Utility and safety of draining pleural effusions in mechanically ventilated patients: a systematic review and meta-analysis

Ewan C Goligher, Jerome A Leis, Robert A Fowler, Ruxandra Pinto, Neill K J Adhikari, Niall D Ferguson, Ewan C Goligher, Jerome A Leis, Robert A Fowler, Ruxandra Pinto, Neill K J Adhikari, Niall D Ferguson

Abstract

Introduction: Pleural effusions are frequently drained in mechanically ventilated patients but the benefits and risks of this procedure are not well established.

Methods: We performed a literature search of multiple databases (MEDLINE, EMBASE, HEALTHSTAR, CINAHL) up to April 2010 to identify studies reporting clinical or physiological outcomes of mechanically ventilated critically ill patients who underwent drainage of pleural effusions. Studies were adjudicated for inclusion independently and in duplicate. Data on duration of ventilation and other clinical outcomes, oxygenation and lung mechanics, and adverse events were abstracted in duplicate independently.

Results: Nineteen observational studies (N = 1,124) met selection criteria. The mean PaO2:FiO2 ratio improved by 18% (95% confidence interval (CI) 5% to 33%, I2 = 53.7%, five studies including 118 patients) after effusion drainage. Reported complication rates were low for pneumothorax (20 events in 14 studies including 965 patients; pooled mean 3.4%, 95% CI 1.7 to 6.5%, I2 = 52.5%) and hemothorax (4 events in 10 studies including 721 patients; pooled mean 1.6%, 95% CI 0.8 to 3.3%, I2 = 0%). The use of ultrasound guidance (either real-time or for site marking) was not associated with a statistically significant reduction in the risk of pneumothorax (OR = 0.32; 95% CI 0.08 to 1.19). Studies did not report duration of ventilation, length of stay in the intensive care unit or hospital, or mortality.

Conclusions: Drainage of pleural effusions in mechanically ventilated patients appears to improve oxygenation and is safe. We found no data to either support or refute claims of beneficial effects on clinically important outcomes such as duration of ventilation or length of stay.

Figures

Figure 1
Figure 1
Summary of the study selection process.
Figure 2
Figure 2
Forest plot of meta-analysis of studies reporting change in oxygenation after pleural drainage. PaO2:FiO2 ratios before and after thoracentesis analyzed by (a) relative mean difference (ratio of means) and (b) absolute mean difference.
Figure 3
Figure 3
Forest plot of meta-analysis of studies reporting the rate of pneumothorax after pleural drainage.
Figure 4
Figure 4
Forest plot of meta-analysis of studies reporting the rate of hemothorax after pleural drainage.

