Fingolimod after a first unilateral episode of acute optic neuritis (MOVING) - preliminary results from a randomized, rater-blind, active-controlled, phase 2 trial

Christian Albert, Janine Mikolajczak, Anja Liekfeld, Sophie K Piper, Michael Scheel, Hanna G Zimmermann, Claus Nowak, Jan Dörr, Judith Bellmann-Strobl, Claudia Chien, Alexander U Brandt, Friedemann Paul, Olaf Hoffmann, Christian Albert, Janine Mikolajczak, Anja Liekfeld, Sophie K Piper, Michael Scheel, Hanna G Zimmermann, Claus Nowak, Jan Dörr, Judith Bellmann-Strobl, Claudia Chien, Alexander U Brandt, Friedemann Paul, Olaf Hoffmann

Abstract

Background: Neuroprotection and promotion of remyelination represent important therapeutic gaps in multiple sclerosis (MS). Acute optic neuritis (ON) is a frequent MS manifestation. Based on the presence and properties of sphingosine-1-phosphate receptors (S1PR) on astrocytes and oligodendrocytes, we hypothesized that remyelination can be enhanced by treatment with fingolimod, a S1PR modulator currently licensed for relapsing-remitting MS.

Methods: MOVING was an investigator-driven, rater-blind, randomized clinical trial. Patients with acute unilateral ON, occurring as a clinically isolated syndrome or MS relapse, were randomized to 6 months of treatment with 0.5 mg oral fingolimod or subcutaneous IFN-β 1b 250 μg every other day. The change in multifocal visual evoked potential (mfVEP) latency of the qualifying eye was examined as the primary (month 6 vs. baseline) and secondary (months 3, 6 and 12 vs. baseline) outcome. In addition, full field visual evoked potentials, visual acuity, optical coherence tomography as well as clinical relapses and measures of disability, cerebral MRI, and self-reported visual quality of life were obtained for follow-up. The study was halted due to insufficient recruitment (n = 15), and available results are reported.

Results: Per protocol analysis of the primary endpoint revealed a significantly larger reduction of mfVEP latency at 6 months compared to baseline with fingolimod treatment (n = 5; median decrease, 15.7 ms) than with IFN-β 1b treatment (n = 4; median increase, 8.15 ms) (p < 0.001 for interaction). Statistical significance was maintained in the secondary endpoint analysis. Descriptive results are reported for other endpoints.

Conclusion: Preliminary results of the MOVING trial argue in support of a beneficial effect of fingolimod on optic nerve remyelination when compared to IFN-β treatment. Interpretation is limited by the small number of complete observations, an unexpected deterioration of the control group and a difference in baseline mfVEP latencies. The findings need to be confirmed in larger studies.

Trial registration: The trial was registered as EUDRA-CT 2011-004787-30 on October 26, 2012 and as NCT01647880 on July 24, 2012.

Keywords: Fingolimod; Interferon Beta-1b; Multifocal VEP; Optic neuritis; Remyelination.

Conflict of interest statement

CA has received honoraria from Biogen, Genzyme, Merck and Novartis and travel support from Almirall, Biogen, Merck and Teva. JM has received speaking fees from Teva, Biogen and Novartis, unrelated to this study. HGZ has received speaking fees from Teva and research grants from Novartis, unrelated to this study. JD has received grants by Bayer and Novartis; honoraria from Bayer, Biogen, Genzyme, Merck, Novartis and Roche; travel support from Bayer, Biogen, Merck and Novartis. JBS has received travel grants and speaking fees from Bayer Healthcare, Biogen Idec, Merck Serono, Sanofi-aventis/Genzyme, and Teva. AUB is cofounder and shareholder of technology startups Motognosis GmbH and Nocturne GmbH. He is named as inventor on several patent applications describing serum biomarkers for multiple sclerosis, perceptive computing for motor symptoms and retinal image analysis using optical coherence tomography. FP has received honoraria and research support from Alexion, Bayer, Biogen, Chugai, Merck-Serono, Novartis, Genzyme, MedImmune, Shire, Teva, and serves on scientific advisory boards for Alexion, MedImmune and Novartis. He has received funding from Deutsche Forschungsgemeinschaft (DFG Exc 257), Bundesministerium für Bildung und Forschung (Competence Network Multiple Sclerosis), Guthy Jackson Charitable Foundation, EU Framework Program 7, National Multiple Sclerosis Society of the USA. OH has received honoraria, travel and/or research grants from Alexion, Bayer, Biogen, Boehringer Ingelheim, Celgene, Daiichi-Sankyo, Merck, Novartis, Roche, Sanofi and Teva. AL, CN, SKP, MS and CC have nothing to disclose.

