-Sherif AE, Salem M, Yahia H, Al-Sharkawy WA, Al-Sayrafi M. Treatment of renal colic by desmopressin intranasal spray and diclofenac sodium. J Urol. 1995;153:1395–8.
    1. Franceschini R, Cataldi A, Barreca T, Salvemini M, Rolandi E. Plasma beta-endorphin, ACTH and cortisol secretion in man after nasal spray administration of calcitonin. Eur J Clin Pharmacol. 1989;37:341–3.
    1. Vescovi PP, Pedrazzoni M, Gerra G, Maninetti L, Michelini M, Pioli G, et al. Salmon calcitonin given by nasal spray or by injection does not increase beta-endorphin levels in normal men. Life Sci. 1990;47:1469–73.
    1. Westin U, Piras E, Jansson B, Bergstrom U, Dahlin M, Brittebo E, et al. Transfer of morphine along the olfactory pathway to the central nervous system after nasal administration to rodents. Eur J Pharm Sci. 2005;24:565–73.
    1. Westin UE, Bostrom E, Grasjo J, Hammarlund-Udenaes M, Bjork E. Direct nose-to-brain transfer of morphine after nasal administration to rats. Pharm Res. 2006;23:565–72.
    1. Bulloch MN, Hutchison AM. Fentanyl pectin nasal spray: a novel intranasal delivery method for the treatment of breakthrough cancer pain. Expert Rev Clin Pharmacol. 2013;6:9–22.
    1. Hitt JM, Corcoran T, Michienzi K, Creighton P, Heard C. An evaluation of intranasal sufentanil and dexmedetomidine for pediatric dental sedation. Pharmaceutics. 2014;6:175–84.
    1. Leppert W. New treatment possibilities for opioid-induced bowel dysfunction. Pain. 2013;154:1491–2.
    1. Mercadante S, Prestia G, Adile C, Casuccio A. Intranasal Fentanyl Versus Fentanyl Pectin Nasal Spray for the Management of Breakthrough Cancer Pain in Doses Proportional to Basal Opioid Regimen. J Pain. 2014;15(6):602–7.
    1. Nave R, Schmitt H, Popper L. Faster absorption and higher systemic bioavailability of intranasal fentanyl spray compared to oral transmucosal fentanyl citrate in healthy subjects. Drug Deliv. 2013;20:216–23.
    1. Perelman M, Fisher AN, Smith A, Knight A. Impact of allergic rhinitis and its treatment on the pharmacokinetics of nasally administered fentanyl. Int J Clin Pharmacol Ther. 2013;51:349–56.
    1. Bjelke B, Fuxe K. Intraventricular beta-endorphin accumulates in DARPP-32 immunoreactive tanycytes. Neuroreport. 1993;5:265–8.
    1. Fuxe K, Li XM, Bjelke B, Hedlund PB, Biagini G, Agnati LF. Possible mechanisms for the powerful actions of neuropeptides. Ann N Y Acad Sci. 1994;739:42–59.
    1. Bjelke B, Stromberg I, O’Connor WT, Andbjer B, Agnati LF, Fuxe K. Evidence for volume transmission in the dopamine denervated neostriatum of the rat after a unilateral nigral 6-OHDA microinjection. Studies with systemic D-amphetamine treatment. Brain Res. 1994;662:11–24.
    1. Siegan JB, Sagen J. Attenuation of formalin pain responses in the rat by adrenal medullary transplants in the spinal subarachnoid space. Pain. 1997;70:279–85.
    1. Sagen J, Wang H, Pappas GD. Adrenal medullary implants in the rat spinal cord reduce nociception in a chronic pain model. Pain. 1990;42:69–79.
    1. Finegold AA, Mannes AJ, Iadarola MJ. A paracrine paradigm for in vivo gene therapy in the central nervous system: treatment of chronic pain. Hum Gene Ther. 1999;10:1251–7.
    1. Parolaro D, Crema G, Sala M, Santagostino A, Giagnoni G, Gori E. Intestinal effect and analgesia: evidence for different involvement of opioid receptor subtypes in periaqueductal gray matter. Eur J Pharmacol. 1986;120:95–9.
    1. Hill C, Dunbar JC. The effects of acute and chronic alpha melanocyte stimulating hormone (alphaMSH) on cardiovascular dynamics in conscious rats. Peptides. 2002;23:1625–30.
    1. Sarkar DK, Zhang C, Murugan S, Dokur M, Boyadjieva NI, Ortiguela M, et al. Transplantation of beta-endorphin neurons into the hypothalamus promotes immune function and restricts the growth and metastasis of mammary carcinoma. Cancer Res. 2011;71:6282–91.
    1. Borner C, Lanciotti S, Koch T, Hollt V, Kraus J. mu opioid receptor agonist-selective regulation of interleukin-4 in T lymphocytes. J Neuroimmunol. 2013;263:35–42.