References

    1. Azoulay E, Fartoukh M, Similowski T, Galliot R, Soufir L, Le Gall JR, Chevret S, Schlemmer B. Routine exploratory thoracentesis in ICU patients with pleural effusions: results of a French questionnaire study. J Crit Care. 2001;16:98–101. doi: 10.1053/jcrc.2001.28784.
    1. Mattison LE, Coppage L, Alderman DF, Herlong JO, Sahn SA. Pleural effusions in the medical ICU: prevalence, causes, and clinical implications. Chest. 1997;111:1018–1023. doi: 10.1378/chest.111.4.1018.
    1. Graf J. Pleural effusion in the mechanically ventilated patient. Curr Opin Crit Care. 2009;15:10–17. doi: 10.1097/MCC.0b013e3283220e4a.
    1. Fartoukh M, Azoulay E, Galliot R, Le Gall JR, Baud F, Chevret S, Schlemmer B. Clinically documented pleural effusions in medical ICU patients: how useful is routine thoracentesis? Chest. 2002;121:178–184. doi: 10.1378/chest.121.1.178.
    1. Soni N, Williams P. Positive pressure ventilation: what is the real cost? Br J Anaesth. 2008;101:446–457. doi: 10.1093/bja/aen240.
    1. Krell WS, Rodarte JR. Effects of acute pleural effusion on respiratory system mechanics in dogs. J Appl Physiol. 1985;59:1458–1463.
    1. Dechman G, Mishima M, Bates JH. Assessment of acute pleural effusion in dogs by computed tomography. J Appl Physiol. 1994;76:1993–1998.
    1. Nishida O, Arellano R, Cheng DC, DeMajo W, Kavanagh BP. Gas exchange and hemodynamics in experimental pleural effusion. Crit Care Med. 1999;27:583–587. doi: 10.1097/00003246-199903000-00040.
    1. Brown NE, Zamel N, Aberman A. Changes in pulmonary mechanics and gas exchange following thoracocentesis. Chest. 1978;74:540–542. doi: 10.1378/chest.74.5.540.
    1. Estenne M, Yernault JC, De Troyer A. Mechanism of relief of dyspnea after thoracocentesis in patients with large pleural effusions. Am J Med. 1983;74:813–819. doi: 10.1016/0002-9343(83)91072-0.
    1. Wang JS, Tseng CH. Changes in pulmonary mechanics and gas exchange after thoracentesis on patients with inversion of a hemidiaphragm secondary to large pleural effusion. Chest. 1995;107:1610–1614. doi: 10.1378/chest.107.6.1610.
    1. Perpina M, Benlloch E, Marco V, Abad F, Nauffal D. Effect of thoracentesis on pulmonary gas exchange. Thorax. 1983;38:747–750. doi: 10.1136/thx.38.10.747.
    1. Altschule MD, Zamcheck N. The effects of pleural effusion on respiration and circulation in man. J Clin Invest. 1944;23:325–331. doi: 10.1172/JCI101498.
    1. Light RW, Stansbury DW, Brown SE. The relationship between pleural pressures and changes in pulmonary function after therapeutic thoracentesis. Am Rev Respir Dis. 1986;133:658–661.
    1. Gilmartin JJ, Wright AJ, Gibson GJ. Effects of pneumothorax or pleural effusion on pulmonary function. Thorax. 1985;40:60–65. doi: 10.1136/thx.40.1.60.
    1. Light RW, Stansbury DW, Brown SE. Changes in pulmonary function following therapeutic thoracocentesis. Chest. 1981;80:375. doi: 10.1378/chest.80.1.39.
    1. Wang LM, Cherng JM, Wang JS. Improved lung function after thoracocentesis in patients with paradoxical movement of a hemidiaphragm secondary to a large pleural effusion. Respirology. 2007;12:719–723. doi: 10.1111/j.1440-1843.2007.01124.x.
    1. Peek GJ, Firmin RK. Reducing morbidity from insertion of chest drains. Patients must be disconnected from positive airways pressure before insertion of drains. BMJ. 1997;315:313.
    1. Cohen J. Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychol Bull. 1968;70:213–220. doi: 10.1037/h0026256.
    1. Wallace BC, Schmid CH, Lau J, Trikalinos TA. Meta-Analyst: software for meta-analysis of binary, continuous and diagnostic data. BMC Med Res Methodol. 2009;9:80. doi: 10.1186/1471-2288-9-80.
    1. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses.
    1. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283:2008–2012. doi: 10.1001/jama.283.15.2008.
    1. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–188. doi: 10.1016/0197-2456(86)90046-2.
    1. The R Project for Statistical Computing.
    1. Sweeting MJ, Sutton AJ, Lambert PC. What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. Stat Med. 2004;23:1351–1375. doi: 10.1002/sim.1761.
    1. Cox DR. The Analysis of Binary Data. London: Methuen & Co. Ltd; 1970.
    1. Wallace BC, Schmid CH, Lau J, Trikalinos TA. Meta-Analyst: software for meta-analysis of binary, continuous and diagnostic data. BMC Med Res Methodol. 2009;9:80. doi: 10.1186/1471-2288-9-80.
    1. Friedrich JO, Adhikari NK, Beyene J. The ratio of means method as an alternative to mean differences for analyzing continuous outcome variables in meta-analysis: a simulation study. BMC Med Res Methodol. 2008;8:32. doi: 10.1186/1471-2288-8-32.
    1. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–1558. doi: 10.1002/sim.1186.
    1. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–560. doi: 10.1136/bmj.327.7414.557.
    1. De Waele JJ, Hoste E, Benoit D, Vandewoude K, Delaere S, Berrevoet F, Colardyn F. The effect of tube thoracostomy on oxygenation in ICU patients. J Intensive Care Med. 2003;18:100–104. doi: 10.1177/0885066602250358.