Figures

Fig. 1
Fig. 1
Patient disposition
Fig. 2
Fig. 2
Treatment effect on change in multifocal VEP latency from the qualifying eye. Preliminary analysis of the primary endpoint, change in mfVEP latency from the qualifying eye. Black, fingolimod. Red, IFN-β 1b. a Individual follow-up of the mfVEP latency from the qualifying eye. b Results of the non-parametric longitudinal data analysis using the R package ‘nparLD’. Relative treatment effects with 95%-confidence intervals for complete cases only (fingolimod, N = 5; IFN-β 1b, N = 4; p- value for interaction, 0.001)

References

    1. Reich DS, Lucchinetti CF, Calabresi PA. Multiple Sclerosis. N Engl J Med. 2018;378(2):169–180. doi: 10.1056/NEJMra1401483.
    1. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998;338(5):278–285. doi: 10.1056/NEJM199801293380502.
    1. Zhao C, Fancy SP, Kotter MR, Li WW, Franklin RJ. Mechanisms of CNS remyelination--the key to therapeutic advances. J Neurol Sci. 2005;233(1–2):87–91. doi: 10.1016/j.jns.2005.03.008.
    1. Chandran S, Hunt D, Joannides A, Zhao C, Compston A, Franklin RJ. Myelin repair: the role of stem and precursor cells in multiple sclerosis. Philos Trans R Soc Lond Ser B Biol Sci. 2008;363(1489):171–183. doi: 10.1098/rstb.2006.2019.
    1. Azevedo CJ, Overton E, Khadka S, Buckley J, Liu S, Sampat M, et al. Early CNS neurodegeneration in radiologically isolated syndrome. Neurol Neuroimmunol Neuroinflamm. 2015;2(3):e102. doi: 10.1212/NXI.0000000000000102.
    1. Zeydan B, Gu X, Atkinson EJ, Keegan BM, Weinshenker BG, Tillema JM, et al. Cervical spinal cord atrophy: an early marker of progressive MS onset. Neurol Neuroimmunol Neuroinflamm. 2018;5(2):e435. doi: 10.1212/NXI.0000000000000435.
    1. Friese MA, Schattling B, Fugger L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat Rev Neurol. 2014;10(4):225–238. doi: 10.1038/nrneurol.2014.37.
    1. Krieger SC, Cook K, De Nino S, Fletcher M. The topographical model of multiple sclerosis: a dynamic visualization of disease course. Neurol Neuroimmunol Neuroinflamm. 2016;3(5):e279. doi: 10.1212/NXI.0000000000000279.
    1. Dörr J, Paul F. The transition from first-line to second-line therapy in multiple sclerosis. Curr Treat Options Neurol. 2015;17(6):354. doi: 10.1007/s11940-015-0354-5.
    1. Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O. Multiple sclerosis. Lancet. 2018;391(10130):1622–1636. doi: 10.1016/S0140-6736(18)30481-1.
    1. Petzold A, Wattjes MP, Costello F, Flores-Rivera J, Fraser CL, Fujihara K, et al. The investigation of acute optic neuritis: a review and proposed protocol. Nat Rev Neurol. 2014;10(8):447–458. doi: 10.1038/nrneurol.2014.108.
    1. Wikström J, Poser S, Ritter G. Optic neuritis as an initial symptom in multiple sclerosis. Acta Neurol Scand. 1980;61(3):178–185. doi: 10.1111/j.1600-0404.1980.tb01480.x.
    1. Silbermann E, Wooliscroft L, Bourdette D. Using the anterior visual system to assess Neuroprotection and Remyelination in multiple sclerosis trials. Curr Neurol Neurosci Rep. 2018;18(8):49. doi: 10.1007/s11910-018-0858-y.
    1. Smith KJ, McDonald WI. The pathophysiology of multiple sclerosis: the mechanisms underlying the production of symptoms and the natural history of the disease. Philos Trans R Soc Lond Ser B Biol Sci. 1999;354(1390):1649–1673. doi: 10.1098/rstb.1999.0510.