    1. Day YJ, Liou JT, Lee CM, Lin YC, Mao CC, Chou AH, et al. Lack of interleukin-17 leads to a modulated micro-environment and amelioration of mechanical hypersensitivity after peripheral nerve injury in mice. Pain. 2014;155(7):1293–302.
    1. Dougherty PM, Pellis NR, Dafny N. The brain and the immune system: an intact immune system is essential for the manifestation of withdrawal in opiate addicted rats. Neuroscience. 1990;36:285–9.
    1. Fioravanti A, Cantarini L, Guidelli GM, Galeazzi M. Mechanisms of action of spa therapies in rheumatic diseases: what scientific evidence is there? Rheumatol Int. 2011;31:1–8.
    1. Fioravanti A, Perpignano G, Tirri G, Cardinale G, Gianniti C, Lanza CE, et al. Effects of mud-bath treatment on fibromyalgia patients: a randomized clinical trial. Rheumatol Int. 2007;27:1157–61.
    1. Furui T, Satoh K, Asano Y, Shimosawa S, Hasuo M, Yaksh TL. Increase of beta-endorphin levels in cerebrospinal fluid but not in plasma in patients with cerebral infarction. J Neurosurg. 1984;61:748–51.
    1. Hostetler ED, Sanabria-Bohorquez S, Eng W, Joshi AD, Patel S, Gibson RE, et al. Evaluation of [(1)(8)F]MK-0911, a positron emission tomography (PET) tracer for opioid receptor-like 1 (ORL1), in rhesus monkey and human. Neuroimage. 2013;68:1–10.
    1. Jonsdottir IH, Hellstrand K, Thoren P, Hoffmann P. Enhancement of natural immunity seen after voluntary exercise in rats. Role of central opioid receptors. Life Sci. 2000;66:1231–9.
    1. Liou JT, Liu FC, Mao CC, Lai YS, Day YJ. Inflammation confers dual effects on nociceptive processing in chronic neuropathic pain model. Anesthesiology. 2011;114:660–72.
    1. Liu H, Shen X, Tang H, Li J, Xiang T, Yu W. Using microPET imaging in quantitative verification of the acupuncture effect in ischemia stroke treatment. Sci Rep. 2013;3:1070.
    1. McVeigh JG, McGaughey H, Hall M, Kane P. The effectiveness of hydrotherapy in the management of fibromyalgia syndrome: a systematic review. Rheumatol Int. 2008;29:119–30.
    1. Teschemacher H, Koch G, Scheffler H, Hildebrand A, Brantl V. Opioid peptides. Immunological significance? Ann N Y Acad Sci. 1990;594:66–77.
    1. Ye D, Bu H, Guo G, Shu B, Wang W, Guan X, et al. Activation of CXCL10/CXCR3 Signaling Attenuates Morphine Analgesia: Involvement of Gi Protein. J Mol Neurosci. 2014;53(4):571–9.
    1. Berger PA, Watson SJ, Akil H, Barchas JD. Investigating opioid peptides in schizophrenia and depression. Res Publ Assoc Res Nerv Ment Dis. 1986;64:309–33.
    1. Berger PA, Watson SJ, Akil H, Elliott GR, Rubin RT, Pfefferbaum A, et al. beta-Endorphin and schizophrenia. Arch Gen Psychiatry. 1980;37:635–40.
    1. Melrose PA, Knigge KM. Topography of oxytocin and vasopressin neurons in the forebrain of Equus caballus: further support of proposed evolutionary relationships for proopiomelanocortin, oxytocin and vasopressin neurons. Brain Behav Evol. 1989;33:193–204.
    1. Joseph SA, Pilcher WH, Knigge KM. Anatomy of the corticotropin-releasing factor and opiomelanocortin systems of the brain. Fed Proc. 1985;44:100–7.
    1. Knigge KM, Joseph SA. Anatomy of the opioid-systems of the brain. Can J Neurol Sci. 1984;11:14–23.
    1. Summy-Long JY, Miller DS, Rosella-Dampman LM, Hartman RD, Emmert SE. A functional role for opioid peptides in the differential secretion of vasopressin and oxytocin. Brain Res. 1984;309:362–6.
    1. Bodnar RJ, Nilaver G, Wallace MM, Badillo-Martinez D, Zimmerman EA. Pain threshold changes in rats following central injection of beta-endorphin, met-enkephalin, vasopressin or oxytocin antisera. Int J Neurosci. 1984;24:149–60.
    1. Bicknell RJ, Chapman C, Leng G. Effects of opioid agonists and antagonists on oxytocin and vasopressin release in vitro. Neuroendocrinology. 1985;41:142–8.
    1. Bicknell RJ, Chapman C, Leng G. Neurohypophysial opioids and oxytocin secretion: source of inhibitory opioids. Exp Brain Res. 1985;60:192–6.
    1. Kovacs GL, Telegdy G. Beta-endorphin tolerance is inhibited by oxytocin. Pharmacol Biochem Behav. 1987;26:57–60.
    1. Keverne EB. Central mechanisms underlying the neural and neuroendocrine determinants of maternal behaviour. Psychoneuroendocrinology. 1988;13:127–41.
