Addressing identification bias in the design and analysis of cluster-randomized pragmatic trials: a case study

Jennifer F Bobb, Hongxiang Qiu, Abigail G Matthews, Jennifer McCormack, Katharine A Bradley, Jennifer F Bobb, Hongxiang Qiu, Abigail G Matthews, Jennifer McCormack, Katharine A Bradley

Abstract

Background: Pragmatic trials provide the opportunity to study the effectiveness of health interventions to improve care in real-world settings. However, use of open-cohort designs with patients becoming eligible after randomization and reliance on electronic health records (EHRs) to identify participants may lead to a form of selection bias referred to as identification bias. This bias can occur when individuals identified as a result of the treatment group assignment are included in analyses.

Methods: To demonstrate the importance of identification bias and how it can be addressed, we consider a motivating case study, the PRimary care Opioid Use Disorders treatment (PROUD) Trial. PROUD is an ongoing pragmatic, cluster-randomized implementation trial in six health systems to evaluate a program for increasing medication treatment of opioid use disorders (OUDs). A main study objective is to evaluate whether the PROUD intervention decreases acute care utilization among patients with OUD (effectiveness aim). Identification bias is a particular concern, because OUD is underdiagnosed in the EHR at baseline, and because the intervention is expected to increase OUD diagnosis among current patients and attract new patients with OUD to the intervention site. We propose a framework for addressing this source of bias in the statistical design and analysis.

Results: The statistical design sought to balance the competing goals of fully capturing intervention effects and mitigating identification bias, while maximizing power. For the primary analysis of the effectiveness aim, identification bias was avoided by defining the study sample using pre-randomization data (pre-trial modeling demonstrated that the optimal approach was to use individuals with a prior OUD diagnosis). To expand generalizability of study findings, secondary analyses were planned that also included patients newly diagnosed post-randomization, with analytic methods to account for identification bias.

Conclusion: As more studies seek to leverage existing data sources, such as EHRs, to make clinical trials more affordable and generalizable and to apply novel open-cohort study designs, the potential for identification bias is likely to become increasingly common. This case study highlights how this bias can be addressed in the statistical study design and analysis.

Trial registration: ClinicalTrials.gov, NCT03407638. Registered on 23 January 2018.

Keywords: Cluster-randomized trials; Electronic health records; Identification bias; Implementation trial; Open-cohort trial; Opioid use disorder; Recruitment bias.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Analytic samples available for inclusion in analyses of PROUD intervention effects before and after randomization. Boxes not drawn to scale. * Increase in documentation of an OUD diagnosis may be due to increased skill in diagnosing and treating OUD or increased patient disclosure due to reduced stigma. ** Includes patients who are attracted to the intervention site because they are seeking OUD treatment (e.g. due to limited access to treatment elsewhere or lower barriers to receiving care in the PROUD intervention site)
Fig. 2
Fig. 2
Comparison of statistical power across different options for the analytic sample for the effectiveness analysis. The x-axis shows the intervention effect size, parameterized as the percentage decrease in the expected number of days of acute care utilization comparing patients with OUD (recognized or unrecognized) in the intervention versus usual care arm. All options for the analytic sample (described in Table 2) use pre-randomization data. Each panel represents a different true prevalence of OUD (1%, 2%, or 4%). Options 3a, 3b, and 3c correspond to different assumptions of the properties of an algorithm for defining “increased risk” of OUD (see Table 3). Higher sensitivity includes more patients with true OUD whereas higher specificity excludes more patients without true OUD. Power calculations were based on closed form sample size formula based on Poisson regression (details are in the Additional File)