    1. Klistorner A, Arvind H, Garrick R, Yiannikas C, Paine M, Graham SL. Remyelination of optic nerve lesions: spatial and temporal factors. Mult Scler. 2010;16(7):786–795. doi: 10.1177/1352458510371408.
    1. Frederiksen JL, Petrera J. Serial visual evoked potentials in 90 untreated patients with acute optic neuritis. Surv Ophthalmol. 1999;44(Suppl 1):S54–S62. doi: 10.1016/S0039-6257(99)00095-8.
    1. Beck RW, Cleary PA, Anderson MM, Jr, Keltner JL, Shults WT, Kaufman DI, et al. A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. The optic neuritis study group. N Engl J Med. 1992;326(9):581–588. doi: 10.1056/NEJM199202273260901.
    1. Morrow SA, Fraser JA, Day C, Bowman D, Rosehart H, Kremenchutzky M, et al. Effect of treating acute optic neuritis with bioequivalent Oral vs intravenous corticosteroids: a randomized clinical trial. JAMA Neurol. 2018;75(6):690–696. doi: 10.1001/jamaneurol.2018.0024.
    1. Beck RW, Trobe JD, Moke PS, Brodsky MC, Buckley EG, Chrousos GA, et al. Visual function 5 years after optic neuritis: experience of the optic neuritis treatment trial. The optic neuritis study group. Arch Ophthalmol. 1997;115(12):1545–1552. doi: 10.1001/archopht.1997.01100160715008.
    1. Cleary PA, Beck RW, Bourque LB, Backlund JC, Miskala PH. Visual symptoms after optic neuritis. Results from the optic neuritis treatment trial. J Neuroophthalmol. 1997;17(1):18–23. doi: 10.1097/00041327-199703000-00004.
    1. Galetta SL, Villoslada P, Levin N, Shindler K, Ishikawa H, Parr E, et al. Acute optic neuritis: unmet clinical needs and model for new therapies. Neurol Neuroimmunol Neuroinflamm. 2015;2(4):e135. doi: 10.1212/NXI.0000000000000135.
    1. Ma SL, Shea JA, Galetta SL, Jacobs DA, Markowitz CE, Maguire MG, et al. Self-reported visual dysfunction in multiple sclerosis: new data from the VFQ-25 and development of an MS-specific vision questionnaire. Am J Ophthalmol. 2002;133(5):686–692. doi: 10.1016/S0002-9394(02)01337-5.
    1. Oertel FC, Zimmermann HG, Brandt AU, Paul F. Novel uses of retinal imaging with optical coherence tomography in multiple sclerosis. Expert Rev Neurother. 2019;19(1):31–43. doi: 10.1080/14737175.2019.1559051.
    1. Oberwahrenbrock T, Traber GL, Lukas S, Gabilondo I, Nolan R, Songster C, et al. Multicenter reliability of semiautomatic retinal layer segmentation using OCT. Neurol Neuroimmunol Neuroinflamm. 2018;5(3):e449. doi: 10.1212/NXI.0000000000000449.
    1. Costello F, Coupland S, Hodge W, Lorello GR, Koroluk J, Pan YI, et al. Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann Neurol. 2006;59(6):963–969. doi: 10.1002/ana.20851.
    1. Brandt AU, Specovius S, Oberwahrenbrock T, Zimmermann HG, Paul F, Costello F. Frequent retinal ganglion cell damage after acute optic neuritis. Mult Scler Relat Disord. 2018;22:141–147. doi: 10.1016/j.msard.2018.04.006.
    1. Montalban X, Gold R, Thompson AJ, Otero-Romero S, Amato MP, Chandraratna D, et al. ECTRIMS/EAN guideline on the pharmacological treatment of people with multiple sclerosis. Mult Scler. 2018;24(2):96–120. doi: 10.1177/1352458517751049.
    1. Buttmann M, Rieckmann P. Interferon-beta1b in multiple sclerosis. Expert Rev Neurother. 2007;7(3):227–239. doi: 10.1586/14737175.7.3.227.
    1. Clerico M, Contessa G, Durelli L. Interferon-beta1a for the treatment of multiple sclerosis. Expert Opin Biol Ther. 2007;7(4):535–542. doi: 10.1517/14712598.7.4.535.