    1. Vecsernyes M, Laczi F, Kovacs GL, Szabo G, Janaky T, Telegdy G, et al. The effects of beta-endorphin on arginine-8-vasopressin and oxytocin levels in rat brain areas. Experientia. 1989;45:472–4.
    1. Csiffary A, Ruttner Z, Toth Z, Palkovits M. Oxytocin nerve fibers innervate beta-endorphin neurons in the arcuate nucleus of the rat hypothalamus. Neuroendocrinology. 1992;56:429–35.
    1. Keverne EB, Kendrick KM. Maternal behaviour in sheep and its neuroendocrine regulation. Acta Paediatr Suppl. 1994;397:47–56.
    1. Douglas AJ, Bicknell RJ, Russell JA. Pathways to parturition. Adv Exp Med Biol. 1995;395:381–94.
    1. Douglas AJ, Leng G, Russell JA. The importance of oxytocin mechanisms in the control of mouse parturition. Reproduction. 2002;123:543–52.
    1. Franchini LF, Rubinstein M, Vivas L. Reduced sodium appetite and increased oxytocin gene expression in mutant mice lacking beta-endorphin. Neuroscience. 2003;121:875–81.
    1. Kutlu S, Yilmaz B, Canpolat S, Sandal S, Ozcan M, Kumru S, et al. Mu opioid modulation of oxytocin secretion in late pregnant and parturient rats. Involvement of noradrenergic neurotransmission. Neuroendocrinology. 2004;79:197–203.
    1. Bancroft J. The endocrinology of sexual arousal. J Endocrinol. 2005;186:411–27.
    1. Yang J, Liu WY, Song CY, Lin BC. Only arginine vasopressin, not oxytocin and endogenous opiate peptides, in hypothalamic paraventricular nucleus play a role in acupuncture analgesia in the rat. Brain Res Bull. 2006;68:453–8.
    1. Yang J, Yang Y, Xu HT, Chen JM, Liu WY, Lin BC. Arginine vasopressin induces periaqueductal gray release of enkephalin and endorphin relating to pain modulation in the rat. Regul Pept. 2007;142:29–36.
    1. Vuong C, Van Uum SH, O’Dell LE, Lutfy K, Friedman TC. The effects of opioids and opioid analogs on animal and human endocrine systems. Endocr Rev. 2010;31:98–132.
    1. Barna I, Sweep CG, Veldhuis HD, Wiegant VM, De Wied D. Effects of pituitary beta-endorphin secretagogues on the concentration of beta-endorphin in rat cerebrospinal fluid: evidence for a role of vasopressin in the regulation of brain beta-endorphin release. Neuroendocrinology. 1990;51:104–10.
    1. Kjaer A, Larsen PJ, Knigge U, Moller M, Warberg J. Histamine stimulates c-fos expression in hypothalamic vasopressin-, oxytocin-, and corticotropin-releasing hormone-containing neurons. Endocrinology. 1994;134:482–91.
    1. Morhenn V, Beavin LE, Zak PJ. Massage increases oxytocin and reduces adrenocorticotropin hormone in humans. Altern Ther Health Med. 2012;18:11–8.
    1. Rosenblatt JS, Mayer AD, Giordano AL. Hormonal basis during pregnancy for the onset of maternal behavior in the rat. Psychoneuroendocrinology. 1988;13:29–46.
    1. Sweep CG, Boomkamp MD, Barna I, Logtenberg AW, Wiegant VM. Vasopressin enhances the clearance of beta-endorphin immunoreactivity from rat cerebrospinal fluid. Acta Endocrinol (Copenh) 1990;122:191–200.
    1. Yang J, Li P, Liang JY, Pan YJ, Yan XQ, Yan FL, et al. Oxytocin in the periaqueductal grey regulates nociception in the rat. Regul Pept. 2011;169:39–42.
    1. Yang J, Liang JY, Li P, Pan YJ, Qiu PY, Zhang J, et al. Oxytocin in the periaqueductal gray participates in pain modulation in the rat by influencing endogenous opiate peptides. Peptides. 2011;32:1255–61.
    1. Yang J, Pan YJ, Zhao Y, Qiu PY, Lu L, Li P, et al. Oxytocin in the rat caudate nucleus influences pain modulation. Peptides. 2011;32:2104–7.
    1. Douglas AJ, Bicknell RJ, Leng G, Russell JA, Meddle SL. Beta-endorphin cells in the arcuate nucleus: projections to the supraoptic nucleus and changes in expression during pregnancy and parturition. J Neuroendocrinol. 2002;14:768–77.
    1. Sewards TV, Sewards MA. Representations of motivational drives in mesial cortex, medial thalamus, hypothalamus and midbrain. Brain Res Bull. 2003;61:25–49.
    1. Sewards TV, Sewards MA. Fear and power-dominance motivation: proposed contributions of peptide hormones present in cerebrospinal fluid and plasma. Neurosci Biobehav Rev. 2003;27:247–67.

Source: PubMed

3
구독하다