References

    1. Tunis SR, Stryer DB, Clancy CM. Practical clinical trials: increasing the value of clinical research for decision making in clinical and health policy. JAMA. 2003;290(12):1624–1632. doi: 10.1001/jama.290.12.1624.
    1. Zwarenstein M, Oxman A. Pragmatic Trials in Health Care Systems. Why are so few randomized trials useful, and what can we do about it? J Clin Epidemiol. 2006;59(11):1125–1126. doi: 10.1016/j.jclinepi.2006.05.010.
    1. Weiss NS, Koepsell TD, Psaty BM. Generalizability of the results of randomized trials. Arch Intern Med. 2008;168(2):133–135. doi: 10.1001/archinternmed.2007.30.
    1. Chalkidou K, Tunis S, Whicher D, Fowler R, Zwarenstein M. The role for pragmatic randomized controlled trials (pRCTs) in comparative effectiveness research. Clin Trials. 2012;9(4):436–446. doi: 10.1177/1740774512450097.
    1. Thorpe KE, Zwarenstein M, Oxman AD, Treweek S, Furberg CD, Altman DG, et al. A pragmatic-explanatory continuum indicator summary (PRECIS): a tool to help trial designers. J Clin Epidemiol. 2009;62(5):464–475. doi: 10.1016/j.jclinepi.2008.12.011.
    1. Califf RM, Platt R. Embedding cardiovascular research into practice. JAMA. 2013;310(19):2037–2038. doi: 10.1001/jama.2013.282771.
    1. NIH Health Care Systems Research Collaboratory 2015. . Accessed 11 June 2019.
    1. Cook AJ, Delong E, Murray DM, Vollmer WM, Heagerty PJ. Statistical lessons learned for designing cluster randomized pragmatic clinical trials from the NIH Health Care Systems Collaboratory Biostatistics and Design Core. Clin Trials. 2016;13(5):504–512. doi: 10.1177/1740774516646578.
    1. Murray DM, Varnell SP, Blitstein JL. Design and analysis of group-randomized trials: a review of recent methodological developments. Am J Public Health. 2004;94(3):423–432. doi: 10.2105/AJPH.94.3.423.
    1. Donner A, Klar N. Design and analysis of cluster randomization trials in health research. London: Hodder Education Publishers; 2000.
    1. Roberts C, Torgerson DJ. Understanding controlled trials: baseline imbalance in randomised controlled trials. BMJ. 1999;319(7203):185. doi: 10.1136/bmj.319.7203.185.
    1. Kahan BC, Forbes G, Ali Y, Jairath V, Bremner S, Harhay MO, et al. Increased risk of type I errors in cluster randomised trials with small or medium numbers of clusters: a review, reanalysis, and simulation study. Trials. 2016;17(1):438. doi: 10.1186/s13063-016-1571-2.
    1. Shortreed SM, Cook AJ, Coley RY, Bobb JF, Nelson JC. Challenges and opportunities for using big clinical data to advance medical science. Am J Epidemiol. 2019;188(5):851–861. doi: 10.1093/aje/kwy292.
    1. Hemming K, Taljaard M, McKenzie JE, Hooper R, Copas A, Thompson JA, et al. Reporting of the CONSORT extension for steppedwedge cluster randomised trials: Extension of the CONSORT 2010 statement with explanation and elaboration. BMJ. 2018;363:k1614. doi: 10.1136/bmj.k1614.
    1. Copas AJ, Lewis JJ, Thompson JA, Davey C, Baio G, Hargreaves JR. Designing a stepped wedge trial: three main designs, carry-over effects and randomisation approaches. Trials. 2015;16(1):352. doi: 10.1186/s13063-015-0842-7.
    1. Hooper R, Copas A. Stepped wedge trials with continuous recruitment require new ways of thinking. J Clin Epidemiol. 2019;116:161–166. doi: 10.1016/j.jclinepi.2019.05.037.