    1. Shirani A, Zhao Y, Karim ME, Evans C, Kingwell E, van der Kop ML, et al. Association between use of interferon beta and progression of disability in patients with relapsing-remitting multiple sclerosis. JAMA. 2012;308(3):247–256. doi: 10.1001/jama.2012.7625.
    1. Pérez-Miralles FC, Sastre-Garriga J, Vidal-Jordana A, Río J, Auger C, Pareto D, et al. Predictive value of early brain atrophy on response in patients treated with interferon β. Neurol Neuroimmunol Neuroinflamm. 2015;2(4):e132. doi: 10.1212/NXI.0000000000000132.
    1. Brinkmann V, Davis MD, Heise CE, Albert R, Cottens S, Hof R, et al. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem. 2002;277(24):21453–21457. doi: 10.1074/jbc.C200176200.
    1. Oo ML, Thangada S, Wu MT, Liu CH, Macdonald TL, Lynch KR, et al. Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J Biol Chem. 2007;282(12):9082–9089. doi: 10.1074/jbc.M610318200.
    1. Mandala S, Hajdu R, Bergstrom J, Quackenbush E, Xie J, Milligan J, et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science. 2002;296(5566):346–349. doi: 10.1126/science.1070238.
    1. Mullershausen F, Zecri F, Cetin C, Billich A, Guerini D, Seuwen K. Persistent signaling induced by FTY720-phosphate is mediated by internalized S1P1 receptors. Nat Chem Biol. 2009;5(6):428–434. doi: 10.1038/nchembio.173.
    1. Edsall LC, Pirianov GG, Spiegel S. Involvement of sphingosine 1-phosphate in nerve growth factor-mediated neuronal survival and differentiation. J Neurosci. 1997;17(18):6952–6960. doi: 10.1523/JNEUROSCI.17-18-06952.1997.
    1. Toman RE, Payne SG, Watterson KR, Maceyka M, Lee NH, Milstien S, et al. Differential transactivation of sphingosine-1-phosphate receptors modulates NGF-induced neurite extension. J Cell Biol. 2004;166(3):381–392. doi: 10.1083/jcb.200402016.
    1. Jaillard C, Harrison S, Stankoff B, Aigrot MS, Calver AR, Duddy G, et al. Edg8/S1P5: an oligodendroglial receptor with dual function on process retraction and cell survival. J Neurosci. 2005;25(6):1459–1469. doi: 10.1523/JNEUROSCI.4645-04.2005.
    1. Jung CG, Kim HJ, Miron VE, Cook S, Kennedy TE, Foster CA, et al. Functional consequences of S1P receptor modulation in rat oligodendroglial lineage cells. Glia. 2007;55(16):1656–1667. doi: 10.1002/glia.20576.
    1. Brinkmann V. Sphingosine 1-phosphate receptors in health and disease: mechanistic insights from gene deletion studies and reverse pharmacology. Pharmacol Ther. 2007;115(1):84–105. doi: 10.1016/j.pharmthera.2007.04.006.
    1. Coelho RP, Payne SG, Bittman R, Spiegel S, Sato-Bigbee C. The immunomodulator FTY720 has a direct cytoprotective effect in oligodendrocyte progenitors. J Pharmacol Exp Ther. 2007;323(2):626–635. doi: 10.1124/jpet.107.123927.
    1. Dev KK, Mullershausen F, Mattes H, Kuhn RR, Bilbe G, Hoyer D, et al. Brain sphingosine-1-phosphate receptors: implication for FTY720 in the treatment of multiple sclerosis. Pharmacol Ther. 2008;117(1):77–93. doi: 10.1016/j.pharmthera.2007.08.005.
    1. Miron VE, Jung CG, Kim HJ, Kennedy TE, Soliven B, Antel JP. FTY720 modulates human oligodendrocyte progenitor process extension and survival. Ann Neurol. 2008;63(1):61–71. doi: 10.1002/ana.21227.
    1. Barske C, Osinde M, Klein C, Mattes H, Mir AK, Dev KK, et al. F7Y720 (fingolimod) and 61 F-receptor 1 and 5 specific agonists increase the number of oligodendrocytes in vitro. Neurology. 2008;70(11):A28.