    1. Tu CY, Hsu WH, Hsia TC, Chen HJ, Chiu KL, Hang LW, Shih CM. The changing pathogens of complicated parapneumonic effusions or empyemas in a medical intensive care unit. Intensive Care Med. 2006;32:570–576. doi: 10.1007/s00134-005-0064-7.
    1. Ahmed SH, Ouzounian SP, Dirusso S, Sullivan T, Savino J, Del Guercio L. Hemodynamic and pulmonary changes after drainage of significant pleural effusions in critically ill, mechanically ventilated surgical patients. J Trauma. 2004;57:1184–1188. doi: 10.1097/01.TA.0000145074.98431.15.
    1. Doelken P, Abreu R, Sahn SA, Mayo PH. Effect of thoracentesis on respiratory mechanics and gas exchange in the patient receiving mechanical ventilation. Chest. 2006;130:1354–1361. doi: 10.1378/chest.130.5.1354.
    1. Talmor M, Hydo L, Gershenwald JG, Barie PS. Beneficial effects of chest tube drainage of pleural effusion in acute respiratory failure refractory to positive end-expiratory pressure ventilation. Surgery. 1998;123:137–143. doi: 10.1016/S0039-6060(98)70250-8.
    1. Gervais DA, Petersein A, Lee MJ, Hahn PF, Saini S, Mueller PR. US-guided thoracentesis: requirement for postprocedure chest radiography in patients who receive mechanical ventilation versus patients who breathe spontaneously. Radiology. 1997;204:503–506.
    1. Godwin JE, Sahn SA. Thoracentesis: a safe procedure in mechanically ventilated patients. Ann Intern Med. 1990;113:800–802.
    1. Liang SJ, Tu CY, Chen HJ, Chen CH, Chen W, Shih CM, Hsu WH. Application of ultrasound-guided pigtail catheter for drainage of pleural effusions in the ICU. Intensive Care Med. 2009;35:350–354. doi: 10.1007/s00134-008-1314-2.
    1. Lichtenstein D, Hulot JS, Rabiller A, Tostivint I, Meziere G. Feasibility and safety of ultrasound-aided thoracentesis in mechanically ventilated patients. Intensive Care Med. 1999;25:955–958. doi: 10.1007/s001340050988.
    1. Mayo PH, Goltz HR, Tafreshi M, Doelken P. Safety of ultrasound-guided thoracentesis in patients receiving mechanical ventilation. Chest. 2004;125:1059–1062. doi: 10.1378/chest.125.3.1059.
    1. McCartney JP, Adams JW, Hazard PB. Safety of thoracentesis in mechanically ventilated patients. Chest. 1993;103:1920–1921. doi: 10.1378/chest.103.6.1920.
    1. Singh K, Loo S, Bellomo R. Pleural drainage using central venous catheters. Crit Care. 2003;7:R191–4. doi: 10.1186/cc2393.
    1. Balik M, Plasil P, Waldauf P, Pazout J, Fric M, Otahal M, Pachl J. Ultrasound estimation of volume of pleural fluid in mechanically ventilated patients. Intensive Care Med. 2006;32:318–321. doi: 10.1007/s00134-005-0024-2.
    1. Roch A, Bojan M, Michelet P, Romain F, Bregeon F, Papazian L, Auffray JP. Usefulness of ultrasonography in predicting pleural effusions > 500 mL in patients receiving mechanical ventilation. Chest. 2005;127:224–232. doi: 10.1378/chest.127.1.224.
    1. Vignon P, Chastagner C, Berkane V, Chardac E, Francois B, Normand S, Bonnivard M, Clavel M, Pichon N, Preux PM, Maubon A, Gastinne H. Quantitative assessment of pleural effusion in critically ill patients by means of ultrasonography. Crit Care Med. 2005;33:1757–1763. doi: 10.1097/01.CCM.0000171532.02639.08.
    1. Tu CY, Hsu WH, Hsia TC, Chen HJ, Tsai KD, Hung CW, Shih CM. Pleural effusions in febrile medical ICU patients: chest ultrasound study. Chest. 2004;126:1274–1280. doi: 10.1378/chest.126.4.1274.
    1. Yu CJ, Yang PC, Chang DB, Luh KT. Diagnostic and therapeutic use of chest sonography: value in critically ill patients. AJR Am J Roentgenol. 1992;159:695–701.
    1. Guinard N, Beloucif S, Gatecel C, Mateo J, Payen D. Interest of a therapeutic optimization strategy in severe ARDS. Chest. 1997;111:1000–1007. doi: 10.1378/chest.111.4.1000.
    1. Agusti AG, Cardus J, Roca J, Grau JM, Xaubet A, Rodriguez-Roisin R. Ventilation-perfusion mismatch in patients with pleural effusion: effects of thoracentesis. Am J Respir Crit Care Med. 1997;156:1205–1209.
    1. Karetzky MS, Kothari GA, Fourre JA, Khan AU. Effect of thoracentesis on arterial oxygen tension. Respiration. 1978;36:96–103. doi: 10.1159/000193932.
    1. Anthonisen NR, Martin RR. Regional lung function in pleural effusion. Am Rev Respir Dis. 1977;116:201–207.
    1. Yoo OH, Ting EY. The Effects of Pleural Effusion on Pulmonary Function. Am Rev Respir Dis. 1964;89:55–63.
    1. Greenland S, Morgenstern H. Ecological bias, confounding, and effect modification. Int J Epidemiol. 1989;18:269–274. doi: 10.1093/ije/18.1.269.
    1. Mulvey RB. The Effect of Pleural Fluid on the Diaphragm. Radiology. 1965;84:1080–1086.
    1. Cooper JC, Elliott ST. Pleural effusions, diaphragm inversion, and paradox: new observations using sonography. AJR Am J Roentgenol. 1995;164:510.
    1. Altschule MD. Some neglected aspects of respiratory function in pleural effusions. The diaphragmatic arch. Chest. 1986;89:602. doi: 10.1378/chest.89.4.602.
    1. Gordon CE, Feller-Kopman D, Balk EM, Smetana GW. Pneumothorax following thoracentesis: a systematic review and meta-analysis. Arch Intern Med. 2010;170:332–339. doi: 10.1001/archinternmed.2009.548.

Source: PubMed

3
구독하다