    1. Bobb JF, Cook AJ, Shortreed SM, Glass JE, Vollmer WM. Rethinking Clinical Trials: A Living Textbook of Pragmatic Clinical Trials. Bethesda: NIH Health Care Systems Research Collaboratory; 2019. Experimental designs and randomization schemes: designing to avoid identification bias.
    1. Eldridge S, Kerry S, Torgerson DJ. Bias in identifying and recruiting participants in cluster randomised trials: what can be done? BMJ. 2009;339:b4006. doi: 10.1136/bmj.b4006.
    1. Eldridge S, Campbell M, Campbell M, et al. Revised Cochrane risk of bias tool for randomized trials (RoB 2.0): Additional considerations for cluster randomizedtrials. In:Chandler J, McKenzie J, Boutron I, Welch V (editors). Cochrane Methods. Cochrane Database Syst Rev. 2016;10(Suppl 1). . Accessed 20 Feb 2020.
    1. Caille A, Kerry S, Tavernier E, Leyrat C, Eldridge S, Giraudeau B. Timeline cluster: a graphical tool to identify risk of bias in cluster randomised trials. BMJ. 2016;354:i4291. doi: 10.1136/bmj.i4291.
    1. Curran GM, Bauer M, Mittman B, Pyne JM, Stetler C. Effectiveness-implementation hybrid designs: combining elements of clinical effectiveness and implementation research to enhance public health impact. Med Care. 2012;50(3):217–226. doi: 10.1097/MLR.0b013e3182408812.
    1. Office of national drug control policy. Epidemic: Responding to America’s prescription drug abuse crisis. Washington, D.C: Executive office of the president of the United States; 2011. .
    1. Rudd RA, Seth P, David F, Scholl L. Increases in drug and opioid-involved overdose deaths—United States, 2010–2015. Morbidity and mortality weekly report. 2016;65(50 & 51):1445-52. .
    1. Dunlap B, Cifu AS. Clinical management of opioid use disorder. JAMA. 2016;316(3):338–339. doi: 10.1001/jama.2016.9795.
    1. Krupitsky E, Nunes EV, Ling W, Illeperuma A, Gastfriend DR, Silverman BL. Injectable extended-release naltrexone for opioid dependence: a double-blind, placebo-controlled, multicentre randomised trial. Lancet. 2011;377(9776):1506–1513. doi: 10.1016/S0140-6736(11)60358-9.
    1. Wu LT, Zhu H, Swartz MS. Treatment utilization among persons with opioid use disorder in the United States. Drug Alcohol Depend. 2016;169:117–127. doi: 10.1016/j.drugalcdep.2016.10.015.
    1. Korthuis PT, McCarty D, Weimer M, Bougatsos C, Blazina I, Zakher B, et al. Primary care-based models for the treatment of opioid use disorder: A scoping review. Ann Intern Med. 2017;166(4):268–278. doi: 10.7326/M16-2149.
    1. Alford DP, LaBelle CT, Kretsch N, Bergeron A, Winter M, Botticelli M, et al. Collaborative care of opioid-addicted patients in primary care using buprenorphine: five-year experience. Arch Intern Med. 2011;171(5):425–431. doi: 10.1001/archinternmed.2010.541.
    1. LaBelle CT, Han SC, Bergeron A, Samet JH. Office-Based Opioid Treatment with Buprenorphine (OBOT-B): Statewide implementation of the Massachusetts collaborative care model in community health centers. J Subst Abus Treat. 2016;60:6–13. doi: 10.1016/j.jsat.2015.06.010.
    1. Kaiser Permanente. PRimary Care Opioid Use Disorders Treatment (PROUD) Trial: NIH U.S. National Library of Medicine. . Accessed 11 June 2019.
    1. NIDA CTN Protocol 0074. PRimary care Opioid Use Disorders Treatment (PROUD) Trial. Lead Investigator: Katharine Bradley, MD, MPH. March 27, 2018. Version 3.0. Current version available upon request from the corresponding author.
    1. Jones CM, Campopiano M, Baldwin G, McCance-Katz E. National and state treatment need and capacity for opioid agonist medication-assisted treatment. Am J Public Health. 2015;105(8):e55–e63. doi: 10.2105/AJPH.2015.302664.