    1. Jackson SJ, Baker D, Giovannoni G. Fingolimod enhances myelin basic protein expression and modulates cytokine production following an interferon-gamma mediated insult in the whole brain aggregate cell culture system. Neurology. 2009;72(11):A377–A378.
    1. Miron VE, Ludwin SK, Darlington PJ, Jarjour AA, Soliven B, Kennedy TE, et al. Fingolimod (FTY720) enhances remyelination following demyelination of organotypic cerebellar slices. Am J Pathol. 2010;176(6):2682–2694. doi: 10.2353/ajpath.2010.091234.
    1. Di Menna L, Molinaro G, Di Nuzzo L, Riozzi B, Zappulla C, Pozzilli C, et al. Fingolimod protects cultured cortical neurons against excitotoxic death. Pharmacol Res. 2013;67(1):1–9. doi: 10.1016/j.phrs.2012.10.004.
    1. Cui QL, Fang J, Kennedy TE, Almazan G, Antel JP. Role of p38MAPK in S1P receptor-mediated differentiation of human oligodendrocyte progenitors. Glia. 2014;62(8):1361–1375. doi: 10.1002/glia.22688.
    1. Di Dario M, Colombo E, Govi C, De Feo D, Messina MJ, Romeo M, et al. Myeloid cells as target of fingolimod action in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2015;2(6):e157. doi: 10.1212/NXI.0000000000000157.
    1. Foster CA, Howard LM, Schweitzer A, Persohn E, Hiestand PC, Balatoni B, et al. Brain penetration of the oral immunomodulatory drug FTY720 and its phosphorylation in the central nervous system during experimental autoimmune encephalomyelitis: consequences for mode of action in multiple sclerosis. J Pharmacol Exp Ther. 2007;323(2):469–475. doi: 10.1124/jpet.107.127183.
    1. Kappos L, Radue EW, O’Connor P, Polman C, Hohlfeld R, Calabresi P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010;362(5):387–401. doi: 10.1056/NEJMoa0909494.
    1. Cohen JA, Barkhof F, Comi G, Hartung HP, Khatri BO, Montalban X, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362(5):402–415. doi: 10.1056/NEJMoa0907839.
    1. Calabresi PA, Radue EW, Goodin D, Jeffery D, Rammohan KW, Reder AT, et al. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13(6):545–556. doi: 10.1016/S1474-4422(14)70049-3.
    1. Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Mizota A, Tormene AP. International Society for Clinical Electrophysiology of vision. ISCEV standard for clinical visual evoked potentials: (2016 update) Doc Ophthalmol. 2016;133(1):1–9. doi: 10.1007/s10633-016-9553-y.
    1. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292–302. doi: 10.1002/ana.22366.
    1. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS) Neurology. 1983;33(11):1444–1452. doi: 10.1212/WNL.33.11.1444.
    1. Fischer JS, Rudick RA, Cutter GR, Reingold SC. The multiple sclerosis functional composite measure (MSFC): an integrated approach to MS clinical outcome assessment. National MS Society clinical outcomes assessment task force. Mult Scler. 1999;5(4):244–250. doi: 10.1177/135245859900500409.
    1. Ayadi N, Dörr J, Motamedi S, Gawlik K, Bellmann-Strobl J, Mikolajczak J, et al. Temporal visual resolution and disease severity in MS. Neurol Neuroimmunol Neuroinflamm. 2018;5(5):e492. doi: 10.1212/NXI.0000000000000492.
    1. Mangione CM, Lee PP, Pitts J, Gutierrez P, Berry S, Hays RD. Psychometric properties of the National eye Institute visual function questionnaire (NEI-VFQ). NEI-VFQ Field Test Investigators. Arch Ophthalmol. 1998;116(11):1496–1504. doi: 10.1001/archopht.116.11.1496.
    1. R Core Team . R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017.
    1. Heine S, Ebnet J, Maysami S, Stangel M. Effects of interferon-beta on oligodendroglial cells. J Neuroimmunol. 2006;177(1–2):173–180. doi: 10.1016/j.jneuroim.2006.04.016.
    1. Trebst C, Heine S, Lienenklaus S, Lindner M, Baumgärtner W, Weiss S, et al. Lack of interferon-beta leads to accelerated remyelination in a toxic model of central nervous system demyelination. Acta Neuropathol. 2007;114(6):587–596. doi: 10.1007/s00401-007-0300-z.
    1. Njenga MK, Coenen MJ, DeCuir N, Yeh HY, Rodriguez M. Short-term treatment with interferon-alpha/beta promotes remyelination, whereas long-term treatment aggravates demyelination in a murine model of multiple sclerosis. J Neurosci Res. 2000;59(5):661–670. doi: 10.1002/(SICI)1097-4547(20000301)59:5<661::AID-JNR9>;2-E.
    1. Sühs KW, Hein K, Pehlke JR, Käsmann-Kellner B, Diem R. Retinal nerve fibre layer thinning in patients with clinically isolated optic neuritis and early treatment with interferon-beta. PLoS One. 2012;7(12):e51645. doi: 10.1371/journal.pone.0051645.
    1. Lassmann H, Brück W, Lucchinetti C, Rodriguez M. Remyelination in multiple sclerosis. Mult Scler. 1997;2:133–136. doi: 10.1177/135245859700300213.
    1. Barkhof F, de Jong R, Sfikas N, de Vera A, Francis G, Cohen J, et al. The influence of patient demographics, disease characteristics and treatment on brain volume loss in trial assessing injectable interferon vs FTY720 Oral in relapsing-remitting multiple sclerosis (TRANSFORMS), a phase 3 study of fingolimod in multiple sclerosis. Mult Scler. 2014;20(13):1704–1713. doi: 10.1177/1352458514532317.
    1. Sormani MP, De Stefano N, Francis G, Sprenger T, Chin P, Radue EW, et al. Fingolimod effect on brain volume loss independently contributes to its effect on disability. Mult Scler. 2015;21(7):916–924. doi: 10.1177/1352458515569099.
    1. Lublin F, Miller DH, Freedman MS, Cree BAC, Wolinsky JS, Weiner H, et al. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet. 2016;387(10023):1075–1084. doi: 10.1016/S0140-6736(15)01314-8.
    1. Pitteri M, Magliozzi R, Bajrami A, Camera V, Calabrese M. Potential neuroprotective effect of Fingolimod in multiple sclerosis and its association with clinical variables. Expert Opin Pharmacother. 2018;19(4):387–395. doi: 10.1080/14656566.2018.1434143.
    1. Nolan R, Gelfand JM, Green AJ. Fingolimod treatment in multiple sclerosis leads to increased macular volume. Neurology. 2013;80(2):139–144. doi: 10.1212/WNL.0b013e31827b9132.
    1. Dinkin M, Paul F. Higher macular volume in patients with MS receiving fingolimod: positive outcome or side effect? Neurology. 2013;80(2):128–129. doi: 10.1212/WNL.0b013e31827ccf4a.
    1. Brusa A, Jones SJ, Kapoor R, Miller DH, Plant GT. Long-term recovery and fellow eye deterioration after optic neuritis, determined by serial visual evoked potentials. J Neurol. 1999;246(9):776–782. doi: 10.1007/s004150050454.
    1. Brusa A, Jones SJ, Plant GT. Long-term remyelination after optic neuritis: a 2-year visual evoked potential and psychophysical serial study. Brain. 2001;124(3):468–479. doi: 10.1093/brain/124.3.468.