    1. Saha TD, Kerridge BT, Goldstein RB, Chou SP, Zhang H, Jung J, et al. Nonmedical prescription opioid use and DSM-5 nonmedical prescription opioid use disorder in the United States. J Clin Psychiatry. 2016;77(6):772–780. doi: 10.4088/JCP.15m10386.
    1. McNeely J, Wu LT, Subramaniam G, Sharma G, Cathers LA, Svikis D, et al. Performance of the tobacco, alcohol, prescription nedication, and other substance use (TAPS) tool for substance use screening in primary care patients. Ann Intern Med. 2016;165(10):690–699. doi: 10.7326/M16-0317.
    1. Boscarino JA, Rukstalis M, Hoffman SN, Han JJ, Erlich PM, Gerhard GS, et al. Risk factors for drug dependence among out-patients on opioid therapy in a large US health-care system. Addiction. 2010;105(10):1776–1782. doi: 10.1111/j.1360-0443.2010.03052.x.
    1. Hernán MA, Hernández-Díaz S, Robins JM. A structural approach to selection bias. Epidemiology. 2004;15:615–625. doi: 10.1097/01.ede.0000135174.63482.43.
    1. Signorini DF. Sample size for Poisson regression. Biometrika. 1991;78(2):446–450. doi: 10.1093/biomet/78.2.446.
    1. Amatya A, Bhaumik D, Gibbons RD. Sample size determination for clustered count data. Stat Med. 2013;32(24):4162–4179. doi: 10.1002/sim.5819.
    1. Kaiser Permanente, World Health Information Science Consultants. An observational study to develop algorithms for identifying opioid abuse and addiction based on admin claims data: NIH. U.S. National Library of Medicine; Not Yet Published. updated Apr 28, 2017. . Accessed 11 June 2019.
    1. Glass JE, Bobb JF, Lee AK, Richards JE, Lapham GT, Ludman E, et al. Study protocol: a cluster-randomized trial implementing Sustained Patient-centered Alcohol-related Care (SPARC trial) Implement Sci. 2018;13(1):108. doi: 10.1186/s13012-018-0795-9.
    1. Coronado GD, Petrik AF, Vollmer WM, Taplin SH, Keast EM, Fields S, Green BB. Effectiveness of a mailed colorectal cancer screening outreach program in community health clinics: the STOP CRC cluster randomized clinical trial. JAMA Intern Med. 2018;178(9):1174–1181. doi: 10.1001/jamainternmed.2018.3629.
    1. Vollmer WM, Green BB, Coronado GD. Analytic Challenges Arising from the STOP CRC Trial: Pragmatic Solutions for Pragmatic Problems. EGEMs (Wash DC) 2015;3(1):1200.
    1. Frangakis CE, Rubin DB. Principal stratification in causal inference. Biometrics. 2002;58(1):21–29. doi: 10.1111/j.0006-341X.2002.00021.x.
    1. Angrist JD, Imbens GW, Rubin DB. Identification of causal effects using instrumental variables. J Am Stat Assoc. 1996;91(434):444–455. doi: 10.1080/01621459.1996.10476902.
    1. Ross TR, Ng D, Brown JS, Pardee R, Hornbrook MC, Hart G, et al. The HMO research network virtual data warehouse: A public data model to support collaboration. EGEMS (Wash DC) 2014;2(1):1049.
    1. Bradley KA, Chavez LJ, Lapham GT, Williams EC, Achtmeyer CE, Rubinsky AD, et al. When quality indicators undermine quality: bias in a quality indicator of follow-up for alcohol misuse. Psychiatr Serv. 2013;64(10):1018–1025. doi: 10.1176/appi.ps.201200449.
    1. Bobb JF, Lee AK, Lapham GT, Oliver M, Ludman E, Achtmeyer C, et al. Evaluation of a pilot implementation to integrate alcohol-related care within primary care. Int J Environ Res Public Health. 2017;14(9):E1030. doi: 10.3390/ijerph14091030.

Source: PubMed

3
구독하다