    1. Niklas A, Sebraoui H, Hess E, Wagner A, Then Bergh F. Outcome measures for trials of remyelinating agents in multiple sclerosis: retrospective longitudinal analysis of visual evoked potential latency. Mult Scler. 2009;15(1):68–74. doi: 10.1177/1352458508095731.
    1. Pihl-Jensen G, Schmidt MF, Frederiksen JL. Multifocal visual evoked potentials in optic neuritis and multiple sclerosis: a review. Clin Neurophysiol. 2017;128(7):1234–1245. doi: 10.1016/j.clinph.2017.03.047.
    1. Gabilondo I, Martínez-Lapiscina EH, Fraga-Pumar E, Ortiz-Perez S, Torres-Torres R, Andorra M, et al. Dynamics of retinal injury after acute optic neuritis. Ann Neurol. 2015;77(3):517–528. doi: 10.1002/ana.24351.
    1. Soelberg K, Specovius S, Zimmermann HG, Grauslund J, Mehlsen JJ, Olesen C, et al. Optical coherence tomography in acute optic neuritis: a population-based study. Acta Neurol Scand. 2018;138(6):566–573. doi: 10.1111/ane.13004.
    1. Kupersmith MJ, Anderson S, Kardon R. Predictive value of 1 month retinal nerve fiber layer thinning for deficits at 6 months after acute optic neuritis. Mult Scler. 2013;19(13):1743–1748. doi: 10.1177/1352458513485149.
    1. Kupersmith MJ, Mandel G, Anderson S, Meltzer DE, Kardon R. Baseline, one and three month changes in the peripapillary retinal nerve fiber layer in acute optic neuritis: relation to baseline vision and MRI. J Neurol Sci. 2011;308(1–2):117–123. doi: 10.1016/j.jns.2011.05.039.
    1. Sühs KW, Hein K, Sättler MB, Görlitz A, Ciupka C, Scholz K, et al. A randomized, double-blind, phase 2 study of erythropoietin in optic neuritis. Ann Neurol. 2012;72(2):199–210. doi: 10.1002/ana.23573.
    1. Raftopoulos R, Hickman SJ, Toosy A, Sharrack B, Mallik S, Paling D, et al. Phenytoin for neuroprotection in patients with acute optic neuritis: a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15(3):259–269. doi: 10.1016/S1474-4422(16)00004-1.
    1. Cadavid D, Balcer L, Galetta S, Aktas O, Ziemssen T, Vanopdenbosch L, et al. Safety and efficacy of opicinumab in acute optic neuritis (RENEW): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2017;16(3):189–199. doi: 10.1016/S1474-4422(16)30377-5.
    1. Ranger A, Ray S, Szak S, Dearth A, Allaire N, Murray R, et al. Anti-LINGO-1 has no detectable immunomodulatory effects in preclinical and phase 1 studies. Neurol Neuroimmunol Neuroinflamm. 2017;5(1):e417. doi: 10.1212/NXI.0000000000000417.
    1. Plant GT, Sibtain NA, Thomas D. Hyperacute corticosteroid treatment of optic neuritis at the onset of pain may prevent visual loss: a case series. Mult Scler Int. 2011;2011:815068. doi: 10.1155/2011/81506.
    1. Stiebel-Kalish H, Hellmann MA, Mimouni M, Paul F, Bialer O, Bach M, et al. Does time equal vision in the acute treatment of a cohort of AQP4 and MOG optic neuritis? Neurol Neuroimmunol Neuroinflamm. 2019;6(4):e572. doi: 10.1212/NXI.0000000000000572.
    1. Klistorner A, Graham EC, Yiannikas C, Barnett M, Parratt J, Garrick R, et al. Progression of retinal ganglion cell loss in multiple sclerosis is associated with new lesions in the optic radiations. Eur J Neurol. 2017;24(11):1392–1398. doi: 10.1111/ene.13404.
    1. Sinnecker T, Oberwahrenbrock T, Metz I, Zimmermann H, Pfueller CF, Harms L, et al. Optic radiation damage in multiple sclerosis is associated with visual dysfunction and retinal thinning--an ultrahigh-field MR pilot study. Eur Radiol. 2015;25(1):122–131. doi: 10.1007/s00330-014-3358-8.

Source: PubMed

3
구독하다